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ABSTRACT

We study the performance of a distributed and asyn-
chronous power control scheme for a spread spectrum
wireless ad hoc network. The users exchange prices that
reflect their loss in utility due to interference. The prices
are then used to determine optimal (utility maximizing)
power levels for each user. We present simulation results
illustrating the convergence of the algorithm, and the effect
of limited information. With logarithmic utilities, the pricing
algorithm exhibits rapid convergence to the unique optimal
power allocation. We then study the effect of limiting the
amount of information users can exchange. Results are
presented, which show performance (average utility per
user) assuming each transmitter can decode interference
prices only from receivers within a specified radius. The
performance is shown to degrade gracefully as the radius
decreases. We also compare the performance of the pricing
algorithm with a Request to Send/Clear to Send (RTS/CTS)
protocol. Numerical results show that in a dense network
the pricing algorithm can offer large improvements in total
efficiency (i.e., when utility corresponds to information
rate). The effect of coarse rate control on performance is
also examined.

I. INTRODUCTION

We consider power control in a spread spectrum (SS)
peer-to-peer network where all users spread their power
over a single frequency band. The transmission rate for
each user depends on the received signal-to-interference
plus noise ratio (SINR). Due to the mutual interference in
the spread spectrum environment, users generatenegative
externalities[1], i.e., each user’s transmission has a direct
negative impact on other users’ achievable rates. Our objec-
tive is to coordinate user power levels to optimize overall
performance, measured in terms of total network utility.

This work was supported by the Northwestern-Motorola Center for
Communications, ARO under grant DAAD190310119, and NSF CA-
REER award CCR-0238382.

We study protocols in which the users exchange price
signals that indicate the “cost” of received interference.
Namely, we consider theasynchronous distributed pricing
(ADP) algorithm, in which each user announces a price,
which is the marginal decrease in utility with respect to
a marginal increase in received interference. The prices
are then used to determine an optimal power level for
each user. This pricing scheme can internalize the negative
externalities among users, and in certain cases can induce
a centralized optimal solution in a distributed way. This
can be interpreted as a type ofPigovian Tax[1], which, in
economics, is a tax imposed by an agency (e.g., the gov-
ernment) to penalize user behaviors that generate negative
externalities. Pigovian taxation and variations have been
presented for congestion pricing in communication net-
works (e.g., [2]–[5]). The power control scheme presented
here discovers the optimal prices (taxes) distributively and
asynchronously, instead of in a static and centralized way
(as in [2]–[4]). In previous work [6], we have shown that the
ADP algorithm converges globally to the socially optimal
(utility maximizing) solution for a general class of utility
functions.

In this paper, we study the performance of the ADP
algorithm through simulations. We first show that with
logarithmic utilities, the ADP algorithm converges rapidly
to the globally optimal power allocation (i.e., much faster
than the gradient algorithm for power control proposed in
[7]). We then study the effect of limiting the amount of
information nodes can exchange. Specifically, we assume
that each transmitter can decode prices only from receivers
within a specified radius. There is, then, no explicit coor-
dination between transmitters and receivers separated by
more than this radius. (A radius of zero corresponds to
uncoordinated power control, i.e., all transmitters transmit
with the maximum power.) Numerical results are presented,
which show performance (total utility) as a function of this
radius, user density, and bandwidth. The performance of
the ADP algorithm is observed to degrade gracefully with
decreasing radius.

We also compare the performance of the ADP algorithm
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Fig. 1. An example wireless network with four users (pairs of
nodes) (Tm and Rm denote the transmitter and receiver of “user”m,
respectively).

with the Request to Send/Clear to Send (RTS/CTS) random
access protocol in the 802.11 standard. Numerical results
show that in a dense network the ADP algorithm can offer
large improvements in total efficiency (i.e., when utility
corresponds to information rate). The effect of rate control
on performance is also examined. Namely, our results show
that if the rate can be adjusted to match the received
SINR, then RTS/CTS random access offers only a modest
improvement relative to uncoordinated power control. This
improvement increases significantly when the allowable
rates are quantized.

In the next section, we describe the system model and
the ADP algorithm. In Sect. III, we briefly summarize our
previous results on the convergence of the ADP algorithm
[6]. Numerical results are given in Sect. IV, and conclusions
are given in Sect. V.

