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Abstract—Orthogonal Frequency Division Multiplexing
(OFDM) with dynamic scheduling and resource allocation
is widely considered to be a key component of 4G cellular
networks. However, scheduling and resource allocation in an
OFDM system is complicated, especially in the uplink due to
two reasons: (1) the discrete nature of channel assignments,
and (2) the heterogeneity of the users’ channel conditions,
individual resource constraints and application requirements.
We approach this problem using a gradient-based scheduling
framework presented in previous work. Physical layer resources
(bandwidth and power) are allocated to maximize the projection
onto the gradient of a total system utility function which models
application-layer Quality of Service (QoS). This is formulated as
a convex optimization problem. We present an optimal solution
using a dual decomposition. This solution has prohibitively high
computational complexity but reveals guiding principles that
we use to generate a family of lower complexity sub-optimal
algorithms. We compare the performance of these algorithms
via a realistic OFDM simulator.

I. I NTRODUCTION

This paper analyzes the uplink scheduling problem for
OFDM systems. The specific problem is motivated by the
WiMAX/802.16e standard1 where there is a centralized sched-
uler that knows the QoS classes, queue-lengths and de-
lays of the packets queued on each mobile device. The
WiMAX/802.16e standard specifies reserved time-frequency
slots for communicating this information to the scheduler and
for conveying the scheduling decisions to the mobiles, both
with low delays.

Using OFDM on the uplink of a cellular system with
dynamic scheduling and resource allocation has only recently
attracted significant attention. Thus the literature on this sub-
ject is still in a nascent state [13], [15].2 This problem is
precisely stated in Section II. We highlight two challenging
aspects of this problem. First, the discrete nature of channel
assignments in OFDM systems usually leads to hard integer
programming problems. Second, the per-user power constraint

Part of this work was done while J. Huang and V. Subramanian were at
Motorola. J. Huang is supported in part by Direct Grant of theChinese
University of Hong Kong under Grant 2050398.R. Berry was supported in
part by the Motorola-Northwestern Center for Seamless Communications and
NSF CAREER award CCR-0238382.

1LTE for 3GPP and 3GPP2 and the FLASH OFDM system from Qualcomm
Flarion also fit the model we consider in this paper. Furthermore, this model
is applicable for both FDD and TDD systems.

2The downlink version of this problem has received more attention, but as
we discuss later, the uplink version of the problem introduces several new
dimensions.

TABLE I
KEY NOTATIONS

Notation Physical Meaning

N total number of carriers
N set of all carriers
M total number of users
M set of all users
wi useri’s (dynamic) weight
eij normalized SINR on carrierj for useri
pij power allocated on carrierj for useri
xij fraction of carrierj allocated to useri
Pi maximum transmit power for useri

that arises in the uplink problem makes the problem even
less tractable. We initially consider a mathematical abstraction
in which multiple users can share one subcarrier/tone using
orthogonalization (e.g. via time-sharing3), which relaxes the
integer constraints. In Section III we derive an optimal solution
to this relaxed problem using a dual decomposition. This
provides insight into the structure of an optimal solution;
however, due to the per-user power constraints determining
this solution has high computational complexity. In Section IV
we use the insights gained from the optimal solution to propose
a family of sub-optimal algorithms that also take into account
the integer constraint of one user per subcarrier/tone. Finally,
in Section V we present numerical results for these algorithms
using a realistic OFDM simulator.

II. PROBLEM STATEMENT

We consider a model for uplink scheduling in an OFDM
system that is based on our previous work on downlink
scheduling in CDMA systems [3] and OFDM systems [4].
Specifically, in every scheduling epoch the scheduler seeksto
maximize a (time-varying) weighted sum of the users’ rates
over a given (time-varying) rate-region. We begin by describ-
ing this rate-region. The key notations are listed in Table I;
we use bold symbols to denote vectors of these quantities,
e.g., w = {wi, ∀i}, e = {eij , ∀i, j}, p = {pij, ∀i, j}, and
x = {xij , ∀i, j}.

