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Abstract—Though the capacity of the2-user Gaussian inter-
ference channel has long eluded information theorists, recent
progress has been made by focussing on approximations with
provable bounds. However, extensions to a generalK-user
network has proven to be non-obvious, in particular due to
the role of interference alignment in these cases. In this paper,
we look at a special case of aK-user Gaussian interference
network where only one of the users interferes with and is also
interfered by all the other users. We determine the sum-capacity
of such a network within O(K) bits for all possible values of the
channel parameters, provided the direct signal is stronger than
the receiver noise.

I. I NTRODUCTION

Starting with the work of Etkin-Tse-Wang [8], there has
been an increased interest in studying constant gap approx-
imations to capacity regions for many long-standing prob-
lems in network information theory. In [8] this approach is
applied to the2-user interference channel (IC) where the
capacity is approximated by deriving new tighter upperbounds
and achievability shown by specializing a particular Han-
Kobayashi [1] power splitting scheme using Gaussian code
books. This result is closely related to the analysis of the
2-user linear deterministic interference channel [2] that in
some way approximates the Gaussian counterpart. The linear
deterministic model, first introduced in [3] has been a useful
tool to gain understanding into how signals interact in a multi-
terminal network, ignoring the effect of receiver noise. The
cases where the exact capacity of this approximate channel
can be computed with relative ease often lead to constant-gap
approximations of the capacity in the corresponding Gaussian
channels [4]–[7], [9], [13].

The results in [8] do not generalize naturally to interference
channels withK > 2 users. This is essentially due to the
fact that signals from more than one transmitter superimpose
at a receiver. When this interference has structure, it can be
exploited. This is demonstrated in [11] for a particular3-user
Gaussian IC, where a higher rate is shown to be achievable
using a layered lattice coding scheme as opposed to a Han-
Kobayashi scheme as in [8]. The structure provided by lattice
codes enables a form of interference alignment [10]. However,
in general, IC capacity characterization in many-user scenarios
has been met with limited success. Some partial results exist

Fig. 1. Mobiles near the boundary of a cell

either in specific regimes of channel gains [16] or for some
restricted classes of channels [17]. In [12], the approximate
capacity for a K user Gaussian IC is provided for two
special cases - ‘one-to-many’ and ‘many-to-one’, where all
interference is either caused by or is caused to only one user,
respectively. The results again make use of the exact analysis
of the corresponding deterministic case. Even for some linear
deterministic3-user ICs with specific connectivity [14], [15],
sum-capacity itself is not fully characterized. Recently,the
approximate capacity was derived for aK-user Gaussian
IC with specific cyclic interference pattern [19]. However,
in this kind of interference channel, the key problem of
interference alignment does not arise. A new achievable rate
region evaulated for a fully-connected3-user deterministic IC
by ‘interference decoding’ [18] offers new insights into this
problem.

In this paper, we consider a very simple class ofK-user
Gaussian IC in which only one of the users causes interference
to all others, as well as is interfered by all of them. This
network can be looked upon as a superposition of a one-to-



many and many-to-one networks as in [12] and incorporates
the tension between multiple signals interfering at a receiver
as well as the same signal interfering at multiple receivers.
Apart from its usefulnes in throwing light on the generalK-
user interference network, this network models a situationfor
mobile communication where a number of mobile terminals
are near the boundary of a particular cell as illustrated in
Figure 1. Based on this configuration of the interfering users,
we call this a ‘star’ IC. For tractability, we only consider
a fully-symmetric setup (all cross channels have the same
parameter value) and seek to find an approximate sum capacity
for this network. This builds on our work in [15], where
we characterized the sum-capacity of the corresponding3-
user linear deterministic IC. Once again, this analysis provides
insights for approximating the Gaussian case.

The key contributions of this paper are:

• We characterize the sum-capacity of a symmetricK-user
Gaussian star IC withinO(K) bits.

• We show that a single class of strategies might not be
optimal in all interference regimes and judicious choice
of codebooks and power control is required in our achiev-
able scheme.

• We demonstrate that it is possible for a non-trivially
connectedK-user IC to achieve more thanK/2 spatial
degrees of freedom, which is interesting when compared
with the findings in [23] where it was shown that degrees
of freedom for aK-user Gaussian IC with non-zero
rational coefficients is strictly smaller thanK/2.