II. ASYNCHRONOUS DISTRIBUTED PRICING (ADP)
ALGORITHM

We consider a snap-shot of an ad hoc network with a
set M = {1, ..., M} of distinct node pairs. As shown
in Fig. 1, each pair consists of one dedicated transmitter
and one dedicated receiver. We do not consider multihop
channels, although these peer-to-peer connections could
represent a particular schedule of transmissions determined
by an underlying routing and MAC protocol. We use the
terms “pair” and “user” interchangeably in the following.
We assume that each userm transmits an SS signal spread
over the total bandwidth ofB Hz. Over the time-period
of interest, the channel gains for each pair are fixed. The
channel gain between userm’s transmitter and userj’s
receiver is denoted byhmj . Note that in generalhmj 6=
hjm, since the latter represents the gain between userj’s
transmitter and userm’s receiver.

Each userm’s quality of service is characterized by a
utility function um (γm), which is an increasing and strictly

concave function of the received SINR,

γm (p) =
pmhmm

n0 + 1

B

∑

j 6=m pjhjm

,

wheren0 is the background noise power andp = (pm)M
m=1

is a vector of the users’ transmission powers. We can also
write p = (pm; p−m), where p−m = (pj)

M
j 6=m

contains
all users’ transmission powers except userm’s. The users’
utility functions are coupled due to mutual interference.
As an example, thelogarithmic utility functionum (γm) =
θm log (γm), whereθm is a user dependent priority para-
meter.1

The problem we consider is to specifyp to maximize
the utility summed over all users, where each userm must
also satisfy a transmission power constraint,pm ∈ Pm =
[

Pmin
m , Pmax

m

]

, i.e.,

max
{p:pm∈Pm,∀m}

M
∑

m=1

um (γm(p)) . (P1)

A special case isPmin
m = 0, i.e., the user may choose not to

transmit. For certain utilities, e.g.,θm log (γm), all assigned
powers must be strictly positive, since aspm → 0, the utility
approaches−∞.2

As a baseline distributed approach, consider the case
where the users do not exchange any information and
simply choose transmission powers to maximize their indi-
vidual utilities. Since each user’s payoffum (γm (pm, p−m))
is strictly increasing withpm for fixed p−m, and there is no
penalty for high transmission power as long aspm ∈ Pm,
each user would choose to transmit at the maximum power,
i.e., pm = Pmax

m . This solution leads to the maximum
interference among users and can be far from the solution
to Problem P1.

To improve the total network utility, users need to adjust
their transmission powers in aninterference-awarefashion.
We achieve this through the following pricing scheme. Each
userj ∈ M announces aninterference priceπj to all other
users,

πj (pj , p−j) = −
∂uj (γj (pj , p−j))

∂Ij (p−j)
,

where Ij (p−j) =
∑

k 6=j pkhkj is the total interference
received by userj (before bandwidth scaling). Here,
πj (pj , p−j) is always nonnegative and is userj’s marginal

1In the high SINR regime, the logarithmic utility approximates the
Shannon capacitylog (1 + γi) weighted byθi. At low SINRs, a user’s
rate is approximately linear in SINR, and so this utility is proportional
to the logarithm of the rate. Logarithmic utility also captures fairness
constraints by ensuring that no user has a very small SINR.

2In Sect. III, we requirePmin

m > 0 for global convergence of the ADP
algorithm. In that case,Pmin

m can be chosen arbitrarily small so that this
restriction has little effect.
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decrease given a marginal increase in total interference.
Assuming fixedp−m, and given the prices announced by
other usersπ−m = (πj)

M
j 6=m

, each userm ∈ M chooses
transmit powerpm to maximize the surplus

sm (pm; p−m, π−m) = um (γm (pm, p−m))−pm

∑

j 6=m

πjhmj .

User m therefore maximizes its utility minus its payment
to other users for the interference it generates.

In the ADP algorithm, each user announces a single
price and all users set their transmission powers based on
the received prices. Prices and powers are asynchronously
updated. Form ∈ M, let Tm,p andTm,π be two unbounded
sets of positive time instances at which userm updates its
power and price, respectively. The algorithm is specified
as the following (wheret− denotes the time immediately
beforet):

ADP Algorithm:

(1) INITIALIZATION: Each userm ∈ M chooses some
powerpm(0) ∈ Pm and priceπm(0) ≥ 0.