We assume that the scheduler has the knowledge of the
received Signal-to-noise ratio (SNR)eij per unit power for

3While super-position coding would yield an even larger capacity region,
we do not use it as it is still not practical.



every user and tone.4 We represent the time-varying channel
quality vector at timet as et. As in [4], this model can
also incorporate various sub-channelization schemes where the
resource allocation is performed in terms of subchannels (i.e.,
sets of tones). In this case,eij represents the channel condition
for the sub-channel, e.g., the (geometric/arithmetic) average
across the tones in the sub-channel. This model also applies
if resource allocation is done with a granularity of multiple
symbols in the time domain.

Let R(et) denote the feasible rate region at timet. We
model this as

R(et) =

{

r ∈ <M
+ :

ri =
∑

j∈N

xij log
(

1 +
pijeij

xij
,
)

∀i ∈ M

}

,
(1)

where(x, p) ∈ X are chosen subject to
∑

i

xij ≤ 1, ∀j ∈ N , (2)

∑

j

pij ≤ Pi, ∀i ∈ M, (3)

and the set

X :=
{

(x, p) ≥ 0 : 0 ≤ xij ≤ 1, pij ≤ xijsij

eij
∀i, j

}

. (4)

Here,sij is a maximum SNR constraint on tonej for useri. In
practical OFDM systems,xij is constrained to be an integer,
in which case we add the additional constraintxij ∈ {0, 1}
for all i, j. Initially, we ignore this constraint; this corresponds
to a system in which users can share each tone. If resource
allocation is done blocks of OFDM symbols, then fractional
values ofxij can be implemented by time-sharing the symbols
in a block.5

Next we formulate the scheduling and resource alloca-
tion problem. Our approach is based on the gradient-based
scheduling framework presented in [2], [10], [11]. Each user
i is assigned a utility functionUi(Wi,t, Qi,t) depending on
their average throughputWi,t up to time t and their queue-
length Qi,t at time t. This is used to quantify fairness
and ensure stability of the queues. During each scheduling
epoch t, the system objective is to choose a rate vector
rt in R(et) that maximizes a (dynamic) weighted sum of
the users’ rates, where the weights are determined by the
gradient of the sum utility across all users. More precisely, the
scheduler seeks to maximize the projection ofrt onto the gra-
dient ∇wU(Wt, Qt) − ∇qU(Wt, Qt), whereU(Wt, Qt) =
∑K

i=1 Ui(Wi,t, Qi,t). We further assume that for each useri,
Ui(Wi,t, Qi,t) = ui(Wi,t) −

di

p
(Qi,t)

p, whereui(Wi,t) is a
increasing concave function,di ≥ 0 is a QoS weight for user

4In both FDD and TDD systems this can be obtained using a combination
of measurements made on the UL pilots as well as past transmissions from
the mobiles.

5Likewise, if the number of channels are large enough so that the channel
gains do not change dramatically among adjacent channels, then the fractional
value ofxij can also implemented by frequency sharing (e.g., [15]).

i’s queue length, andp > 1 is a fairness parameter associated
with the queue length. Hence, the scheduling and resource
allocation decision is the solution to

max
rt∈R(et)

(∇wU(Wt, Qt)
T −∇qU(Wt, Qt)

T ) · rt =

max
rt∈R(et)

∑

i

(

∂ui(Wi,t)

∂Wi,t

+ di(Qi,t)
p−1

)

ri,t.
(5)

Several variations of the policy in (5) have been studied. If
di = 0 for all i ∈ M, the resulting policy has been shown to
yield utility maximizing solutions [2], [10], [11]. Ifui(·) ≡ 0
with di > 0 for all i ∈ M then this policy has been shown
to be stabilizing in a variety of settings [5]–[7]. A specific
choice ofdi for “usual” utility functionsui(·) has been shown
to produce utility maximizing solutions subject to stability [9].

