
ECE 333: Introduction to Communication Networks
Fall 2002

Lecture 8: Data Link Layer IV

� ARQ algorithms

In the last lecture, we began looking at ARQ protocols. Recall our
assumptions are:

1. Packets on both the forward or reverse link may be delayed arbitrarily
long and may not arrive at all (packets that are found to be in error are
considered to not have arrived)

2. If packets do arrive they arrive in the order they were sent.

Given these assumption we want to develop a protocol to provide a reliable
packet delivery service, meaning that each packet is delivered to the next
layer correctly, in order and only one time.

Last time we proposed that the receiver send an Acknowledgement packet
(ACK) to the transmitter for every correct packet received, and we saw that
the transmitter needs to number the packets that are sent.

Where Do We Stand Now?
Current protocol:

Transmitter:

1. Set sequence number, SN = 0
2. Wait until packet available to be sent (from higher layer)
3. Send current packet in frame with number SN, start timer.
4. If time-out, go to 3.
5. If (error free) ACK received, set SN=SN+1 (mod 2), go to 2.

Receiver:

1. Set current number to be received, RN= 0.
2. Wait until packet arrives error free then:

a. Send ACK to transmitter.
b. If SN=RN, release packet to higher layer, set RN=RN+1(mod2).

3. Go to 2.

Is our protocol now reliable?

A Problem

How do we decide on the value to use for the timer?

§ If it is too long, we waste time waiting to retransmit.
§ What if it is too short?

Consider the following possibility: (what should the transmitter do next ?)

The ACK that arrives after packet 2 may be for the second packet 1 as shown, or it could be for
packet 2 (if one of the ACKs for packet 2 was lost). Depending on which event occurred the
transmitter should either resend packet 2 or send packet 3.

Ack Ack

 1 1 2 ?

Transmitter

Receiver

The solution to this is to include in the ACK packet the sequence number of
the next frame expected. (Equivalently, the sequence number of the frame
just received could be used, but in practice this is not done.)

We now have the following distributed protocol:

At transmitter:
1. Set sequence number, SN=0
2. Wait until packet available to be sent (from higher layer)
3. Send current packet in frame with number SN, start timer.
4. If time-out, go to 3.
5. If an error free ACK received with request number (RN) � SN, set SN =

RN, go to 2.

At receiver:
1. Set RN=0, repeat 2 and 3 forever.
2. If packet received with SN = RN, then release the packet to the higher

layer, set RN = RN+1 (mod 2).
3. After receiving any data frame, transmit ACK containing RN.

Note: the receiver can not send back an ACK only after receiving a packet with
SN=RN or the protocol may fail. Think about why.

Stop-and-Wait Protocol

The protocol that we have just described is called a stop- and-wait protocol
(It is also sometimes called an alternating bit protocol because of the use
of 1-bit sequence numbers)

Notes:

� The two ends must agree to a starting “state” – in this case the first
sequence number to be used – and must maintain that state as the
protocol operates.

� Setting the timeout parameter is a trade-off between not requiring
too many retransmissions and incurring long delays when frames
are lost.

� The resulting protocol achieves the requirements for reliability
under the assumption that all error can be detected and that packets
stay in order.

 7

Example:

 0 0 1 1

Transmitter

Receiver

1 1 1

 8

The following figure illustrates the correctness of stop-and-wait. This figure
shows four states labeled by (SN,RN). Each state corresponds to the values
of these counters at the transmitters and receiver at any given time. The
sequence of states shown in the figure is the only possible sequence that can
occur under correct operation.

0,0 0,1

1,1 1,0

Packet 0 correctly received.

Packet 1correctly received.

ACK 1 correctly received.
ACK 0 correctly received.

 9

Piggybacking

The stop-and-wait protocol described above addressed one-way (simplex)
communication of data packets. It is common for nodes at both ends of a
communication link to have data to send. In this case, the above protocol
could be implemented for each direction. However, rather than send
separate ACK’s on the reverse link, the acknowledgements for messages
coming in one direction can be included with the data going the other
direction. This is called piggybacking.

When piggybacking is used the format of each packet looks something like
this:

Message to be sent Checksum SN RN

SN – The sequence number of the message being sent
RN – The sequence number of the next message that is being requested

for the reverse connection.

Acknowledgements may be temporarily delayed to wait for data on the
reverse link, but should not be delayed too long. Why?

 10

Performance metrics

Now that we have a working ARQ protocol, we can start considering its
performance. One measure of the performance is the effective throughput (also
called the goodput). This is the long-term average transmission rate seen by the
next layer up. For example, suppose we are sending packets over a link with a
transmission rate of R bps. If each packet contains d data bits and a header of h
bits is added to the packet, then it will take (d+h)/R seconds to sent each packet.
In this case, the maximum effective throughput seen by the network layer is

R
hd

d� bps.

If a stop-and-wait protocol is used on this link then after sending a packet we
have to wait for the ACK to return before we can send the next packet. The
delay from when we finish sending a packet until an acknowledgement returns is
referred to as the round trip time (RTT). Assuming no errors occur, the RTT is
equal to 2 times the propagation delay, plus the transmission time for an ACK
plus any additional processing time at the receiver. Suppose the round trip time
is I sec. Thus it takes at least (d+h)/R +I seconds to send d bits of data. Therefore
the maximum effective throughput is given by

� �
IRhd

d ��
/

Note (for now) we have ignored retransmissions.

 11

A related performance measure is the efficiency of the protocol. We define this
as follows

throughput link

throughput effecitve
efficiency �

(usually this is expressed as a percentage). For the above example, the efficiency, � ,
is

IRhd

d

IRhd

Rd
��

�
��

�

/)(

/�

Equivalently, efficiency can be defined in several other ways:

time total

data sendingtime

possible bits total

bits data
efficiency ��

Here "total bits possible" includes the number of bits that could have been sent
during the idle time, i.e. IR.

 12

Protocol Efficiency Example

Consider a Stop-and-Wait Protocol used over a 50 kbps satellite channel with
a propagation delay of 250 msec each way. Further assume a 1000 bit frame.
What is the efficiency?

Answer: If we start transmitting at t = 0, the last bit of the frame is
transmitted at t = 20 (msec). The last bit arrives at the receiver at t = 270
msec. If we assume a very short acknowledge frame and turnaround time,
the acknowledgment is received by the sender at t = 520 msec, and the next
frame can be sent. (RTT = 500 msec)

Thus, we are sending data 20 out of 520 msec, for an efficiency of 3.85%,
and this ignores the loss of efficiency due to header overhead,
retransmission or any other problems. In this case the effective
throughput is given by (.0385)50 kbps � 1.9 kbps.

For long propagation times and high transmission rates stop-and-wait
clearly becomes inefficient. How can we improve this, while still
providing a reliable service?

 13

Sliding Window Protocols

One way to improve the efficiency of stop-and-wait is to use larger packets,
i.e., more data bits per packet. One problem with this is that the data may
not arrive from the higher layer in large units. Hence, to send larger packets,
the data would have to be delayed until enough accumulated. In general, this
is also undesirable.

A better way to improve the efficiency is to allow the sender to send more
than 1 frame before receiving an ACK.

For example, let the transmitter send up to N packets before it receives an
ACK for the first packet.

Such protocols are called Sliding Window Protocols. In the next
lecture, we will begin to study this type of protocol.

