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Information Cascades with Noise
Tho Ngoc Le, Vijay G. Subramanian, and Randall A. Berry

Abstract—Online networks enable agents to better observe
the behavior of others and in doing so potentially learn from
their actions. A key feature of models for such social learning
is that information cascades can result, in which agents ignore
their private information and blindly follow the actions of other
agents. This paper considers the impact of noise in the form
of observation errors in such a model. Similar to a model
without noise, we show that with noise, both correct and incorrect
cascades happen, with the same level of fragility. However, with
noise, it is harder to overturn a cascade from one direction to the
other. Using Markov chain analysis, we derive the net welfare
(payoff) of each agent as a function of his private signal quality
and the error rate. We show, somewhat surprisingly, that in
certain cases, increasing the observation error rate can lead to
higher welfare for all but a finite number of agents. In such
cases, we compare and contrast adding additional noise with
simply withholding observations from the first few agents. Our
analysis assumes that all erroneous observations are available
on a common database; however, we also discuss relaxing this
assumption. We conclude by discussing the impact of different
tie-breaking rules on the probability of wrong cascade and the
impact of bounded rationality on the agents’ welfare.

Index Terms—Perfect Bayesian Equilibrium, Bayesian Learn-
ing, Information Cascades, Herding.

I. Introduction

CONSIDER a recommendation system where agents se-
quentially decide whether to buy an item for which

they have some prior knowledge of its quality/utility. The
agents’ decisions are reported to a common database that is
available to all later agents (e.g., via a website), who can
potentially benefit from the information obtained by observing
their predecessors’ choices. The study of such a model was
initiated in the seminal papers [9], [10], and [11], which cast
this in an observational Bayesian learning framework. In these
models, each individual (agent) has some prior knowledge or
signal about some payoff-relevant state of the world generated
according to a commonly known probability distribution. Each
agent makes a one-time decision in an exogenous order and
his action is observed exactly by all subsequent agents. A
common database provides one means for facilitating making
this information available. Given these observations and their
own signals, agents are assumed to be Bayesian rational,
i.e., they sequentially choose the action that reflects their
posterior beliefs about the state of the world. To put this in
game-theoretic jargon, the setting is equivalent to a dynamic
game with asymmetric information. The equilibrium analyzed
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in these problems is a Perfect Bayesian Equilibrium (PBE),
which uses the common information based belief to determine
the strategies1.

We highlight two possible outcomes for such a model. First,
there is learning. This is defined as when the information
in the private signals is aggregated efficiently so that agents
eventually know the underlying true value of the item and
make socially optimal decisions. Second, there is cascading.
An information cascade occurs when it is optimal for the
agents to ignore their own signals when taking actions. Though
individually optimal, this may lead to the agents making a
choice that is socially sub-optimal, which we refer to as a
“wrong cascade.” In addition to the possibility of a wrong
cascade, an information cascade results in a loss of information
about the private signals held by all the agents following the
onset of cascade.

In models where a homogeneous population of agents with
discrete bounded private signals is assumed (e.g. [9]-[11]), a
main result is that a cascade happens in a finite number of
agents with probability one. This leads to a positive probability
of cascading toward the wrong choice. Once a cascade occurs,
all subsequent agents follow suit, given the underlying homo-
geneity. The ultimate consequence is that all private signals
from the onset of cascading are lost; thus learning stops.

In this paper, we consider a similar Bayesian learning model
as in [9]-[11] except we introduce observation errors. More
precisely, we assume observation errors occur when each
agent’s action is recorded for all subsequent agents to see,
with the recording subject to error, with the statistics of the
error process known to all agents. The motivation of having
observation errors in our model comes from the following
reasons. First, real-world agents can make mistakes. As an
example, this could model a setting where agents are asked to
report their decisions on a website and agents occasionally
misreport (e.g., by simply pressing the wrong button). In
communication networks settings, observation errors can also
occur as a form of broadcast failure in feedforward networks
([29]). Indeed, even highly sophisticated decision makers such
as investors ([28]) and consumers ([27]) can make mistakes
in choosing (binary) actions (investing in stocks or purchas-
ing goods). Second, observation errors could come from the
mistakes incurred by learning algorithms based on web-log
data. For example, consider scenarios when a website uses the
customers’ web-log records to infer the customers’ purchasing
decisions and then posts such decisions on a database; the
errors can occur from both the data and the algorithms used for
such inference (e.g., a user could buy an item from a different
retailer or could buy it and then return it elsewhere). Finally,
this observation error could also result from either strategic

1See [25] where a formal proof is presented.
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agents ([32]), or a social planner ([31]), who can manipulate
the recording for their own benefit.2 Even in scenarios when
there is no clear incentive for benefit, agents can choose not to
express their true opinions, e.g., IMDB review manipulations
([37]). We study the effects of these observation errors on
the probabilities of cascades and the welfare obtained for any
given agent, and also asymptotically as the number of agents
increases without bound.

A. Contributions

Our work has several contributions. First, we develop a
simple Markov chain model that we use to analyze the proba-
bilities of cascades and the expected pay-off of each agent as
a function of the error-rates and signal quality. We then study
the effect of changing the noise level on both the asymptotic
behavior and the behavior for an arbitrary agent by using
stochastic ordering and coupling methods for Markov chains.
Our results demonstrate a counter-intuitive phenomenon: for
certain parameter settings, the asymptotic average payoff can
be increased by increasing the noise level. The extent of this
phenomenon and the amount of noise to be added depend on
the agents’ signal quality and the total amount of noise already
present.

Second, we extend our conclusions by considering which
agents benefit from adding noise in the low noise regime.
Interestingly, we show that if one agent benefits, the following
agent may not. However, we show several properties of the
sequence of benefiting agents, and further show that if one
agent benefits at most a finite number of subsequent agents
will not benefit.

Third, we compare and contrast the trade-offs of two
approaches for improving the agents’ welfares: 1) Adding
observation noise (whenever it is beneficial to do so); and
2) Forcing the first few agents to be “guinea pigs," i.e.,
to follow their private signals as in [19]. We see that the
second method leads to higher asymptotic pay-offs, but at the
cost of lower pay-offs for an initial group of users. We also
suggest a hybrid method that for certain model parameters can
significantly reduce the number of required guinea pigs, while
still achieving better asymptotic welfare than either approach
separately.

Fourth, we also discuss the role of a common database
in our analysis. We argue that such a database is crucial in
enabling the agents being able to to infer the exact time in the
history where a cascade happens. In particular, we compare
the common database setting to one where each agent’s
observation is an i.i.d. erroneous version of the sequence of
the true actions taken before. In such case, we show that a
cascade may not persist once it starts. Moreover, this is shown
to greatly increase the complexity of updating beliefs for each
agent, making the Bayesian assumption more questionable.

Finally, our work also highlights the advantage of Markov
Chain methods in obtaining a refined and detailed analysis
of the problem, in particular, obtaining per agent payoffs and
determining sensitivity to parameter changes. This should be

2In the case of strategic agents manipulating reviews, our notion of welfare
would need to be modified to account for the preferences of these agents.

contrasted with the most of the literature, which uses martin-
gale methods to discuss asymptotic performance measures.

The remainder of the paper is organized as follows. We
start by discussing related work in Section I-B. In Section II,
we state our model. In Section III, we analyze the Bayesian
updates for this model and give our Markov chain formulation.
We then turn to studying the impact of changing the noise
level in Section IV. In Section V, our analysis of when adding
noise is better is presented, for both cases of asymptotic and
individual welfares. We compare adding noise to the “guinea
pigs” model in Section VI, and then consider the case of no
common database in Section VII. In Section VIII, we present
some discussions of other changes to the model including
different tie-breaking rules, the effect of agents’ bounded
rationality, and the general prior for the true state of the world.
We conclude in Section IX.