As a concrete example, one class of utility functions typi-
cally used (e.g. [1], [12]) forui(·) is

ui(Wi,t) =

{

ci

α
(Wi,t)

α, α ≤ 1, α 6= 0
ci log(Wi,t), α = 0,

(6)

where α ≤ 1 is a fairness parameter andci ≥ 0
is a QoS weight. In this case, the objective in (5) be-
comes

∑

i

(

ci(Wi,t)
α−1 + di(Qi,t)

p−1
)

ri,t. With zero queue
weightsdi and equal throughput weightsci, settingα = 1
results in a “maximum throughput” scheduling rule that max-
imizes the total throughput during each slot. Forα = 0, this
results in the proportional fair rule [8].

The optimization in (5) can be written as

max
rt∈R(et)

∑

i

wi,tri,t, (7)

wherewi,t ≥ 0 is a time-varying weight assigned to theith
user at timet. In the above examples, these weights were given
by the gradient of the utility function; however, other methods
for generating these weights are also possible. We emphasize
that (7) must be re-solved at each scheduling instant because
of changes in both the channel state,et, and the weights (e.g.,
the gradient of the utility).

III. O PTIMAL SOLUTION

In this section we consider the optimal solution to (7) when
R(et) is given by (1). This problem can be written as

max
(x,p)∈X

∑

i∈M

wi

∑

j∈N

xij log

(

1 +
pijeij

xij

)

(UL)

subject to the per carrier assignment constraints in (2) andthe
per user power constraints in (3), whereX is given in (4).

It can be shown that Problem UL has no duality gap and
so we can solve it by considering a dual formulation. We
associate dual variablesλ = (λi)i∈M with constraints(3) and
µ = (µj)j∈N with constraints(2), resulting in the Lagrangian,

L(λ, µ, x, p) :=
∑

i,j

wixij log

(

1 +
pijeij

xij

)

+
∑

i

λi

(

Pi −
∑

j

pij

)

+
∑

j

µj

(

1 −
∑

i

xij

)

.
(8)



From duality theory, it follows that the optimal solution to
Problem UL is given by

min
(λ,µ)≥0

max
(x,p)∈X

L(λ, µ, x, p). (9)

Next we solve this by first analytically solving for the optimal
p andx given fixed values of the dual variables. We then show
that the optimalµ is given by a performing a search for the
maximum value of a per-user metric on each carrier. The final
step is to numerically search for the optimal value ofλ.

OptimizingL(λ, µ, x, p) overp givenx, µ andλ, we get

p∗ij =
xij

eij

min

{

(

wieij

λi

− 1

)+

, sij

}

, (10)

where{x}+ = max{x, 0}. Note that unless
∑

j∈N
xijsij

eij
<

Pi, it will always be that
∑

j∈N p∗ij = Pi. Assuming this is
the case, (10) is the water-filling solution which takes into
account the maximum SINR constraint. Substitutingp∗ into
L(·, ·, ·, ·) yields

L(λ, µ, x, p∗) =
∑

ij

xij (wih (λi, wieij , sij) − µj)

+
∑

j

µj +
∑

i

λiPi,
(11)

where we have used the functionh(·, ·, ·) from [3], namely,

h(a, b, c) =











0 if a ≥ b;
a
b
− 1 − log a

b
if b

1+c
≤ a < b;

log(1 + c) − a
b
c if a < b

1+c
,

(12)

wherea ≥ 0, b > 0 and c ≥ 0. Optimizing (11) overx such
that xij ∈ [0, 1] yields

L(λ, µ, x∗, p∗) =
∑

ij

(wih (λi, wieij , sij) − µj)
+

+
∑

j

µj +
∑

i

λiPi,
(13)

where the carrier allocation has the following structure

x∗
ij(µj) =











1, if wih (λi, wieij , sij) > µj ;

[0, 1], if wih (λi, wieij , sij) = µj ;

0, if wih (λi, wieij , sij) < µj .

