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ABSTRACT We study protocols in which the users exchange price
- signals that indicate the “cost” of received interference.
We study the performance of a distributed and as amely, we consider thasynchronous distributed pricing

chronous power control scheme for a spread spectr , . . )
PP) algorithm, in which each user announces a price,

wireless ad hoc network. The users exchange prices t LI , . - :
: ) o . . _Which is the marginal decrease in utility with respect to
reflect their loss in utility due to interference. The prices

) . . S marginal increase in received interference. The prices
are then used to determine optimal (utility maximizin . :

. . re then used to determine an optimal power level for
power levels for each user. We present simulation resu

S o . : :
. . ) each user. This pricing scheme can internalize the negative
illustrating the convergence of the algorithm, and the affe P g g

of limited information. With logarithmic utilities, the jging

externalities among users, and in certain cases can induce
) - . . . _a centralized optimal solution in a distributed way. This
algorithm exhibits rapid convergence to the unique optimal . . L0
: - can be interpreted as a type Rigovian Tax[1], which, in
power allocation. We then study the effect of limiting the o .
) . economics, is a tax imposed by an agency (e.g., the gov-
amount of information users can exchange. Results are : , :
. . erhment) to penalize user behaviors that generate negative
presented, which show performance (average utility pér 2 o ) 2
) : : externalities. Pigovian taxation and variations have been
user) assuming each transmitter can decode interference . L .
: . - o . Hpresented for congestion pricing in communication net-
prices only from receivers within a specified radius. The
erformance is shown to degrade gracefully as the radiWsOrkS (e.9., [2]-[5]). The power control scheme presented
P 9 9 y Here discovers the optimal prices (taxes) distributiveid a

decreases. We also compare the performance of the pricin nchronously, instead of in a static and centralized way
algorithm with a Request to Send/Clear to Send (RTS/C $ in [2]-[4]). In previous work [6], we have shown that the

protocol. Numerical results show that in a dense netwo . . .
. : : . P algorithm converges globally to the socially optimal
the pricing algorithm can offer large improvements in total .. S . .
utility maximizing) solution for a general class of utlit

efficiency (i.e., when utility corresponds to informatio ;
rate). The effect of coarse rate control on performance Ignctlor_]s.
) In this paper, we study the performance of the ADP

also examined. algorithm through simulations. We first show that with
logarithmic utilities, the ADP algorithm converges rapidl
I. INTRODUCTION to the globally optimal power allocation (i.e., much faster
an the gradient algorithm for power control proposed in
. We then study the effect of limiting the amount of
. e fformation nodes can exchange. Specifically, we assume
over a single frequency band, T_he tra_nsm|35|o_n rate Bat each transmitter can decode prices only from receivers
each user depends on the received signal-to-interfere in a specified radius. There is, then, no explicit coor-

|tor:us n0|sed ratio (,[SINR)' Que o thte mutual mterferetpce tination between transmitters and receivers separated by
€ spread spectrum environment, users generegative more than this radius. (A radius of zero corresponds to

exterr?alit.ies[l], l.e., each users tra_nsmission has a dire.%coordinated power control, i.e., all transmitters traihs
negative impact on other users’ achievable rates. Our obj th the maximum power.) Numerical results are presented

t'Vef'S to coordinate usder_ ptower Ie\fl?st tlo o‘gt'm'ie tc')I\'/ter hich show performance (total utility) as a function of this
performance, measured in terms of total network utility. radius, user density, and bandwidth. The performance of

This work was supported by the Northwestern-Motorola Center f(t)he ADP algorithm is observed to degrade gracefully with

Communications, ARO under grant DAAD190310119, and NSF c/Alecreasing radius. _
REER award CCR-0238382. We also compare the performance of the ADP algorithm

We consider power control in a spread spectrum (S
peer-to-peer network where all users spread their po
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concave function of the received SINR,
pmhmm
n0+ 5 Y jpm Pilim’

Vm (P) =
whereny is the background noise power apd= (pm)ﬁ]‘f:1
is a vector of the users’ transmission powers. We can also
write p = (Pm;p—m), Wherep_,, = (pj)%ém contains
all users’ transmission powers except usés. The users’
utility functions are coupled due to mutual interference.
As an example, théogarithmic utility functionu,, (v.,) =
Fig. 1. An example wireless network with four users (pairs d?m l0g (ym), Where#d,, is a user dependent priority para-
nodes) {;» and R,, denote the transmitter and receiver of “user, metert
respectively). The problem we consider is to specify to maximize
the utility summed over all users, where each usemust