B. Related work

Our paper studies a variation of the model in [9]-[11],
namely the inclusion of noise in the observations of each
agent. There is a rich literature that has studied many other
variations of this model, which we briefly review. In [9]-[11]
the signals agents receive are binary valued and all agents are
homogeneous in their preferences for the given item. The work
of Smith and Sorensen [17] relaxed both of these assumptions
and showed in particular that allowing for a richer set of
signals could result in a model in which learning always occurs
(namely, signals that result in an unbounded likelihood ratio).
Here, we continue to assume binary signals and homogeneous
agents. Another modification studied in [17] was to allow for a
fraction of the agents to be “irrational.” As discussed in Section
VIII, we can adapt our model to also study this case (though
this changes how the welfare is calculated). We also note that
[17] did not consider how changing the corresponding noise
level effects the welfare, which is a main focus of our work.

Another generalization of these models is to consider dif-
ferent information structures. For example, [25] considers the
case where each agent only observes the actions of a subset
of the previous agents and studies when the resulting network
structure leads to asymptotic learning. In [36], this network
structure is made endogenous by allowing the agents to select
their observations at a cost. Here we stay with the original
network structure as in [9]-[11] in which agents observe
the actions of all prior agents, which is consistent with our
assumed common database.

Another possible change to the information structure is by
allowing for “guinea pigs" as we consider in Section VI.
Such an approach was studied in [19], which also studied the
optimal number of guinea pigs to maximize the social welfare
in a finite population. This type of approach could also be
viewed through the lens of the multi-armed bandit literature,
where the guinea pigs would correspond to agents used for
“exploring” as suggested by [7], [13]. From this literature
it follows that with n agents, the optimal number of guinea
pigs needed is O(log n), which increases without bound ([13]).
Here, our focus is on comparing the use of such guinea pigs
to adding additional observation noise.
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Yet another change to the information structure is to allow
the agents to have a richer action space. For example, [12],
studies a model with a continuous action space, which allows
the agents to fine tune their actions to the posterior. This can
ensure that learning occurs but is a fairly strong assumption
that does not seem well matched to the type of platform we
are considering.

We also note that these types of models are closely related
to early work on sequential detection, e.g, [2] and [3]. That
literature can be viewed as a scenario in which a planner
can design a feedback rule for each agent in an attempt to
asymptotically learn the true state of the world. In [2], it was
shown that if the planner was limited to binary feedback and
each agent had to follow the same rule, then there is a positive
probability that learning will not occur. However, if two-bit
feedback is allowed or if the encoding rule can vary across
agents, then learning can be guaranteed, e.g., [2]. Similar
conclusions also hold for more general networks (e.g., [29]), or
for a random decision rule (e.g., [35]). In these works, it is not
clear whether it is in the agents’ best interest to strictly adhere
to such set of rules, i.e., the outcomes might not constitute
an equilibrium. Here, we instead consider a strategic setting
where each agent acts in his own benefit, and the agents are
in a PBE. In particular, we limit ourselves to binary feedback
in the form of the agent’s actions and assume that each agent
deterministically chooses his action to optimize his own pay-
off (i.e., there is no planner).

II. Model

We consider a model similar to [9] in which there is a
countable population of agents, indexed n = 1, 2, . . . with the
index reflecting both the time and the order in which agents
act. Each agent n chooses an action An of either buying (Y) or
not buying (N) a new item. The true value (V) of the item can
be either good (G) or bad (B); for simplicity, both possibilities
are assumed to be equally likely.3

The agents are Bayes-rational utility maximizers4 whose
payoff structure is based on the agent’s action and the true
value V . If an agent chooses N, his payoff is 0. On the other
hand, if he chooses Y , he faces a cost of C = 1/2 and gains
one of two amounts depending on the true value of the item:
his gain is 0 is V = B and 1 if V = G. The total pay-off of an
agent choosing Y is then the gain minus the cost. Thus, the
ex ante expected payoff of each agent is 0.

B p

1-p p

1-p
V S n

0

1G
Figure 1: The BSC over which agents receive signals.

To reflect the agents’ prior knowledge about V , each agent
n receives a private signal S n ∈ {1 (high), 0 (low)} through a
binary symmetric channel (BSC) with crossover probability

3A discussion of how to generalize this is provided in Section VIII-C .
4This assumption leads to a PBE that uses the common information based

belief to determine strategies as proved in [25].

1 − p, where 0.5 < p < 1. (See Fig. 1.) In other words, we
have

P(S n = 1|V = G) = P(S n = 0|V = B) = p, and
P(S n = 0|V = G) = P(S n = 1|V = B) = 1 − p. (1)

Thus, the private signals are informative, but not revealing.
We modify the information structure in [9] by assuming
that later agents’ observations are noisy versions of their
predecessors’ actions. Specifically, we assume that each agent
reports his action to a public database which is available to
all successors. The errors in this process are modeled by
passing every action Ai through another BSC with crossover
probability ε ∈ (0, 1/2). This means with probability 1 − ε,
the reported action of agent i, Oi, satisfies Oi = Ai, and with
probability ε, Oi = Ai, where Ai is the opposite action of
Ai. This assumption reduces the dependence of every agent’s
decision on the predecessors’ choices and drives him toward
using his own signal. With this in place, we assume that each
agent n takes a one-time action An based on his private signal
S n and the (noisy) observations O1, . . . ,On−1 of all previous
agents’ actions A1, . . . , An−1.

III. Bayesian updates, cascades and error thresholds
A. Bayesian updates

The optimal action for the first agent is always to follow his
private signal since no observation history is available. Starting
from the second agent, every agent n considers his private
signal S n and the observations O1, ...,On−1. Let the information
set of agent n be {S n,Hn−1} where Hn−1 = {O1, ...,On−1} is the
observation history. Based on {S n,Hn−1}, agent n will update
his posterior probability (using Bayes formula).

Definition 1. The posterior probability of agent n, γn, is
defined as γn(S n,Hn−1) = P[V = G|S n,Hn−1].

Assuming common rationality5, the decision rule for agent
n is as follows:6

An =


Y, if γn > 1/2,
N, if γn < 1/2,
follows S n, if γn = 1/2.

(2)

Following [17], we can also state this decision rule in terms
of a private and public likelihood ratio defined next.

Definition 2. The private likelihood ratio of agent n, βn, is
defined as βn(S n) = P[S n|V = B]/P[S n|V = G].

Note that the private likelihood ratio is a function of the
private signal, and we have βn(0) = p/(1 − p), βn(1) = (1 −
p)/p. For a given p ∈ (0.5, 1), these private ratios are strictly
bounded in (1,∞) and (0, 1), respectively.

Definition 3. The public likelihood ratio after agent n decides,
`n, is defined as `n(Hn) = P[Hn|V = B]/P[Hn|V = G]. This is
available to all subsequent agents n + 1, n + 2, . . .

5As in the PBE in dynamic games.
6When equality holds, our decision rule differs from [9], where it is assumed

that indifferent agents randomly choose one action. Our assumption not only
simplifies the analysis but also proves to be the best tie-breaking rule (see
Section VIII-A).
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A simple application of Bayes formula gives γn = 1
1+βn`n−1

.
Therefore, using the above formulae for βn and `n−1, the rule
in (2) can be applied to the resulting γn, which amounts to
comparing βn`n−1 to 1, e.g., with Y being the choice whenever
βn`n−1 < 1. In this decision-making process, cascading is
defined as follows:

Definition 4. An information cascade is said to happen when
an agent chooses some fixed action regardless of his private
signal.

It follows that agent n cascades to the action Y(N) if γn >
1/2 (< 1/2) for all realizations of S n ∈ {0, 1}. In other words,
agent n cascades to Y if βn(0)`n−1 < 1 (i.e., `n−1 < (1− p)/p)),
and cascades to N if βn(1)`n−1 > 1 (or `n−1 > p/(1− p)). It was
shown in [9] that when agents are rational and observations are
perfect (i.e., On = An,∀n = 1, 2, . . .), an information cascade
occurs in finite time with probability one. In our paper, we
will show that this still holds. Another related phenomenon,
herding, happens when agents choose to copy the actions of
others irrespective of the realizations of their signals. In a
model with a homogeneous population and discrete, bounded
private signals (e.g. [9]-[11] and our paper), the two concepts
cascading and herding are equivalent. Thus, from now on, we
will use the two interchangeably.