(14)

Since the cost function in (13) is separable, minimizing
L(λ, µ, x∗, p∗) to obtain the optimalµ∗

j (λ) requires a simple
sort per carrier similar as that in [3], namely,

µ∗
j (λ) = max

i
µij (λi) , (15)

whereµij (·) := wih (·, wieij , sij).
From (14) and (15), it is clear thatx∗

ij(µ
∗
j (λ)) ≡ 0 if i 6∈

arg maxi∈M µij (λi), i.e., there is a per subcarrier metric such
that any user who does not maximize this metric on a given
subcarrier will not be allocated the carrier. There will be ties
when multiple users achieve the same value ofµ∗

j on carrierj.
These can be broken arbitrarily to obtain the correct value for

L(λ, µ∗, x∗, p∗). Now substitutingµ∗ into L(λ, µ, x∗, p∗),
and noticing thatµ, x∗, p∗ are all functions ofλ, we have

L(λ) := L(λ, µ∗, x∗, p∗) =
∑

j

max
i

µij(λi) +
∑

i

λiPi.

The solution to (9) is given by minimizingL(λ) overλ ≥ 0.
For this we use a sub-gradient-based search, i.e.,

λi(t + 1) =

[

λi(t) − κ(t)

(

Pi −
∑

j

p∗ij(t)

)]+

, ∀i ∈ M.

The algorithm will converge whenκ(t) is chosen sufficiently
small [14]. The detailed algorithm is given in [16]. Given an
optimal λ, by duality,L(λ) is the optimal objective value to
Problem UL. However, to implement this, the scheduler must
specify the corresponding primal values of(x, p). Here, as
in [4], more care is required. Specifically, when ties occur in
(15), how the tie is resolved becomes important. Essentially,
we need to inspect all possible ties in each of the channels, and
find the feasible channel allocation that gives the maximum
primal value among all ties.

In [4] we used a similar algorithm to solve a downlink
OFDM scheduling problem. However, there are several major
differences between the uplink and downlink setting which
make this approach less appealing for implementation in the
uplink setting. First, in the downlink case there is a single
power constraint

∑

i,j pij ≤ P for the base station instead of
the per-user power constraints in (3). Hence, in the downlink
caseL(λ) is a function of only a single dual variableλ, which
simplifies the numerical search for the optimalλ. This also
makes it easier to break ties and to determine when to stop
the algorithm.6 Also, the uplink case can be more sensitive to
how ties are resolved. For example, if two users,i andl, have
the same weights(wi = wl) and the same gains on channel
j (eij = elj), then allocating channelj to either user yields
the same total weighted rate and the same total power usage
in the downlink case. On the other hand, different allocations
lead to different individual power consumptions in the uplink
case, and thus may lead to different solutions.

Finally, the number of ties is typically much larger in the
uplink case than in the downlink case. Consider a simple
scenario with two users and two channels. Each user has the
same gain over both channels, i.e.,ei1 = ei2 = ei for i = 1, 2,
and P = P1 = P2, whereP is the total power constraint in
the downlink case. Assume user2 has a much better channel
than user1 so that in the downlink case, the unique optimal
solution is to allocate both channels to user2, and there is no
tie. However, in the uplink case, it can be shown that at the
optimal dual solution,λ1 andλ2 will satisfy

µ1j(λ1) = µ2j(λ2) for j = 1, 2,

i.e., there is a tie in each channel and we have to compare four
possible channel allocations to find the optimal solution. This

6In the downlink case the subgradients ofL(λ) are scalars and so one can
stop when the maximum subgradient is positive and the minimum subgradient
is zero. In the uplink case the subgradients are vectors and so can not be well-
ordered.



can be easily extended toM users andN channels, with each
user having the same gain over all its channels. This resultsin
MN ties, independent of the variation in gains across users.

IV. SUBOPTIMAL ALGORITHMS

The algorithm in Section III yields the optimal solution to
Problem UL in each scheduling interval, but due to the effects
discussed above this is not computationally feasible for even
a moderately sized system. We now present a family of sub-
optimal algorithms (SOA’s) that try to reduce this complexity
while sacrificing little in optimality. These algorithms seek to
exploit the problem structure revealed by the optimal algo-
rithm. Furthermore, these sub-optimal algorithms all enforce
an integer tone allocation during each scheduling interval.
Additional heuristic algorithms are given in [16].