_ also satisfy a transmission power constrajit, € P, =
with the Request to Send/Clear to Send (RTS/CTS) randm@amm Pmax} ie.

access protocol in the 802.11 standard. Numerical resuits”
show that in a dense network the ADP algorithm can offer M
large improvements in total efficiency (i.e., when utility max Z Um (Ym(P)) - (P1)

. . {P:Pm EPm,¥m} 1
corresponds to information rate). The effect of rate control m=

on performance is also examined. Namely, our results shAvepecial case i€™* = 0, i.e., the user may choose not to
that if the rate can be adjusted to match the receivednsmit. For certain utilities, e.di,, log (v,,), all assigned
SINR, then RTS/CTS random access offers only a modgsiwers must be strictly positive, sincemas — 0, the utility
improvement relative to uncoordinated power control. Thigoproaches-occ.?
improvement increases significantly when the allowable As a baseline distributed approach, consider the case
rates are quantized. where the users do not exchange any information and
In the next section, we describe the system model asithply choose transmission powers to maximize their indi-
the ADP algorithm. In Sect. Ill, we briefly summarize ouvidual utilities. Since each user’s payeff, (v, (Pm,P—m))
previous results on the convergence of the ADP algorithisistrictly increasing withp,,, for fixed p_,,, and there is no
[6]. Numerical results are given in Sect. 1V, and conclusionqenalty for high transmission power as longm@gs € P,
are given in Sect. V. each user would choose to transmit at the maximum power,
i.e., p, = PR*. This solution leads to the maximum
Il. ASYNCHRONOUS DISTRIBUTED PRICING (ADP)  interference among users and can be far from the solution
ALGOR|THM to PrOblem Pl
To improve the total network utility, users need to adjust
tReir transmission powers in anterference-awardashion.
We achieve this through the following pricing scheme. Each
gerj € M announces amterference pricer; to all other

We consider a snap-shot of an ad hoc network with
set M = {1,...,M} of distinct node pairs. As shown
in Fig. 1, each pair consists of one dedicated transmit

and one dedicated receiver. We do not consider multih $
channels, although these peer-to-peer connections coug ’ duj (v; (pj,0—5))
represent a particular schedule of transmissions determin T (pj, p—j) = — a1, (p_;) )

by an underlying routing and MAC protocol. We use the ] ,

terms “pair” and “user” interchangeably in the followingWnere Zj (p—j) = 3_y.; puhx; is the total interference
We assume that each usertransmits an SS signal spreadecéived by user;j (before bandwidth scaling). Here,
over the total bandwidth o3 Hz. Over the time-period ™ (Pj:P-;) is @lways nonnegative and is uges marginal

of interest, .the channel ga|n1s for each pair are flxe,(,j' Thqln the high SINR regime, the logarithmic utility approximates the
Chan_nel gain between usen’s transm'ltter and US€ef’s  ghannon capacitjog (1 + ;) weighted by#;. At low SINRs, a user's
receiver is denoted by,,;. Note that in generah,,; # rate is approximately linear in SINR, and so this utility is proportional

hjma Since the |atter represents the gain between y]'ser to the ngarithm of the rate. Logarithmic Uti”ty also captures fairness
transmitter and usern’s receiver constraints by ensuring that no user has a very small SINR.

, . . . . 2In Sect. Ill, we requireI_J’,;nin > 0 for global convergence of the ADP
Each userm’s quality of service is characterized by SIgorithm. In that caseP™™ can be chosen arbitrarily small so that this

utility function w,, (), Which is an increasing and strictlyrestriction has little effect.
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decrease given a marginal increase in total interferen&NR ~,,, channel gaim,,,, , adjacentchannel gaing,,;
Assuming fixedp_,,, and given the prices announced byj # m), and pricesr; (j # m). The SINR~,, and channel
other usersr_,, = (wj)%ém, each usemm € M chooses gain h,,, can be measured at the receiver and fed back to
transmit powetp,,, to maximize the surplus the transmitter. Measuring the adjacent channel gajps

can be accomplished by having each receiver periodically

broadcast a beacon; assuming reciprocity, the transmitter
Sm (Pm3 P—ms T-m) = tm (Ym (Pms P—m))=Pm Z mihmi- can then measure these channel gains. The price information

i#m could also be periodically broadcast through this beacon.