(2) POWER UPDATE: At eacht ∈ Tm,p, userm updates
its power according to

pm(t) = Wm

(

p−m(t−), π−m(t−)
)

,

where

Wm(p−m, π−m)

= arg max
p̂m∈Pm

sm (p̂m; p−m, π−m)

=





pm

γm (p)
gm





pm

γm(p)





∑

j 6=m

πjhmj













Pmax

m

Pmin
m

,

where [x]ba = max {a,min {x, b}}, pm/γm (p) is
independent ofpm, and

gm (x) =







∞, 0 ≤ x ≤ u′
m (∞) ,

(u′
m)−1 (x) , u′

m (∞) < x < u′
m (0) ,

0, u′
m (0) ≤ x.

(3) PRICE UPDATE: At eacht ∈ Tm,π, userm updates
its price according to

πm(t) = Cm

(

p(t−)
)

,

where

Cm(p) = −
∂um (γm (p))

∂Im (p−m)
=

∂um(γm(p))

∂γm(p)

(γm(p))2

Bpmhmm
.

Note that in addition to being asynchronous across users,
each user also need not update its power and price at the
same time. To implement the power and price updates, each
userm only needs to know its own utilityum, the current

SINR γm, channel gainhmm , adjacentchannel gainshmj

(j 6= m), and pricesπj (j 6= m). The SINRγm and channel
gain hmm can be measured at the receiver and fed back to
the transmitter. Measuring the adjacent channel gainshmj

can be accomplished by having each receiver periodically
broadcast a beacon; assuming reciprocity, the transmitters
can then measure these channel gains. The price information
could also be periodically broadcast through this beacon.
Since each user announces only a single price, the number
of prices scales linearly with the size of the network.

III. PROPERTIES AND CONVERGENCE OF THE ADP
ALGORITHM

Here we briefly summarize our previous results on the
convergence of the ADP algorithm [6]. Denote the fixed
points set of the ADP algorithm by

FADP ≡ {(p, π) | (p, π) = (W (p, π) , C(p))} ,

where W (p, π) = (Wm(p−m, π−m))M
m=1

and C(p) =

(Cm(p))M
m=1

. In [6] it is shown thatFADP corresponds
to the solutions of the KKT conditions of Problem P1.
Although um (γm) is strictly concave inγm, the objective
in Problem P1 may not be concave inp. Thus in general,
FADP may contain multiple points including local optima
or saddle points. However, if there is only one solution to
the KKT conditions, then it must be the global maximum
and the ADP algorithm would reach that point if it con-
verges.

Let γmin
m = min{γm(p) : pm ∈ Pm} and γmax

m =
max{γm(p) : pm ∈ Pm} for all m ∈ M. Also define
Gm (γm) = −γmu′′

m(γm)/u′
m(γm). We have the following

result.
Proposition 1: If for all m ∈ M:

(i) Pmin
m > 0, and

(ii) Gm (γm) ∈ [a, b] for all γm ∈ [γmin
m , γmax

m ], where
[a, b] is a strict subset of[1, 2];

then Problem P1 has a unique optimal solution, to which
the ADP algorithm globally converges.

The termGm (γm) is called thecoefficient of relative
risk aversionin economics [1] and measures the relative
concaveness ofum (γm). Some utility functions which
satisfy condition(ii) in Proposition 1 includeθm log(γm),
θmγα

m/α (with α ∈ [1 − b, 1 − a]), and1 − exp (−θmγm)
(with a/γmin

m ≤ θm ≤ b/γmax
m ). The utility function

θm log (1 + γm) doesnot satisfy condition(ii). In that case,
the ADP algorithm can converge to different fixed points
depending on the initialization.

IV. NUMERICAL RESULTS

We now provide some simulation results to illustrate the
performance of the ADP algorithm. We simulate a network
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contained in a10m×10m square area. Transmitters are
randomly placed in this area according to a uniform distri-
bution, and the corresponding receiver is randomly placed
within a 6m×6m square centered around the transmitter.

A. Comparison with Gradient Updates

First we compare the convergence of the ADP algorithm
with the gradient method proposed in [7], where prices are
updated in the same way as in the ADP algorithm, but
powers are updated according to

pm (t) =
[

pm

(

t−
)

+ κ
(

Wm

(

p−m

(

t−
)

, π−m

(

t−
))

− pm

(

t−
))]Pmax

m

Pmin
m

.

where the constant step-sizeκ has to be small enough to
guarantee convergence. All users have the same logarithmic
utility function um = log (γm). The channel gainshmj =
d−4

mj , Pmax
m /n0 = 40 dB, and spreading factorB = 128.

