Northwestern University Department of Electrical and Computer Engineering

ECE 510	Spring 2005
Problem set 4:	Due 5/17/05

Problem 1: In this problem we again consider the problem of bandwidth scaling in a multipath fading channel. As in lecture, consider dividing a multi-path fading channel into a set of L parallel channels, each in a different coherence band. Then we consider a discrete-time model and assume that each time sample corresponds to a different coherence-time. For a given coherence-time, let $\mathbf{Y} = (y_1, \ldots, y_L)^T$ be the complex vector of received signals, where y_l represent the received signal in the *l*th coherence band. Likewise let \mathbf{X} be L dimensional vector representing the channel input in each coherence band. These are related by

$$\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{W},$$

where **H** is a $L \times L$ diagonal matrix with the *l*th diagonal entry h_l corresponding to the channel gain in the *l*th coherence band, and $\mathbf{W} = (w_1, \dots, w_L)^T$ represents the additive noise. Assume that $\{h_l\}$ are i.i.d. complex Gaussians, with distribution CN(0, 1) and $\{w_l\}_l$ are also i.i.d. complex Gaussians with distribution $CN(0, N_o)$. Finally, assume that the input has a power constraint given by

$$\sum_{l=1}^{L} \mathrm{E}(|x_l|^2) \le P.$$

The capacity of this channel (assuming no CSI at the receiver or transmitter) is given by the maximum of $I(\mathbf{X}; \mathbf{Y})$, over all probability distributions on the input \mathbf{X} that satisfy the power constraint.

a. Using that $I(\mathbf{H}, \mathbf{X}; \mathbf{Y}) = I(\mathbf{H}; \mathbf{Y} | \mathbf{X}) + I(\mathbf{X}; \mathbf{Y})$, show that

$$I(\mathbf{X}; \mathbf{Y}) \le L \log \left(1 + \frac{P}{LN_o}\right) - \sum_{l=1}^{L} E \log \left(1 + \frac{|x_1|^2}{N_0}\right).$$

- b. Assume the transmitter must allocate equal power to each coherence band, i.e., $E(|x_l|^2) = P/L$ for all l = 1, ..., L. Using the bound in part (a), show that the capacity of the channel (with this power allocation) must go to zero as $L \to \infty$.
- c. Now assume that the transmitter uses "peaky" signalling and transmitts with power λ in only one of the frequence bands. In this case show that:

$$\lim_{L \to \infty} I(\mathbf{X}; \mathbf{Y}) \ge \frac{\lambda}{N_o} - \log\left(1 + \frac{\lambda}{N_o}\right).$$

d. As in lecture, now assume that the transmitter only transmitts a fraction of the time, given by θ . Show that as $\theta \to 0$, the mutual information converges to $\frac{P}{N_0}$ nats/channel use.

Problem 2: This problem reviews some facts about complex random vectors. Let \mathbf{X} be a *n*-dimensional complex random vector, i.e., a vector where each entry is a complex random variable, with a given joint distribution. \mathbf{X} is *isotropically distributed* if $U\mathbf{X}$ has the same probability density as \mathbf{X} for any (deterministic) unitary matrix $U \in \mathbb{C}^{n \times n}$ (Recall a square matrix is unitary if $U^*U = I$, where U^* denotes the congugate transpose). \mathbf{X} is Gaussian if its components are jointly Gaussian random variables. \mathbf{X} is *proper* if its pseudo covariance matrix \mathbf{EXX}^T is the all zero matrix. The distribution of a proper, complex Gaussian random vector with covariance matrix Q and mean \mathbf{m} is denoted $CN(\mathbf{m}, Q)$. If \mathbf{X} has distribution $CN(\mathbf{m}, Q)$ with Q non-singular, then its pdf is given by

$$f_{\mathbf{X}}(X) = \det(\pi Q)^{-1} \exp(-(X - \mathbf{m})^* Q^{-1} (X - \mathbf{m})).$$

- a. Suppose that each entry of **X** is i.i.d. with distribution $CN(0, \sigma^2)$. Show that **X** is isotropically distributed.
- b. Suppose that **X** has distribution $CN(\mathbf{0}, Q)$ and is isotropically distributed. Show that the entries of **X** are i.i.d. with distribution $CN(0, \sigma^2)$. (recall a covariance matrix is always nonegative definite and Hermitian.)