Userm therefore maximizes its utility minus its paymensince each user announces only a single price, the number

to other users for the interference it generates. of prices scales linearly with the size of the network.
In the ADP algorithm, each user announces a single

price and all users set their transmission powers based dH. PROPERTIES AND CONVERGENCE OF THE ADP
the received prices. Prices and powers are asynchronously ALGORITHM
updated. Forn € M, let7,,, and7,, . be two unbounded  Here we briefly summarize our previous results on the

sets of positive time instances at which usemupdates its convergence of the ADP algorithm [6]. Denote the fixed
power and price, respectively. The algorithm is specifi§ghints set of the ADP algorithm by
as the following (where~ denotes the time immediately

beforet): FAPP = (p,m)|(p,m) = (W (p,m),C(p))},
ADP Algorithm: where W (p,71) = (Win(p—m,7_m))¥_, and C(p) =
(1) INITIALIZATION: Each userm € M chooses some (C,,(p))X_,. In [6] it is shown thatF4PP corresponds
power p,,(0) € P,, and pricer,,(0) > 0. to the solutions of the KKT conditions of Problem P1.
(2) POWER UPDATE: At eacht € 7, ,,, userm updates Although u,, (y,,) is strictly concave iny,,, the objective
its power according to in Problem P1 may not be concave pn Thus in general,

FAPP may contain multiple points including local optima

Pm(t) = Win (p=m(t7), 7-m(t7)) , or saddle points. However, if there is only one solution to

where the KKT conditions, then it must be the global maximum
and the ADP algorithm would reach that point if it con-
Won(p—m, T-rm) verges.
=arg max sm (Pm;P—m, T—m) Let /™" = min{v,,(p) : pm € Pm} and y0ax =
e Ppmax max{V,(p) : pm € P} for all m € M. Also define
Pm DPm " Gm (Vm) = —Ymull, (Ym) /ul, (7m). We have the following
@ o) ijhmj » result.
7 Pmin Proposition 1: If for all m € M:
where [aﬁ]z = max {a, min {x,b}}, pm/¥m (P) IS () PR™ >0, and

(i) G (ym) € [a,b] for all v, € [ymin ymax] where

independent op,,,, and ! .
ndep b [a,b] is a strict subset ofL, 2];

0, 0 <z <y, (00), then Problem P1 has a unique optimal solution, to which
gm (2) = ¢ (up,) " (@), up, (00) <2 <y, (0),  the ADP algorithm globally converges.
0, Uy, (0) < 2. The termG,, (v) is called thecoefficient of relative
(3) PRICE UPDATE: At eacht € T, ., userm updates risk aversionin economics [1] and measures the relative
its price according to concaveness Ofu,, (v,). Some utility functions which
satisfy condition(iz) in Proposition 1 includé,, log(v.,),
Tn(t) = C (P(t7)) O,/ (With o € [1 — b, 1 — a]), and1 — exp (—bmym)

(with a/y™n < 0, < b/y™ax), The utility function
5 Omlog (1 + ) doesnotsatisfy condition(ii). In that case,
Con(p) = _Oun (Y () _ Oum(ym(P)) (m(P))”  the ADP algorithm can converge to different fixed points

where

0Ly (p-m) — 0vm(P)  Bpmhmm  depending on the initialization.
Note that in addition to being asynchronous across users,
each user also need not update its power and price at the IV. NUMERICAL RESULTS

same time. To implement the power and price updates, eachVe now provide some simulation results to illustrate the
userm only needs to know its own utility:,,,, the current performance of the ADP algorithm. We simulate a network
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contained in alOmx10m square area. Transmitters are

randomly placed in this area according to a uniform distri-
bution, and the corresponding receiver is randomly placed
within a 6mx6m square centered around the transmitter.

A. Comparison with Gradient Updates

First we compare the convergence of the ADP algorithm
with the gradient method proposed in [7], where prices are
updated in the same way as in the ADP algorithm, but
powers are updated according to

o (0= [ () |
0 W (pon (€)7o () = ()]

where the constant step-sizehas to be small enough to_. . o .
... Fig. 3. An example of a wireless network with limited information

guarantee convergence. All users have the same Iogarlthg}%g]ange

utility function w,, = log (v»). The channel gaing,,; =

d,3, Py /ng = 40 dB, and spreading factoB = 128.