Figure 2 shows the convergence of the powers and prices
for each user under both algorithms for a network with
M = 10 users. Users start from random power and price ini-
tializations and update their power and prices synchronously
(i.e., time setsTm,p = Tm,π = T for all m). The step-
sizeκ = 0.01, which is the largest step-size for which the
gradient algorithm consistently converges. Both algorithms
converge to the socially optimal power allocation, but the
ADP algorithm converges much faster. The ADP algorithm
essentially uses an “adaptive step-size”, i.e., users adapt the
power in “larger” step-sizes when they are far away from
the optimal solution, and use smaller steps when close to
the optimal.
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Fig. 2. Convergence of the prices and powers for the ADP algorithm
(left) and a gradient algorithm (right) in a network with10 users and
logarithmic utility functions. Each curve corresponds to the power or
price for one user with a random initialization.
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Fig. 3. An example of a wireless network with limited information
exchange.

B. Effects of Limited Information Exchange

In practice, users may be able to decode price messages
only from neighboring users, and may not account for prices
from users farther away. Figure 3 illustrates this situation
in a network with four users. Each userm can decode
pricing information only from other users whose receivers
are within athresholddistance of the transmitterm (i.e.,
the radius of the corresponding circle). The dash-dotted
arrows represent the prices that can be decoded by the
corresponding users. For example, user4 can decode prices
π2 andπ3, whereas user2 can only decode priceπ1.

Figure 4 shows average utility per user for the ADP
algorithm versus user density with various threshold values.
Each user has the same logarithmic utility functionum =
log (γm). The channel gainshmj = d−4

mj , Pmax
m /n0 =

40 dB, and spreading gainB = 5. Each data point
is averaged over100 random topology realizations. Due
to the small spreading gain and high user density, most
users obtain a low SINR, which leads to negative utility.
The full information ADP algorithm, which accounts for
all prices in the network, achieves the socially optimal
solution. Since the total network area is10 meters by10
meters, the same performance can be achieved by letting
the threshold equal to 10 meters. The performance of
the limited information ADP algorithm degrades gracefully
with a decreasing threshold, e.g., the performance is still
very close to optimal even with a threshold of1 meter.
When the threshold decreases to zero, each user transmits
at maximum power since no pricing information is taken
into account. This leads to a much lower utility compared
with the full information ADP algorithm.

In addition to the logarithmic utility function which
captures fairness constraints, we are interested to see how
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Fig. 4. Performance of the ADP algorithm with limited pricing
information vs. user density (Users have logarithmic utility).

the ADP algorithm perform in terms of network throughput
maximization. For this purpose, we let each user have the
same rate utility function um = log (1 + γm) , i.e., we
assume that the users can perfectly adapt their modula-
tion/coding schemes to reach the Shannon capacity. In this
case, the ADP algorithm is not guaranteed to converge to the
globally optimal solution, i.e., the algorithm may converge
to different fixed points depending on the initialization, or
may not converge at all. In the latter case, we stop the
algorithm after100 synchronous power and price updates.
Figure 5 shows the performance of the ADP algorithm
versus user density. The parameters are the same as Figure
4. For each user density, we randomly generate one network
topology, and run the algorithm with10 different random
power and price initializations (for the same topology).
Each point corresponds to the average utility per user of
a particular realization. The figure shows that although in
some cases different initializations lead to different fixed
points, the corresponding utilities are typically very close.
(The fluctuation in utility with user density is due to the
change in network topology.)

Figure 6 shows average performance of the ADP algo-
rithm versus user densities with rate utility functions. Here
we plot normalized utility, i.e., each point represents the
average utility per user normalized by the achievable utility
using the full information ADP algorithm, averaged over
100 random topology realizations. The parameters are the
same as Figure 4. The ADP algorithm with only a2 meters
threshold achieves a normalized utility as high as95%,
and the performance degradation with decreasing thresholds
is quite graceful. The normalized utility decreases with
increasing user density when the threshold is less than
or equal to0.5 meter, due to the increasing number of
interfering users farther away than the threshold. On the
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Fig. 5. Performance of the ADP algorithm with limited pricing
information vs user density (Users have rate utility functions and random
initial powers and prices with fixed topologies).
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Fig. 6. Performance of the ADP algorithm with limited pricing
information vs. user density averaged over network topologies.

other hand, the normalized utility stays the same, or even
increases slightly with increasing user density when the
threshold is larger than1 meter. This is due to the fact
that the threshold is large enough to capture most of the
strong interfering users, so that the out-of-zone interfering
users become less important.