In the optimal algorithm, given the optimalλ∗, the optimal
carrier allocation up to any ties is determined by sorting
the users on each tone according to the metricµij(λ) as in
(14). Given an optimal carrier allocation, the optimal power
allocation is given by a per-user water-filling allocation as in
(10). In each SOA, we use the same two phases with some
modifications to reduce the complexity of computingλ∗ and
the optimal carrier allocation. Specifically, we begin witha
Carrier Allocation (CA)phase in which we assign each sub-
carrier to at most one user. Instead of using the metric givenby
the optimalλ, we consider metrics based on a constant power
allocation over all carriers assigned to a user. We follow this
with aPower Allocation (PA)phase in which each user’s power
is allocated across the assigned carriers using a waterfilling
allocation as in the optimal algorithm. We describe these in
more detail next.

A. Channel Allocation (CA) Phase

We consider a family of SOAs in which carriers are assigned
sequentially in one pass based on a per user metric for
each carrier, i.e. we iterateN times, where each iteration
corresponds to the assignment of one carrier. LetKi(n) denote
the set of carriers assigned to useri after thenth iteration. Let
gi(n) denote useri’s metric during thenth iteration and let
li(n) be the carrier index that useri would like to be assigned
if he is assigned thenth carrier. The resulting CA algorithm is
given in Algorithm 1. Note that the user metrics are updated
after each carrier is assigned.

We consider several variations of Algorithm 1 which corre-
spond to different choices for Lines 4 and 5. The choices for
Line 4 are:

(4A): Sort all of the carriers based on the best normalized
SINR among the users, i.e., find a channel permutation{αj}
such thatmaxi eiα1

≥ maxi eiα2
≥ · · · ≥ maxi eiαN

, and set
li (n) = αn for each useri. Note this sort only needs to be
performed once.

(4B): For each useri, set li(n) to be the carrier with
the largest gain among all unassigned carriers, i.e.,li(n) =
arg maxj∈N\∪iKi(n−1) eij . This requiresM sorts (one per
user); these also need to be performed only once (since each

Algorithm 1 CA Phase for SOAs

1: Initialization: setn = 0 andKi (n) = ∅ for each useri.
2: while n < N do
3: n = n + 1.
4: Update carrier indexli (n) for each useri.
5: Update metricgi (n) for each useri.
6: Find i∗ (n) = arg maxi gi (n) (break ties arbitrarily).
7: Assign thenth carrier to useri∗ (n):

Ki (n) =

{

Ki (n − 1) ∪ {li (n)} , if i = i∗n;

Ki (n − 1) , otherwise.

8: end while

carrier assignment does not change a user’s ordering of the
remaining carriers) and can be done in parallel.

Let ki(n) = |Ki(n)|. The choices for Line 5 are:
(5A): Set gi (n) to be the total increase in useri’s utility

if assigned carrierli (n), assuming constant power allocation
over all assigned carriers, i.e.,

gi(n) =wi

[

∑

j∈Ki(n−1)∪{li(n)}

log

(

1 +
Pieij

ki(n − 1) + 1

)

−
∑

j∈Ki(n−1)

log

(

1 +
Pieij

ki(n − 1)

)]

.

(5B): Setgi (n) to be useri’s gain from only carrierli (n),
assuming constant power allocation, i.e.

gi (n) = wi log

(

1 +
Pi

ki (n − 1) + 1
ei,li(n)

)

.

Compared with(5A), this metric ignores the change in user
i’s utility due to the decrease in power allocated to any carriers
in Ki(n − 1).

B. Power Allocation (PA) phase

The objective of the power allocation phase is to optimally
allocate each user’s power over the carrier allocationx∗

ij

determined in the CA phase. For each useri, the optimal power
allocation,pi = (pij , j ∈ N ) is the solution to:

max
pi∈Pi

x∗
ij log (1 + pijeij) (PAi)

where Pi = {pi ≥ 0 : pij ≤ sij

eij
,
∑

j∈N pij ≤ Pi}. If
∑

j∈N x∗
ij

sij

eij
≤ Pi, then the solution to (PAi) is p∗ij =

x∗

ijsij

eij
.