Figure 2 shows the convergence of the powers and pri¢gsgffects of Limited Information Exchange

for each user under both algorithms for a network with

M = 10 users. Users start from random power and price ini- In Practice, users may be able to decode price messages
tializations and update their power and prices synchrdgou8nly from neighboring users, and may not account for prices
(i.e., time setsT;,, = T,,r = 7T for all m). The step- from users farther away. Figure 3 illustrates this situation
size k = 0.01, which is the largest step-size for which théh & network with four users. Each user can decode
gradient algorithm consistently converges. Both alganigh Prcing information only from other users whose receivers
converge to the socially optimal power allocation, but tr&® Within athresholddistance of the transmitter. (i.e.,

ADP algorithm converges much faster. The ADP algorithfi€ radius of the corresponding circle). The dash-dotted
essentially uses an “adaptive step-size”, i.e., userstadap arrows represent the prices that can be decoded. by the
power in “larger” step-sizes when they are far away frosPrresponding users. For example, usean decode prices

the optimal solution, and use smaller steps when close”o@nd 73, whereas usez can only decode price;.

the optimal. Figure 4 shows average utility per user for the ADP
algorithm versus user density with various threshold value
ADP Algorithm Gradient-based Algorithm Each user has the same Iogarithmic utility function =
1 1 log (Ym). The channel gaing,; = d,’, Pr™/ng =
_ _ 40 dB, and spreading gailB = 5. Each data point
S5 05 is averaged ovefd00 random topology realizations. Due
& & to the small spreading gain and high user density, most
users obtain a low SINR, which leads to negative utility.
o 20 30 %200 400 600 The full information ADP algorithm, which accounts for
60 " all prices in the network, achieves the socially optimal
solution. Since the total network area 18 meters by10
60 60 meters, the same performance can be achieved by letting
£a0 £ao the threshold equal to 10 meters. The performance of
20 20; the limited information ADP algorithm degrades gracefully
o o with a decreasing threshold, e.g., the performance is still
10 20 30 200 400 600 very close to optimal even with a threshold bfmeter.
Iterations Iterations

When the threshold decreases to zero, each user transmits
at maximum power since no pricing information is taken

Fig. 2. Convergence of the prices and powers for the ADP algorithmto account. This leads to a much lower utility compared
(left) and a gradient algorithm (right) in a network witl) users and . h the full inf . | ith
logarithmic utility functions. Each curve corresponds to the power (W't the full information ADP algorithm.

price for one user with a random initialization. In addition to the logarithmic utility function which
captures fairness constraints, we are interested to see how
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>~ Threshold =2.0 m B A Threshold =1 m
—&- Threshold = 1.5 m —~ Maximum Power
~-A- Threshold =1.0 m
—— Threshold =0.5m
—0— Maximum Power

X

Average Utility Per User
Average Utility Per User

0.2 0.4 0.6 0.8 1 12 1.4 0.2 0.4 0.6 1 12 1.4

0.8 2
Users / m? Users /m

Fig. 4. Performance of the ADP algorithm with limited pricingFig. 5.  Performance of the ADP algorithm with limited pricing
information vs. user density (Users have logarithmic utility). information vs user density (Users have rate utility functions and random
initial powers and prices with fixed topologies).

the ADP algorithm perform in terms of network throughput Q
maximization. For this purpose, we let each user have the o.8r
samerate utility function u,, = log(1+ v»), i.e., we 08

assume that the users can perfectly adapt their modula-
tion/coding schemes to reach the Shannon capacity. In this
case, the ADP algorithm is not guaranteed to converge to the
globally optimal solution, i.e., the algorithm may conwerg

o
3

Normalized Utility
o
[=2]

0.5r -
. . K i R . -©- Full Information ADP
to different fixed points depending on the initialization, or > Threshold=2.0m [ —F——— 4 4
0.4r| -5 Threshold = 1.5m 7
may not converge at all. In the latter case, we stop the A Threshold = 1.0m
. . L| =% Threshold = 0. i
algorithm after100 synchronous power and price updates. 03| i Ponar W
Figure 5 shows the performance of the ADP algorithm Y R e B
versus user density. The parameters are the same as Figure Users / m?

4. For each user density, we randomly generate one network

topology, and run the algorithm with0 different random fig. 6. performance of the ADP algorithm with limited pricing
power and price initializations (for the same topologynformation vs. user density averaged over network topologies.