B. Cascading properties

In this section, we outline some basic properties of cascad-
ing with observation errors. These naturally extend properties
for the noiseless case shown in [9], [19], so we omit detailed
derivations. For completeness we provide proofs in [38].

Property 1. Until cascading occurs, agent n’s Bayesian up-
dates depend only on his private signal, S n, and the difference
in the numbers of Y’s and N’s in the observation history Hn−1.

In other words, the difference of Y’s and N’s in Hn−1 is a
sufficient statistic for the observation history of agent n. This
follows from the symmetry of the signal quality and the errors,
which enables opposite observations to be “canceled.”7

Note that once a cascade happens, any new observations
do not provide new information about the true value V , thus
the public likelihood ratio stays the same. On the other hand,
if an agent n does not cascade, all agents 1, 2, . . . , n act
independently based on their own private signals. Therefore,
until a cascade happens, the public likelihood ratio `n depends
only on the difference in the numbers of Y’s and N’s in the
observation history Hn. Specifically, let hn be the number of
Y’s minus the number of N’s in Hn (prior to a cascade), then
`n =

(
1−a

a

)hn
, where for all i = 1, 2, . . . , n,

a = P[Oi = Y |V = G] = P[Oi = N |V = B], (3)

gives the probability that a given observation agrees with the
optimal action for an agent that is not cascading. It can be
shown that a = f (ε, p) ∈ (0.5, p), where:

f (x, y) , x(1 − y) + (1 − x)y. (4)

7This also extends to when V is not equally likely G or B as shown in
Section VIII-C .

Property 2. Once a cascade happens, it lasts forever.

Once started, a cascade makes agents stop using their
private signals and and so they provide no information to the
successors. The successors are left in the same situation for the
optimal action choice as the first one who started the herd. We
stress the importance of having the common database available
to all agents. With such information, every agent updates hn

and knows the exact time when a cascade happens. All other
subsequent observations from the onset of a cascade will be
ignored. Thus, there is no need to further update hn. Next,
we provide a condition for determining the onset of cascades
given the signal quality, p, and observation error, ε.

C. Error thresholds

Without noise (ε = 0), it was shown in [9] that cascading
starts with the first agent n to have |hn−1| = 2, i.e., the first agent
to observe one action two times more than the other. However,
as ε increases, each observation provides less information,
which in turn can increase the value of |hn| needed to start
a cascade. This is characterized in the following lemma.

Lemma 1. Let α = (1 − p)/p. For any k ≥ 2, define
the increasing sequence of thresholds {ε∗k }

∞
k=2, where the kth

threshold ε∗k is given as:

ε∗k =
(
1 − α

k−2
k−1

)
/
(
1 − α

k−2
k−1 + α

−1
k−1 − α

)
. (5)

Define Ik ,
[
ε∗k , ε

∗
k+1

)
as the kth ε–interval. Then for ε ∈ Ik,

any agent n starts a cascade as soon as |hn−1| = k.

The proof follows from direct calculation of γn; a detailed
version is given in [38]. Note also that the parameter α here is
the same as βn(1). Fig. 2 shows the thresholds ε∗k for different
values of k and p. For k = 2, this lemma yields ε∗2 = 0, which
is the case of noiseless observations as in [9].

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

p

ǫ
∗ k

 

 

k = 2
k = 3
k = 4
k = 5
k = 10
k = 100

Figure 2: Examples of the thresholds εk for the indicated values of
k versus p.

A direct consequence of this lemma is that we can deduce
k from a given ε as:

k =
⌊
log(1−a)/a α

⌋
+ 1. (6)

Here, recall that a is a function of ε. Thus, given the signal
quality p, the observation error ε ∈ Ik and the observation
history {O1,O2, . . . ,On−1}, an agent n can track the difference
hn−1 and declare a N cascade as soon as hn−1 = −k, and a Y
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cascade as soon as hn−1 = k. In the limit of ε → 0.5, we have
k → ∞, and thus agents only use their own signals and herding
never starts. In this case, no information is passed through each
observation. Therefore, no learning occurs either.

Also note that ε∗k is a decreasing function of p. Therefore,
the more accurate the private signal, the sooner cascades may
start for a fixed ε. In particular, Fig. 2 shows that if the private
signal quality is high, with an intermediate level of noise a
cascade may occur very early.

In the models without error ([9]-[11]), the authors also
discussed how fragile a cascade can be. In fact, for the
noiseless case, an information cascade occurs merely on the
agreement of the running count of an action exceeding the
other by two. Assuming that any of the subsequent agents
is endowed with an additional private signal that disagrees
with the cascading actions, the cascade stops. This provides
some intuition to why many asset markets are volatile, or why
changes in fashions happen frequently and unpredictably. With
noisy observations, our results show that information cascades
have the same level of fragility as in the noiseless case. In
fact, for ε ∈ Ik, it would require only one additional opposite
private signal to reduce the difference to |hn−1| < k, so that
the cascade stops. However, with noise, k can exceed 2 and
it is harder to reverse a cascade to the opposite direction: one
would need a longer sequence of agents with private signals
indicating the other action choice. Therefore, given a realistic
setting where the information is noisy, it may take a long time
to reverse certain trends.

D. Markovian analysis of cascades

By symmetry, first consider the case V = G.8 By Property
1, a non-cascading agent n’s observation history can be sum-
marized by hn. Thus, viewing each agent as a time-epoch, the
agent’s observation history can be represented as a state of a
discrete-time Markov chain (DTMC). Each state i represents
values of hn−1 that agent n may see before making his decision.
Note that the first agent starts at state 0 since no observation
history is available.

For the rest of the paper, assume ε ∈ Ik so that an agent n
will start a cascade if and only if |hn−1| = k. Thus, to model
cascades, we simply make the states ±k absorbing, and so we
are left with a finite state DTMC. The two events N cascade
and Y cascade translate into hitting the left (−k) and the right
(k) walls (or absorbing states), respectively. The probability of
moving one step to the right is the probability that one more
Y is added to the observation history, i.e., a = P[On = Y |V =

G] = f (ε, p) > 0.5. Likewise, the probability of moving one-
step to the left is 1−a. Hence, this DTMC is a simple random
walk as shown in Fig. 3.

8If V is not equally likely G or B, the dynamics of the Markov chains
for this analysis are unchanged since these are conditioned on the true V .
Moreover, the (unconditional) probabilities of cascades and expected welfare
can be easily adjusted according to the prior knowledge of V . See details in
Section VIII-C.

-k -k+1 kk-10 1-1

a

1-a1

1aaaa

1-a 1-a 1-a 1-a

Figure 3: Transition diagram of the random walk when V = G.

The state transition matrix of this DTMC is given by

Q =


1 0 0 ... 0 0 0

1 − a 0 a ... 0 0 0
. . . . . . .
0 0 0 ... 1 − a 0 a
0 0 0 ... 0 0 1

 . (7)

Since a > 0.5, Q is a row stochastic matrix with a drift to the
right. We will use methods in [1] to calculate the probability
of being at either absorbing state at any given time. Since
the agent indices correspond to the time index, this yields
the probability of cascade for each agent. Assume that the
process starts at state i. Let u∗i,n, v

∗
i,n be the probabilities of

being at the left wall, −k, and the right wall, k, at the nth

step, respectively. Let ui,n, vi,n be the probabilities of hitting
the left wall and the right wall for the first time at the nth

step, respectively. Obviously, u∗0,n = v∗0,n = 0 for 1 ≤ n ≤ k− 1.
By [33], u0,n = v0,n = 0, for n − k odd. Thus, for n ≥ k:

u∗0,n =
∑n

m=k
u∗−k,n−mu0,m =

∑n

m=k
u0,m, (8)

v∗0,n =
∑n

m=k
v∗k,n−mv0,m =

∑n

m=k
v0,m, (9)

where the explicit expressions for the terms on the right-hand
side in (8) and (9) are given in the next lemma. The proof can
be found in Lemma 2 of [33].