Otherwise, the optimal power allocation is again given by
the waterfilling allocation in (10), where the (non-negative)
constantλi is chosen such that

∑

j∈N p∗ij = Pi. It is possible
to solve this problem in finite time; the details can be found
in [16].

V. SIMULATION RESULTS

We report simulation results for the 4 versions of SOA
as well as an “optimal” algorithm, which iterates to find the
optimalλ; as we discussed this algorithm results in many ties.
To limit the complexity when ties occur, we inspect up to 128



TABLE II
ALGORITHM PERFORMANCE FOR SCHEDULING EVERY20 OFDM

SYMBOLS (TOTAL RATE IN MBPS).

Algorithm Utility Log U Total Rate User Scheduled

Optimal 994835 509.9 22.13 32.7
4A & 5A 983539 505.9 22.23 30.7

SOA 4A & 5B 973365 501.0 22.33 24.4
4B & 5A 1024306 508.1 23.52 31.0
4B & 5B 1007144 502.8 23.44 24.8

Base Line 534724 -1960.5 16.13 2.66

ways of breaking the ties with an integer allocation and select
the allocation among these with the largest weighted sum rate.
We also give results for a base-line algorithm where each
channelj is allocated to the useri with the highesteij , without
considering the weightswi’s and the power constraints.

All results are for a single OFDM cell with40 users. Each
user’s channel gains are the product of a constant location-
based term, picked using an empirically obtained distribution,
and a fast fading term, generated using a block-fading model
and a standard mobile delay-spread model with a delay spread
of 10µsec. The fast-fading component for each multi-path
component is held fixed for2msec and an independent value is
generated for the next block, which corresponds to a250MHz
Doppler. The system bandwidth is 5MHz corresponding to512
OFDM tones. Resource allocation is performed using adjacent
groups of 8 tones.7 The symbol duration is100µsec with a
cyclic prefix of 10µsec. All users are infinitely-backlogged
with the same utility function ofUi(Wi,t) = (Wi,t)

0.75/0.75
and the same maximum power constraint ofPi = 2W. Each
simulation run is for 1000 time blocks.

Table II gives the results of the algorithms (summed over all
users) when scheduling decisions are made every20 OFDM
symbols. The Log U column denotes the logarithmic utility
function, which provides a characterization of fairness among
users. The “User Scheduled” column denotes the average num-
ber of users who receive positive rates within one scheduling
interval. SOA with 4B & 5A gives the best results both in
terms of utility and rate. This even performs better than the
“optimal” algorithm, which is likely because only128 ways
to break ties are considered (this is typically not sufficient).
The base-line algorithm always has poor performance.

Table III shows the performance of each algorithm when
scheduling is performed every80 OFDM symbols, with all
other parameters the same as in Table II. It is clear that this
coarser allocation leads to poorer performance, while SOA
with 4B & 5A still gives the best performance. This shows the
tradeoff between system performance and resource allocation
frequency (and thus algorithm complexity).

VI. CONCLUSIONS

We presented an optimization-based formulation for
scheduling and resource allocation in the uplink of an OFDM

7This corresponds to the “Band AMC mode” of 802.16 d/e.

TABLE III
ALGORITHM PERFORMANCE WITH SCHEDULING EVERY80 OFDM

SYMBOLS (TOTAL RATE IN MBPS)

Algorithm Utility Log U Total Rate User Scheduled

Optimal 836853 498.6 17.78 32.8
4A & 5A 840524 494.6 18.25 31.1

SOA 4A & 5B 792350 486.3 17.20 24.6
4B & 5A 857213 496.0 18.77 31.6
4B & 5B 810850 487.6 17.78 25.2

Base Line 389927 -2116.5 11.65 2.64

network. Compared to the downlink, we argued that the uplink
was computationally more challenging due to the per-user
power constraints. A (high complexity) optimal algorithm
was given as well as a family of low complexity heuristics.
The heuristics were shown to have good performance via
simulations.
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