Each point corresponds to the average utility per user of

a particular realization. The figure shows that although in

some cases different initializations lead to different fixesther hand, the normalized utility stays the same, or even
points, the corresponding utilities are typically verys#o increases slightly with increasing user density when the
(The fluctuation in utility with user density is due to théhreshold is larger than meter. This is due to the fact
change in network topology.) that the threshold is large enough to capture most of the

Figure 6 shows average performance of the ADP alggfrong interfering users, so that the out-of-zone interéer
rithm versus user densities with rate utility functions.réle Users become less important.
we plot normalized utility, i.e., each point represents the Figure 7 shows the normalized utility of the ADP algo-
average utility per user normalized by the achievabletytilirithm versus bandwidth (spreading gain) with rate utility
using the full information ADP algorithm, averaged ovefunctions. The user density is fixed at4 users/m. All
100 random topology realizations. The parameters are t#er parameters are the same as in Figure 6. It is not sur-
same as Figure 4. The ADP algorithm with onlg aneters prising that increasing the bandwidth decreases the mutual
threshold achieves a normalized utility as high %$%, interference, and increases the achievable networkyutilit
and the performance degradation with decreasing thresholdFigure 8 shows the average utility per user of the ADP
is quite graceful. The normalized utility decreases withlgorithm versus path loss exponentwith rate utility
increasing user density when the threshold is less thiamctions. The channel gains satisty,; = d;;, and the
or equal t00.5 meter, due to the increasing number afiser density is fixed at user/n?. All other parameters are
interfering users farther away than the threshold. On thee same as in Figure 6. With uncoordinated maximum
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Fig. 9. Performance comparison of the ADP algorithm with&he.11
RTS/CTS protocol, and uncoordinated maximum transmission powers
(x: perfect rate adaption): quantized rate adaption).

Fig. 7. Performance of the ADP algorithm with limited pricing
information vs. bandwidth (spreading gain).

0.8

—©— Full Information ADP
07f | = Threshold =20m 1 transmitter-receiver pairs sequentially, from useto user
. - Threshold = 1.0m M. Both userm’s transmitter and receiver aggtiveif its
32|t vt transmitter (respectively, receiver) is more tharmeters
‘20.5— away from an active receiver (respectively, transmitter) f
% oal usersl to m — 1. Otherwise, its transmitter is silent. Only
g active transmitters (receivers) can transmit (receivéd.deo
Z o3l make a fair comparison, we plot the normalized utility of
o;— both the full information ADP algorithm and the limited
Bk information ADP algorithm (threshold 8 meters). We
01 o s i . also plot the normalized utility where all users transmit at
Path Loss Exponent maximum powers. The system parameters are the same as

in Figure 6. Results are shown with both perfect rate adap-
Fig. 8. Performance of the ADP algorithm with limited information vstation (denoted byk<) assuming an optimal coding scheme
path loss exponent. that achieves theog (1 +~,,) utility, and quantized rate

adaptation (denoted hy) in which the rate is chosen from

the set{0, 5, 10, 15,20} bits/Hz. All results are normalized

power transmission, the utility stays roughly unchangggith respect to the achievable utility of the full informati
for different values ofr. This is because at each usergpp with perfect rate adaptation.

receiver, both the useful signal and the interference deere ag the density of users increases, the ADP algorithm

at the same rate with increasing so that the SINR achieves much higher utility than the RTS/CTS protocol
stays constaft However, for the full information ADP (as much as a factor of three with a user density of
algorithm, power control is performed to take advantage; ysers/m). The performance gap is approximately the
of the increasing (thereby decreasing interference), whicBgme with quantized rates. TI#2.11 protocol achieves

leads to a higher utility. The performance gain decreasesaa%timy up to 1.5 times of that achieved by maximum

the threshold becomes smaller. power transmission with perfect rate adaptation. The ratio
increases to a factor of four when the rates are quantized.
C. Comparison witf802.11 RTS/CTS MAC Protocol This is due to the fact that maximum power transmission

Figure 9 compares the performance of the ADP algorithlr(ﬁadS to strong interference, a_qd Very small S_INRS for many
with the 802.11 Request to Send/Clear to Send (RTS/CTéﬁserS’ who would get zero utility with quantized rates.
MAC protocol with rate utility functions. To simulate the
802.11 protocol, we determine the random locations of V. CONCLUSIONS

3With maximum power transmission, the background noise is small YVe have eyaluated the performance of a d|5t”b_Uted power
compared with the interference generated. control algorithm for spread spectrum ad hoc wireless net-
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works. According to the algorithm, users announce prices
to reflect their sensitivities to the current interferencesle

and then adjust their powers to maximize the individual
surpluses. The algorithm can be implemented asynchro-
nously, and requires only limited knowledge of channel
gains to neighboring users. Numerical results show that the
algorithm converges rapidly to the socially optimal saati

and has a graceful performance degradation when the
information exchange among users is limited. We have also
observed a significant performance improvement relative
to the 802.11 RTS/CTS protocol, both with and without
perfect rate control. Throughout the paper we have focused
on a static setting, where the communicating pairs and the
channel conditions are fixed. An interesting future direttio

is to consider dynamic environments.
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