Lemma 2. For n − k even:

u0,n =
2n

k
a

n−k
2 (1 − a)

n+k
2 Ak,n, v0,n =

2n

k
a

n+k
2 (1 − a)

n−k
2 Ak,n, (10)

where Ak,n =
∑ j<k

j=1, odd cosn−1 [
jπ/(2k)

]
sin

[
jπ/(2k)

]
(−1)

j−1
2 .

By symmetry, if V = B, the wrong and correct cascade
probabilities for agent n are v∗0,n and u∗0,n, respectively. The
following lemma states some useful relations between the
probabilities of cascade.

Lemma 3. For ε ∈ Ik, and any arbitrary agent n ≥ k:
1) If k is even, then u∗0,n = u∗0,n+1, v

∗
0,n = v∗0,n+1 for n even;

2) If k is odd, then u∗0,n = u∗0,n+1, v
∗
0,n = v∗0,n+1 for n odd;

3) The probabilities of correct and wrong cascade are related
by:

v∗0,n/u
∗
0,n = [a/(1 − a)]k. (11)

The proof of part 1) and 2) follows directly from (8) and (9),
whereas the proof for part 3) follows by using the formulae
from Lemma 2 in (8) and (9).

IV. Effect of varying observation error rates

We next turn to studying the effect of the error rates on the
cascade probabilities and agent welfare.
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A. Cascade probabilities

Lemma 2 shows that the probabilities of wrong and correct
cascade depend on k and a. From Lemma 1 and since a =

f (ε, p), it follows that for a fixed p, these probabilities are
determined by the error probability ε.

The next theorem characterizes the effect of varying the
error ε on the probabilities of wrong cascade, u∗0,n, and correct
cascade, v∗0,n, for an arbitrary agent n.

Theorem 1. For ε ∈ Ik:

1) The wrong cascade probability increases with ε.
2) The correct cascade probability decreases with ε.

Proof. Consider ε
′

< ε
′′

, both in Ik, and let {Z
′

n}n≥0 and
{Z
′′

n }n≥0 be the two corresponding DTMCs on the same state
space S = {−k,−k + 1, ..., 0, ..., k−1, k}. The following concept
of stochastic ordering ([6]) compares these two DTMCs:
Definition 5. Let X and Y be two discrete random variables
taking values on the same set S and let x and y be their
corresponding probability distribution vectors. X(x) is said to
be larger than Y(y) in stochastic ordering, denoted by X ≥st

Y(x ≥st y), if ∑
i≥ j

xi ≥
∑

i≥ j
yi, for all j ∈ S. (12)

Definition 6. The DTMC {Z
′

n} is said to be larger than the
DTMC {Z

′′

n } in stochastic ordering, denoted by {Z
′

n} ≥st {Z
′′

n },
if

Z
′

n ≥st Z
′′

n , for all n ≥ 0. (13)

Definition 7. A transition matrix Q is said to be stochastically
increasing if for all i, i − 1 ∈ S:

Qi ≥st Qi−1 (14)

where Qi denotes the ith row of Q (which is a distribution
vector for some random variable).

The proof continues by noting that the corresponding right
transition probabilities of the two DTMC’s satisfy a

′

> a
′′

>
0.5. Thus, Q

′

i ≥st Q
′′

i for all i ∈ S. Moreover, the transition
matrices for each DTMC are stochastically increasing, and
both {Z

′

n} and {Z
′′

n } start from the same state 0. Therefore, by
Theorem 4.2.5a and equation (4.2.16) in [6], we have {Z

′

n} ≥st

{Z
′′

n }. By Defn. 6, it follows that at any arbitrary time n, Z
′

n ≥st

Z
′′

n . Let z
′

and z
′′

be the corresponding probability distribution
vectors at time n.

Setting j = k in Defn. 5, we have v∗
′

0,n = z
′

k ≥ z
′′

k = v∗
′′

0,n.
Now, letting j = −k + 1 yields

∑
i≥−k+1 z

′

i ≥
∑

i≥−k+1 z
′′

i , so that
u∗
′

0,n ≤ u∗
′′

0,n. If fact, we can use a coupling argument to prove
that equality does not hold for n > k, i.e., v∗

′

0,n is strictly greater
than v∗

′′

0,n for n > k. These details are shown in Appendix E in
[38]. Similarly, u∗

′′

0,n > u∗
′

0,n. Since Lemma 2 shows that u∗0,n and
v∗0,n are continuous functions of ε (in the specified interval),
this completes the proof. �
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Figure 4: Probability of wrong cascade for agent n, with p = 0.70.

As a demonstration of Theorem 1, Fig. 4 shows the proba-
bility of wrong cascade when p = 0.70, for agents n = 5, 10
and 100. Notice that for any agent n, Lemma 1 shows that there
exists ε close enough to 0.5 that yields k ≥ n. The probability
of wrong cascade will thus go to zero for large enough ε,
as shown in the figure. Note also that for each agent n, as
ε increases, the probability of wrong cascade discontinuously
decreases at a countable number of points (and continuously
increases in between). These points correspond exactly to the
values ε∗k for different choices of integer k ≥ 2.

B. Agent Welfare

Let πn be the payoff or welfare of agent n. From Section
II, we have πn = 0 if An = N, while if An = Y , πn is either
1/2 or −1/2 corresponding to V = G or V = B, respectively.
All agents 1 ≤ n ≤ k use their own signals; thus by averaging
over V ∈ {G, B} they all have the same welfare given by:

E [πn] = {P [An = Y |V = G] − P [An = Y |V = B]} /4
= (2p − 1)/4 , F. (15)

For agents n ≥ k + 1:

E [πn] = {P [An = Y |V = G] − P [An = Y |V = B]} /4

= F +
[
(1 − p)v∗0,n−1 − pu∗0,n−1

]
/2. (16)

For a fixed observation error ε, (16) explicitly relates the
welfare of an agent n, who faces the possibility of cascade, to
the probability of wrong and correct cascades created by the
immediate previous agent n − 1. Using results from Theorem
1, the following theorem summarizes some properties of the
agents’ welfares.

Theorem 2. With the same signal quality p and ε ∈ Ik:
1) The expected welfare for each agent is at least equal to

the expected welfare of his predecessors. Thus, E [πn] ≥
F and is non-decreasing in n.

2) lim
n→∞

E [πn] exists and equals:

Π(ε) = F + (1/2)
{
1/

[
1 + ((1 − a)/a)k

]
− p

}
. (17)

3) For every agent n, E [πn] decreases continuously as ε
increases over Ik so that:

lim
ε↓ε∗k

E [πn] > E [πn] > lim
ε↑ε∗k+1

E [πn] = F.
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Proof 1) When a cascade happens, every user takes the
same action and so achieves the same expected welfare. Thus,
we are left to show E [πn] ≥ F for all n ≥ k + 1. Using (16)
and the form of v∗0,i−1, u∗0,i−1, we only need to show:

(1 − p)a
j+k
2 (1 − a)

j−k
2 − pa

j−k
2 (1 − a)

j+k
2 ≥ 0. (18)

This can be seen by noting that since ε∗k ≤ ε < ε
∗
k+1, we have:

0 < ((1 − a)/a)k < (1 − p)/p ≤ ((1 − a)/a)k−1 < 1. (19)

2) For t ∈ �, let V0(t) and U0(t) be the probability generating
functions for the first hitting time of state k and −k, respec-
tively. Using these, the limiting welfare can be written as:

Π(ε) − F = (1/2)
[
(1 − p)V0(1) − pU0(1)

]
. (20)

Expressions for these generating functions are given in equa-
tions (47) and (48) in Appendix D of the archived version in
[38]; evaluating these at t = 1 yields (17).
3) For a fixed p, (15) shows that F decreases in ε. The proof
follows by using (16) and Theorem 1. �

Theorem 2 suggests a few interesting observations. First, even
though a model with no observation errors yields maximum
welfare for any agent, the welfare is not monotonically de-
creasing in ε. In fact, as the given ε approaches each ε∗k from
below, it is better to increase ε to exactly ε∗k so that the welfare
for each agent moves to the next local maximum. This comes
from the fact that the probability of wrong cascade drops
discontinuously as ε crosses over ε∗k due to the structure of
the underlying DTMC changing. Second, the first observation
raises the question of when and how much observation error
should be added, especially when some pre-set error is already
present in this model. We will consider this question in the
next section.