Figure 7 shows the normalized utility of the ADP algo-
rithm versus bandwidth (spreading gain) with rate utility
functions. The user density is fixed at1.4 users/m2. All
other parameters are the same as in Figure 6. It is not sur-
prising that increasing the bandwidth decreases the mutual
interference, and increases the achievable network utility.

Figure 8 shows the average utility per user of the ADP
algorithm versus path loss exponentr with rate utility
functions. The channel gains satisfyhmj = d−r

mj , and the
user density is fixed at1 user/m2. All other parameters are
the same as in Figure 6. With uncoordinated maximum
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Fig. 8. Performance of the ADP algorithm with limited information vs.
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power transmission, the utility stays roughly unchanged
for different values ofr. This is because at each user’s
receiver, both the useful signal and the interference decrease
at the same rate with increasingr, so that the SINR
stays constant3. However, for the full information ADP
algorithm, power control is performed to take advantage
of the increasingr (thereby decreasing interference), which
leads to a higher utility. The performance gain decreases as
the threshold becomes smaller.

C. Comparison with802.11 RTS/CTS MAC Protocol

Figure 9 compares the performance of the ADP algorithm
with the 802.11 Request to Send/Clear to Send (RTS/CTS)
MAC protocol with rate utility functions. To simulate the
802.11 protocol, we determine the random locations of

3With maximum power transmission, the background noise is small
compared with the interference generated.
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Fig. 9. Performance comparison of the ADP algorithm with the802.11
RTS/CTS protocol, and uncoordinated maximum transmission powers
(×: perfect rate adaption;©: quantized rate adaption).

transmitter-receiver pairs sequentially, from user1 to user
M . Both userm’s transmitter and receiver areactive if its
transmitter (respectively, receiver) is more than3 meters
away from an active receiver (respectively, transmitter) for
users1 to m − 1. Otherwise, its transmitter is silent. Only
active transmitters (receivers) can transmit (receive) data. To
make a fair comparison, we plot the normalized utility of
both the full information ADP algorithm and the limited
information ADP algorithm (threshold =3 meters). We
also plot the normalized utility where all users transmit at
maximum powers. The system parameters are the same as
in Figure 6. Results are shown with both perfect rate adap-
tation (denoted by×) assuming an optimal coding scheme
that achieves thelog (1 + γm) utility, and quantized rate
adaptation (denoted by©) in which the rate is chosen from
the set{0, 5, 10, 15, 20} bits/Hz. All results are normalized
with respect to the achievable utility of the full information
ADP with perfect rate adaptation.

As the density of users increases, the ADP algorithm
achieves much higher utility than the RTS/CTS protocol
(as much as a factor of three with a user density of
1.4 users/m2). The performance gap is approximately the
same with quantized rates. The802.11 protocol achieves
a utility up to 1.5 times of that achieved by maximum
power transmission with perfect rate adaptation. The ratio
increases to a factor of four when the rates are quantized.
This is due to the fact that maximum power transmission
leads to strong interference, and very small SINRs for many
users, who would get zero utility with quantized rates.

V. CONCLUSIONS

We have evaluated the performance of a distributed power
control algorithm for spread spectrum ad hoc wireless net-
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works. According to the algorithm, users announce prices
to reflect their sensitivities to the current interference levels
and then adjust their powers to maximize the individual
surpluses. The algorithm can be implemented asynchro-
nously, and requires only limited knowledge of channel
gains to neighboring users. Numerical results show that the
algorithm converges rapidly to the socially optimal solution,
and has a graceful performance degradation when the
information exchange among users is limited. We have also
observed a significant performance improvement relative
to the 802.11 RTS/CTS protocol, both with and without
perfect rate control. Throughout the paper we have focused
on a static setting, where the communicating pairs and the
channel conditions are fixed. An interesting future direction
is to consider dynamic environments.
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