V. When is more noise better?

A. Asymptotic welfare

Assume that there is a fixed observation error ε in the model.
Suppose a social planner is allowed to randomly change the
history of observations with probability εs. This introduces an
effect that is equivalent to increasing the observation error to

εtotal = ε(1 − εs) + (1 − ε)εs , f (ε, εs). (21)

Fig. 5 shows an example of the asymptotic welfare as a
function of εs, when the pre-set observation error is ε = 0.15
and p = 0.70. It is clear from this figure that the asymptotic
welfare is maximized when εs ≈ 0.12, i.e., more noise is
beneficial. By part 1) of Theorem 2, this also maximizes the
(Cesàro) average social welfare of the entire population.
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p = 0.70, ǫ = 0.15, ǫ > τk,∞

Π
(ǫ
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ta
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Figure 5: Asymptotic welfare as a function of additional noise.
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Figure 6: Expected welfare for agent n with high signal quality.
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Figure 7: Expected welfare for agent n with low signal quality.

Whether more noise is beneficial depends on the existing
noise ε and on the signal quality p. To better understand this,
for each k, define τk,n ∈ Ik such that adding some εs > 0
will improve the welfare of agent n if and only if ε > τk,n.
Likewise, let τk,∞ denote this threshold for the asymptotic
welfare. For the case in Fig. 5, since there exists a εs > 0
that improves the welfare, it must be that ε > τk,∞. Note also
that the optimal choice of εs corresponds to a discontinuity of
the welfare, which from our previous analysis corresponds to
making the effective noise, εtotal, equal to ε∗k+1. We formalize
this phenomenon in the following theorem.

Theorem 3. Assume that ε ∈ Ik:
1) The asymptotic social welfare is maximized at either εs =

0 or εs =
ε∗k+1−ε

1−2ε > 0.
2) The latter case happens when ε∗k+1 > ε > τk,∞ > ε∗k ,

where

τk,∞ =
[
1/

(
1 + α(k+1)/k2)

− p
]
/(1 − 2p). (22)
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Proof. 1) The proof of 1) follows by part 3 of Theorem 2.
2) To prove 2), we need to find εs such that Π(ε) < Π(εtotal).
Using (17), we obtain the lower bound τk,∞. �

Note that when it is optimal for the social planner to
add εs > 0, the welfare of every individual agent is not
necessarily improved. This effect is shown numerically in
Fig. 6 and 7 with the same pre-set value ε = 0.15, for
high and low signal quality, respectively. These figures each
shows the expected welfare for three agents corresponding to
n = 5, 10 and 100 as a function of εs. For high signal quality
(p = 0.99), increasing εs is beneficial for all three agents, i.e.,
ε > max(τk,5, τk,10, τk,100). On the other hand, for low signal
quality (p = 0.51), increasing εs will increase the welfare of
agent n = 100 and decrease the welfare of agents n = 5, 10,
i.e., ε > τk,100, but ε < min(τk,5, τk,10).

B. Individual welfares in the low-noise region

In Fig. 6 and 7, we observe that not all agents’ welfares are
improved by adding noise. In this section, we take a deeper
look and consider the low-noise region, defined as when the
pre-set observation error ε ∈ I2. In this region, it takes only
two (consecutive) agents to start a cascade as in the noise-free
model. We derive a few important results for the sequence{
τ2,n

}∞
n=1, where n is the agent index. For notational simplicity,

we suppress k = 2 and abbreviate τ2,n as τn. Using part 3) of
Lemma 3, (16) is rewritten as:

E [πn] = F + (1/2)
[
(1 − p) (a/(1 − a))k − p

]
u∗0,n−1. (23)

Now using part 1) and 2) of Lemma 3, if n > k then E[πn] =

E[πn−1] is true for k and n, both odd or both even. Thus, we
can simplify the welfare in (23) for the low noise region, as
stated in the next lemma.

Lemma 4. Let ã = a(1 − a).
1) For ε ∈ I2, m ≥ 1, both E [π2m+2] , E [π2m+1] are equal to:

F +
[
(1 − p)a2 − p(1 − a)2

] [
1 − (2ã)m /(1 − 2ã)

]
/2. (24)

2) For ε ∈ I3, m ≥ 2, both E [π2m+1] , E [π2m] are equal to:

F +
[
(1 − p)a3 − p(1 − a)3

] [
1 − (3ã)m−1 /(1 − 3ã)

]
/2. (25)

Proof See details in the archived version in [38]. �

We remind the reader that by Theorem 2, the expected
welfare E[πn] is non-decreasing in n. Lemma 4 suggests that
the welfare strictly increases between pairs of two consecutive
agents, depending on whether k is odd or even.

Note that for k = 2, agents n ≤ 3 can never benefit
from adding εs. Using Lemma 4, the following theorem
characterizes the sequence {τn}

∞
n=4. In particular, Theorem 4

says that the sequence {τn}
∞
n=4 can be divided into even and

odd sub-sequences, where both sub-sequences are decreasing
and have the same limit τ∞ as in (22) with k = 2. Thus, if
adding noise improves the limit welfare, then it will benefit
all but the first few finite number of agents.

Theorem 4. For m ≥ 2:

1) Both sub-sequences {τ2m} and {τ2m+1} decrease and have
the same limit τ∞, and
2) τ2m+1 > τ2m.

Proof. Here, we outline the sketch of the proof for τn, n ∈
{4, 5, 6, 7} with a graphical illustration as in Fig. 8, which plots
the welfares of these agents as a function of ε. To show that
part 1) is true, we essentially show τ4 > τ6 and τ5 > τ7. These
correspond to showing point A is higher than point C, and
point B is higher than point D, respectively. To prove part 2),
we essentially show that point C is higher than point D. The
complete proof can be found in the archived version in [38].

Figure 8: An illustration of ordering for τn, n ∈ {4, 5, 6, 7}.

�
Moreover, Theorem 4 also suggests an interesting fact: with

the same signal quality p, ε ∈ I2, and m ≥ 2, if adding noise
benefits agent 2m it will also benefit agents 2m+2, 2m+4, . . .;
and if adding noise benefits agent 2m + 1 then it will also
benefit agents 2m and 2m + 3, 2m + 5, . . .. A consequence of
this result is that while adding noise never benefits the first
three agents, all other agents’ welfares, including agent 4’s,
are better off as long as agent 5’s welfare is.

VI. Adding noise versus using guinea pigs

In this section, our goal is to study the trade-offs of two
schemes (mentioned below) for welfare improvements. As-
sume that ε ∈ Ik and ε > τk,∞, thus increasing the observation
error to ε∗k+1 is beneficial for the average asymptotic social
welfare. We refer to this as Scheme 1. Extrapolating from
Theorem 4, it stands to reason that in Scheme 1 there exists
a smallest agent index n1 who benefits, and there also exists
an agent index n2 beyond which all subsequent agents n ≥ n2
benefit. On the other hand, for agents n ∈ (n1, n2), some benefit
and some do not. The second scheme we consider is motivated
by [19] where the author restricts the first M +1 agents (called
“guinea pigs”) to use only their private signals. The purpose
of this scheme is to skew the initial state distribution toward
a correct cascade, owing to the informativeness of the signal
quality. Thus, the asymptotic social welfare is improved at
the cost of the guinea pigs’ payoffs. We summarize these two
schemes as follows:

1) Scheme 1: Increase ε to the next threshold, ε∗k+1 (keeping
M = 1 fixed).

2) Scheme 2: Sacrifice the first M +1 agents as guinea pigs
(keeping ε fixed).



9

In Sections VI-A and VI-B below, we characterize the
expected welfare for each of these schemes by using (23) and
modifying the corresponding probability of wrong cascade.

A. Scheme 1: Adding observation errors

As we increase ε to ε∗k+1, note that
(

a
1−a

)k
= 1/α. and

v∗0,n
u∗0,n

=(
a

1−a

)k+1
, for all n > 1. Thus, (23) becomes:

E[πn]|ε=ε∗k+1
= F + p

[
α−1/k − 1

]
u∗0,n−1/2. (26)

B. Scheme 2: Sacrificing guinea pigs
Using notation from [19], assume that there are M+1 guinea

pigs who have to use only private signals.9 For these agents,
we have E[πn] = F, ∀ n = 1, 2, . . . ,M +1. The effect of having
M+1 guinea pigs is equivalent to changing the distribution for
the initial state of the Markov chain and then starting this chain
with agent M + 2. For each i ∈ {−M − 1,−M, . . . ,M,M + 1},
denote ∆i as the probability that the M + 1 guinea pigs result
in hM+1 = i for the subsequent agents n ≥ M + 2. For agents
n ≥ M+2, let ũ∗i,n be the probability of wrong cascade of agent
n, conditioned on hM+1 = i. Their corresponding expected
welfare can be written as:

F + (1/2)
∑
|i|≤M+1∆i

[
(1 − p) (a/(1 − a))k − p

]
ũ∗i,n−1, (27)

where the initial distribution for hM+1 with M + 1 − i even is:

∆i = P[hM+1 = i] =

(
M + 1

(M + 1 − i)/2

)
a

M+1+i
2 (1 − a)

M+1−i
2 , (28)

and ∆i = 0 for M + 1 − i odd.
For −k < i < k, again using techniques from [1], the

probability of a wrong cascade first occurring at time n ≥ M+2
starting from state i is given by:

ũi,n =

0, ñ − (k + i) odd,
2ñ

k

(
1−a

a

) k+i
2 (a(1 − a))

ñ
2 B̃k,ñ, ñ − (k + i) even,

(29)

where B̃k,ñ =
∑ν<k
ν=1 cosñ−1

(
νπ
2k

)
sin

(
νπ
2k

)
sin

(
νπ(k+i)

2k

)
and ñ = n −

M − 1. As a result, the probability of wrong cascade for agent
n, ũ∗i,n, is zero except for the following two cases: ũ∗i,n = 1 if
i ≤ −k, and ũ∗i,n =

∑ñ
m=k+i

m−(k+i) even
ui,m if ñ ≥ k + i.

Thus, revisiting (27), the summation in the welfare of
every agent n can be further divided into three components
corresponding to three different ranges of i: i < −k, −k ≤ i ≤ k,
and i > k. Whether all these three ranges exist depends on the
values of M + 1 and k. It is obvious that for a fixed k, letting
M+1 increases increases the number of terms for which i > k.
In other words, for high enough M, the initial state after the
last guinea pig is more likely equal to the correct herding
state, thus improving average social welfare. However, this
happens at the cost of sacrificing the first M + 1 agents. In the
next section, we highlight this trade-off and offer an alternative
solution that combines the two schemes. We refer to this as:

3) Scheme 3: sacrificing the first M + 1 agents as guinea
pigs, and at the same time increasing ε to ε∗k+1.

9In [19], the first agent always follows his own signal and the author denotes
M as the number of additional agents forced to follow their own signals. In
our case, more than the first agent may always follow their signals, depending
on the noise. To be consistent with [19], here we also denote M + 1 as the
total number of agents that follow their own signals.

C. Comparisons and trade-offs

1) Individual welfare: Figures 9-10 show numerical results
for the three schemes mentioned above. Each figure shows
E[πn] versus n for these schemes; the choice of p and ε varies
in different figures. In Figs. 9 the signal quality is high, and the
initial noise is high (so that k = 8). Figs. 10 shows analogous
curves with a low signal quality, where the initial noise is low
(so that k = 2). Other scenarios when p is high while ε is low,
and vice versa, are shown in [38]. In each figure, the curves
labeled M = m for some integer m correspond to Scheme 2
with m+1 guinea pigs (where M = 1 is the baseline case since
the first two agents always follow their own signals). Scheme
1 is shown in the curve labeled “adding noise" and Scheme 3
is shown in the curve labeled by “M = k and adding noise,"
where again k+1 is the number of guinea pigs. Note that trade-
offs exist for various values of p and ε. For high M, Scheme
2 eventually gives better individual welfare as compared to
Scheme 1. However, as the observation error ε increases, more
agents need to be sacrificed. This trade-off is alleviated by
using Scheme 3, which yields better welfares while sparing
almost half of the would-be guinea pigs.
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Figure 9: Agent n welfare for p = 0.99, k = 8, ε = 0.357 ∈ (τk,10, ε
∗
9).
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Figure 10: Agent n welfare for p = 0.51, k = 2, ε = 0.245 ∈ (τk,5, ε
∗
3).

2) Asymptotic welfare: By the law of large numbers, as
M + 1 increases, the probability that agent M + 2 starts a
correct cascade increases to 1. Thus, for large enough M,
Scheme 2 achieves better asymptotic welfare as compared to
Scheme 1. In this section, we aim to give a lower bound on the
minimum number of guinea pigs, M + 1, that makes Scheme
2 asymptotically better than Scheme 1.

Proposition 1. For ε ∈ Ik and ε > τk,∞ Scheme 2 achieves
higher asymptotic welfare than Scheme 1 only if M + 1 > k.
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Proof. We refer to the case where the social planner does
nothing as Scheme 0 (i.e. neither uses guinea pigs nor in-
creases ε). Assume that M + 1 ≤ k. For any ε ∈ Ik, by
Lemma 1 all agents n = 1, ..., k must use private signals even
when agent n is not a guinea pig. By this argument, for a
given sequence of private signals, Scheme 2 and Scheme 0
have identical samples path, thus yielding identical asymptotic
welfare. Moreover, since ε > τk,∞, Scheme 1 is better than
Scheme 0. Thus, the number of guinea pigs, M +1 needs to be
strictly higher than k to achieve better asymptotic welfare. �

As a consequence of Proposition 1, as ε → 0.5, i.e.,
a → 0.5, we have k → ∞. Thus Scheme 2 cannot give better
asymptotic welfare for a finite number of guinea pigs. For
k = 2, 3, . . . , 10, Fig. 11 illustrates how the required minimum
M (obtained numerically) increases as ε approaches to 0.5 for
low signal quality In addition to plotting this for each given
k, we also show a curve that connects the maximum optimal
M for each k, which is clearly increasing in ε. This shows
that for high noise levels, Scheme 2 is only viable if one is
willing to sacrifice a large number of initial users. A similar
figure for high signal quality is shown in [38].
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Figure 11: p = 0.51, from left to right: k = 2, 3, ..., 10

VII. Cascades with no common database
So far, our model has assumed that there is observation

noise by letting the agents report their actions on a common
database which all other agents can see. Even though the
reporting process is in error with probability ε, the observation
errors are common knowledge. In other words, what one agent
observes reflects exactly what any of the previous agents
observed. In some settings, this may be a wrong assumption,
e.g., if agents may obtain information using different methods
or through different channels. Additionally, such a common
database may not be valid in other social networks settings
different from online recommendation systems. In this section,
we step away from this assumption and look at in some sense
the opposite case. In particular, we consider the scenario when
each agent individually observes an erroneous realization of
the previous agents’ true actions, where all errors are assumed
to be i.i.d. Again, the distribution of the errors is still common
knowledge. In such a scenario, not only are the agents blind to
other agents’ private signals, but they also do not know what
their predecessors have observed.

A. Will cascades persist?
We remind the reader that the key to previous analysis of

cascades with a common database is that every subsequent

agent knows the exact answers to two questions: 1) Has a
cascade started yet? and 2) If the answer to the previous
question is Yes, then when did that cascade start? The reasons
are two-fold: 1) The distributions of the prior knowledge about
V , the private signal, and the observation errors are given; and
2) A common observation database is available to all agents.
Without the second assumption, no agent can infer if and when
herding has started.

Again, since the pre-cascading actions are independent,
Property 1 still holds as in the common database scenario.
However, the following property shows that, without a com-
mon observation database, herding is not recurrent.
Property 2′ Without the common database, a cascade needs
not be permanent.
Proof Assume that the statement is not true. We will provide
a counter-example to this using just four agents. Denote Oi

j as
the observations of agent i about the action A j. Again, assume
that Oi

j is a noisy version of A j, so that Oi
j differs from A j in

an i.i.d. manner with error probability ε for all agents i and
their predecessors 1 ≤ j ≤ i − 1. Now the information set of
each agent i includes his private signal S i and his observations
Oi

1, . . . ,O
i
i−1 of the true actions A1, . . . , Ai−1.

The decision rule for agents 1 and 2 is to follow their
private information, the same as before. Since the first two
agents both use their own signals, agent 3 takes account of the
independence of O3

1,O
3
2. Thus, agent 3’s decision rule remains

the same: herds only if O3
1,O

3
2 are identical and ε < ε∗3 . Now

assuming that ε < ε∗3 , the Bayesian update of agent 4 is:

γ4 =
P[O4

1,O
4
2,O

4
3|V = G]P[S 4|V = G]

numerator + P[O4
1,O

4
2,O

4
3|V = B]P[S 4|V = B]

. (30)

Now, conditioning on V ∈ {G, B}, we can write:

P[O4
1,O

4
2,O

4
3] = P[O4

3|O
4
1,O

4
2]P[O4

1,O
4
2]

= (1 − ε)P[A3 = Y,O4
1,O

4
2] + εP[A3 = N,O4

1,O
4
2], (31)

where (31) holds if O4
3 = Y . For O4

3 = N, ε and 1 − ε
are interchanged. The calculation of γ4 is possible if we can
evaluate P[A3,O4

1,O
4
2] for both A3 = Y,N and V = G, B. This

can be done by conditioning on the 4 possibles realizations of
agent 3’s observations {O3

1,O
3
2} = {YY,YN,NY,NN}.

As an example, assume that the information set of agent 4
is

{
S 4,O4

1,O
4
2,O

4
3

}
= {0,Y,Y,N}. The above procedure gives:

γ4 =

[
εαG + (1 − ε)βG + 2(1 − a)δG

]
(1 − p)

numerator +
[
εαB + (1 − ε)βB + 2aδB

]
p
, (32)

where subscripts correspond to true value V ∈ {G, B}, and:
αG = [a − ε(1 − ε)]2, αB = [(1 − a) − ε(1 − ε)]2, βG =

βB = [ε(1 − ε)]2, δG = ε(1 − ε) [a − ε(1 − ε)], δB = ε(1 −
ε) [(1 − a) − ε(1 − ε)]. Based on the decision rule in (2), one
would need to compare γ4 and 1/2. Using the assumption
that 0 ≤ ε < ε∗3 , which means a

1−a ≤
p

1−p <
(

a
1−a

)2
, we deduce

γ4 < 1/2, thus agent 4 follows his own signal and chooses N.
For other realizations of agent 4’s observation history, similar
reasoning applies and agent 4 herds only when all of his three
observations are identical. Now given that agent 3 cascades
to the first two agents’ action, agent 4 would choose the
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same action only if there were no observation errors, i.e., with
probability (1−ε)3, which is bounded away from 1. Thus in this
scenario the cascade does not persist with probability one. �

B. Complexity analysis

We now discuss the complexity of updating the poste-
rior probability for an arbitrary agent n without a common
database. Again, assume that ε ∈ Ik. We have the following:
1) For agents n = 1, . . . , k, |hn−1| < k thus cascades cannot
happen. The decision rule is simple: always follow one’s
signal. Thus complexity is O(1).
2) However, any agent n > k faces the possibility that some
prior agent was in a cascade. While agent n’s decision rule
remains the same as in (2), the complexity of his Bayesian
update of the posterior probability, γn, increases exponentially
as n grows. In fact, conditioned on his own observations
sequence, every agent n needs to account for 2n−2 possible
observations sequences of agent n − 1. For each one of those
2n−2 possibilities, agent n needs to know the decision rule of
agent n−1, which depends on another 2n−3 possible realizations
of agent n − 2’s history. Since the pre-herding agent n = k’s
update is of order O(k) (including first calculating the sufficient
statistics hn−1 and then comparing that to ±k), the complexity
of the update for agent n > k is:(∏n−1

m=k2m
)

O(k) = O(k2n2−k2
), (33)

which blows up exponentially as (n − k) increases.
For comparison, we also evaluate the complexity when a

common database is available. For agents n = 1, .., k, the
complexity is also O(1) by simply checking if n ≤ k. For
any agent n > k, the decision process is done by simply
computing the sufficient history statistic hn−1 and comparing
that with ±k at each step. Note that |hn−1| never exceeds k
throughout the updating process, and so in the worst case
agent n endures a complexity of O(n). This illustrates a
benefit of having a common online platform for aggregating
information. On one hand, such a platform lets agents get
more information than they probably could by just having
their own observations. On the other hand, it also provides
a computational advantage such that if there is noise present,
having this common platform makes it easier for agents to
learn. The complexity incurred without a common database
for Bayes-rational agents suggests that in such case, it is worth
considering non-Bayesian approaches in the same spirit as
[26]. We leave such approaches for future work.

VIII. Other Generalizations

In this section, we discuss other generalizations of our
model. We start next by examining different tie-breaking rules.

A. Comparison of different tie-breaking rules

When an agent’s postierior probability satisfies γn = 1/2, its
expected pay-off under either action is the same. In [9], the
authors assumed that when such a tie occurs, agents randomize
their choices. Another option for breaking a tie is to follow
the previous action whenever a tie happens. In our model,

we instead assume that an agent chooses to follow his own
private signal when he is indifferent. Our assumption not only
simplifies the analysis, but as we state in the next proposition,
also is the better tie-breaking rule as compared to the other
two: by following their own signals, agents who face a tie have
lower wrong cascade probabilities and hence, higher welfare.

Proposition 2. For a given integer k ≥ 2:
1) When ε ∈ (ε∗k , ε

∗
k+1), all agents are never in a tie. Thus

all three tie-breaking rules perform equivalently.
2) When ε = ε∗k , agents who face a tie achieve the lowest

(resp. highest) wrong cascade probability if they follow
their own signals (resp. follow the previous action).

Proof. We start by reminding the reader that a tie happens
when the posterior probability satisfies γn = 1/2, i.e., there
exists an integer k ≥ 2 such that

(
a

1−a

)k
=

p
1−p . To prove the first

part, note that when ε ∈ (ε∗k , ε
∗
k+1), the above equality cannot

happen. Thus all tie-breaking rules give the same outcome.
To prove the second part, assume that ε = ε∗k for some

k ≥ 2. If an agent n encounters a history with |hn−1| = k − 1
that is opposite to his private signal, he has to resort to the
tie-breaking rule. If he follows the previous action, a cascade
happens where the absorbing states of the underlying Markov
chain are ±(k−1). On the other hand, if he follows his private
signal, a cascade does not happen yet, as the corresponding
absorbing states are ±k. Using the equations (8)-(10), the
latter cases give a lower wrong cascade probability and higher
correct cascade probability. As a consequence by (16), when
agent n follows his own signal, he has a higher welfare.
Moreover, this also yields a higher asymptotic welfare as seen
from (17). This completes the proof. �

The intuition of Proposition 2 is as follows: if the tie-
breaking rule is to follow private signals, the underlying
Markov chain has the two absorbing states expanded by one
unit on both sides as compared to when following the previous
action. This induces a longer expected time until a cascade
event (on either side). However, in both scenarios the chains
have the same drift, which is always in favor of the correct
cascade. This effect decreases (increases) the wrong (correct)
cascade probabilities. This can also be seen in Fig. 4: each
point of discontinuity happens exactly when k is increased
by 1 unit where the probability of wrong cascades drops. If
agents follow the previous actions, this yields the upper end of
the discontinuity; while if agents follow their private signals,
this yields the lower end of the discontinuity. Moreover, any
randomized tie-breaking rule results in a linear combination of
these two end points, which also yields a higher wrong cascade
probability than when agents follow their own signals.

B. Cascades with bounded rationality

Next, we consider the possibility that agents might make
mistakes in choosing their optimal action. This captures a more
realistic assumption since it is well documented that real-world
agents are not always rational. In fact, the reasons underlying
human irrationality have been well argued in [20] where
the authors presented the numerous cognitive deficiencies
that could account for human systematic deviation from the
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perceived normative behaviors. Further, from the viewpoint
of Prospect Theory ([5]), the action error can also be argued
to be a consequence of inconsistency in preferences when
agents tend to act differently under the possibilities of gains
(facing a correct herding) and losses (being in a wrong herd).
Finally, such a deviation from full rationality has also been
used for equilibrium selection, in particular, for trembling-
hand perfection equilibrium ([4]).

Indeed, there is a long history of using noise to model
imperfect rationality (see e.g. [8], [14]) resulting in agents
having so-called “noisy best responses.” Here, we follow
the approach in those works, and examine a simple form
of bounded rationality. In particular, assume that all agents
derive the exact posterior probability of the true value of the
item, but then choose the sub-optimal action with probability
εa ∈ (0, 0.5); we call this an “action error.” Assume that this
probability is known to all other agents, and is the same
across all agents. Again, as before, assume that the observation
database is still common knowledge, with i.i.d. observation
errors with probability ε ∈ (0, 0.5).

The analysis is similar as in the setting with no action errors,
so we omit the details. The reason being we can combine the
two types of errors, ε and εa, to an equivalent error type,
f (ε, εa), and use that in updating the posterior probability as
before. As a result, the probabilities of wrong and correct
cascades, u∗0,n and v∗0,n, respectively, are as those in a model
with only observation errors of rate f (ε, εa). However, the
agent welfares are now reduced due to the probability of
choosing the non-optimal action, εa. In particular, for agents
1 ≤ n ≤ k, they all have the same welfare given by:

E [πn] = {P [An = Y |V = G] − P [An = Y |V = B]} /4
= (1 − 2εa)(2p − 1)/4 = (2a1 − 1)/4 , F1. (34)

where a1 = f (εa, p). For agents n ≥ k + 1:

E [πn] = {P [An = Y |V = G] − P [An = Y |V = B]} /4

= F1 + (1 − 2εa)
[
((1 − p)/2)v∗0,n−1 − (p/2)u∗0,n−1

]
. (35)

By comparing (34)-(35) against (15)-(16), it is clear that the
action error εa only reduces the welfare of every agent by a
factor of 1−2εa as compared to a model with only observation
errors with probability f (ε, εa). Thus, the expected welfare of
agents in a quasi-rational model inherits many properties from
the fully rational setting with noisy observations as in Theorem
2 (e.g., the overall welfare is not monotonic in the error rate).

C. General prior for the true value, V

In this section, we consider the scenario where the binary
true value V of the item might not be equally likely, but the
ex-ante pay-off is still restricted to be zero.10 In particular,
assume that P[V = G] = λ ∈ (0, 1). Let the rewards (resp.
losses) of buying when V = G (resp. V = B) be x (resp. −y)
where x, y ≥ 0 and x + y > 0. In all previous sections, we have
assumed x = 1, y = 0 and λ = 1/2. In this general scenario,

10The case of zero ex-ante payoff is the interesting case as at the outset
agents have no preference for either action, and thus the additional information
from the signals and past observations could be helpful.

setting the ex-ante payoff to 0 leads to the new cost of the
item being C = λx − (1 − λ)y. Putting these all together, the
general payoff is given by:

πn =


0, if An = N,
x −C = (1 − λ)(x + y) if An = Y,V = G, and
−y −C = −λ(x + y) if An = Y,V = B.

(36)

The ex-post expected payoff of agent n when taking an action
An ∈ {Y,N} is calculated as:E [πn|An = N] = 0, and

E [πn|An = Y] = (x + y)(γn − λ).
(37)

By (37), the new decision rule is based on comparing the
posterior probability, γn, to λ. However, as λ changes, the
posterior probability is a function of λ and is given by:

γn = P[V = G|S n,Hn] =
1

1 + βn`n−1
1−λ
λ

(38)

Thus, the new (user) optimal decision rule compares βn`n−1
and 1. Moreover, since βn, `n−1 are conditioned on V and,
thus, do not change as λ changes, the new decision rule with
respect to βn`n−1 is the same as before. Conditioned on V ,
the transition probabilities of the underlying Markov chain are
identical to the case λ = 1/2. As a result, conditioned on V ,
the probabilities of cascades for an agent n are also given by:P

[
wrong|V = G

]
= u∗0,n = 1 − v∗0,n, and

P
[
wrong|V = B

]
= v∗0,n = 1 − u∗0,n.

(39)

However, the (unconditional) probabilities of wrong and cor-
rect cascades are given as λu∗0,n+(1−λ)v∗0,n and λv∗0,n+(1−λ)u∗0,n,
respectively. Given that λ, x, y are fixed, the welfare for agents
are scaled by a constant factor as compared to when V is
equally likely G or B. We show this next. All agents 1 ≤ n ≤ k,
who use their own signals, have the same payoff:

E [πn] = (1 − λ)E [πn|V = B] + λE [πn|V = G]
= (1 − λ)(−λ)(x + y))P [An = Y |V = B]
+ λ(1 − λ)(x + y)P [An = Y |V = G]

= λ(1 − λ)(x + y)(2p − 1) 4= F2. (40)

For agents n ≥ k + 1, who face the possibility of cascades:

E [πn] = λ(1 − λ)(x + y) {P [An = Y |V = G] − P [An = Y |V = B]}

= λ(1 − λ)(x + y)
[
v∗0,n−1 + p(1 − v∗0,n−1 − u∗0,n−1)

]
− λ(1 − λ)(x + y)

[
u∗0,n−1 + (1 − p)(1 − u∗0,n−1 − v∗0,n−1)

]
= F2 + 2λ(1 − λ)(x + y)

[
v∗0,n−1 − u∗0,n−1

]
. (41)

Thus, comparing (40) and (41) to (15) and (16), the welfare of
all agents are scaled by a factor of 4λ(1−λ)(x+y). If x+y > 0
is fixed while λ can change in (0, 1), the welfare is maximized
if the true value V is equally likely G or B, i.e. λ = 1/2.
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IX. Conclusions and future work

This paper studied the effect of observation error in a
simple Bayesian information cascade where agents can be
either rational or quasi-rational. We showed that despite the
presence of observation errors, cascades happen in finite time
with probability 1. However, observation errors can delay the
onset of a cascade; we also determined the error thresholds
that increase this delay. In addition, cascades have the same
level of fragility with or without observation errors, and in both
cases they can be broken by an additional private signal. Using
a Markov chain based analysis we determined the probabilities
of cascades for an arbitrary agent and used these to calculate
the agents’ welfare based on the given signal quality and
the error. Our main result shows that for certain ranges of
parameters, adding a controlled amount of observation error
can lead to higher welfare for all but a finite number of agents.
In such scenarios, we compared the trade-offs of different
methods for improving the agents’ welfares. These results
may be helpful for a platform operator who has the option to
weigh the trade-offs and choose the best method that would
benefit his platform. Our results are strongly based on the
existence a common database, which stores all the erroneous
observations of past actions. Moreover, we argued that such a
database provides an important computational benefit to agents
in performing Bayesian updates. In future work we plan on
generalizing to agents with heterogeneous private signals and
observation errors, and allowing each agent to only observe
subsets of past agents’ actions prior to taking actions.
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