The rest of the paper is organized as follows: Section II
introduces the system model, some useful upperbounds to the
sum-capacity are derived in Section III, coding schemes that
approximately achieve sum-capacity are discussed in Section
IV and concluding remarks and future directions are provided
in Section V.

II. SYSTEM MODEL

A K-user symmetric Gaussian star IC as shown in Fig-
ure 2 hasK transmitter-receiver pairs. Each transmitter tries
to communicate with its intended receiver. In this process,
only transmitter1 causes interference to all other receivers,
while all the other transmitters in turn, cause interference
to receiver1. Let Xi and Yi denote the input and output
signal of theith user respectively, whileZi ∼ CN (0, 1) is
independent and identically distributed Gaussian noise that
impairs receiveri. EachXi has an associated power constraint
P so thatE[|Xi|2] ≤ P . Let h denote the cross-channel gain,
whereas, the direct-channel gain is normalized to1. These
gains are assumed to be same for all users. The interference
network can be formally specified by the following input-
output relationships:

Y1 = X1 + hX2 + hX3 + . . . hXK + Z1

Yi = hX1 + Xi + Zi, ∀i = 2, 3, . . . K. (1)

Fig. 2. A K-user symmetric Gaussian ‘star’ IC

We define two quantities, signal-to-noise ratio and interference
to noise ratio as follows:

SNR = P, INR = |h|2P. (2)

Depending on the strength of the cross-links, theK-user inter-
ference network can be deemed to be in the weak interference
regime if |h|2 ≤ 1 or in the strong interference regime if
|h|2 > 1. Note that, in this paper we are concerned only with
situations where the direct signal is stronger than the receiver
noise (SNR > 1). For cases whenINR > 1, we introduce a
parameterα > 0 defined byINR = Pα; this α parameter is
often used to specify the corresponding linear deterministic
model. Reducing to the caseK = 2 gives us the symmetric
2-user interference channel, whileK = 3 gives the symmetric
shoe-string interference channel from [15].

III. U PPERBOUNDS

In this section we derive several upperbounds on the sum-
rate achievable in theK-user Gaussian star IC discussed
before. These will be used later to show constant bit-gap
results for sum-capacity.

Theorem 1: For the K-user Gaussian star IC in (1), the
sum-capacity in the weak interference regime is upperbounded
by the minimum of the following three quantities:

Rweak
ub1 = log

(

1 +
SNR

1 + INR

)

+ (K − 1) log (1 + SNR)

(3)

Rweak
ub2 = log

(

1 + (K − 1) INR +
SNR

1 + INR

)

+

log

(

1 + INR +
SNR

1 + INR

)

+

(K − 2) log (1 + SNR) (4)



Rweak
ub3 = log (1 + INR + SNR) +

log

(

1 + 2INR +
SNR

1 + INR

)

+ log

(

1 + SNR

1 + INR

)

+

(K − 3) log (1 + SNR) . (5)

Proof: First, note the similarity of the form of the upper-
bounds with that of the upperbounds for the symmetric2-user
Gaussian IC in [8]. In fact, the first and the third upperbounds
are obtained by simply extending the upperbounds as derived
in [8].

To show thatRweak
ub1 is an upperbound to the sum-capacity

for our K-user network, consider removing all cross-links
except those between users1 and 2. Clearly, any sum-rate
upperbound on this new network should also be an upperbound
on the original one as presence of interference can only reduce
the desired rate. Now, the new network can essentially be
decomposed into a symmetric2-user Gaussian IC and(K−2)
parallel point-to-point AWGN channels. Using the known
upperbounds for each of these quantities, we easily arrive at
the first upperbound.

For the second upperbound, we consider a side-information
converse akin to that given in Theorem1, [8]. Define

S1 = hX1 + Z2

S2 = hX2 + Z1

S3 = S4 = . . . SK = X1. (6)

and consider a genie-aided channel where a genie providesSi

to receiveri. Clearly, the capacity region of this genie-aided
channel is an upperbound to the capacity region of the original
interference channel. Therefore, we can obtain an upperbound
for the sum-rate of the original channel by computing an
upperbound on the sum-rate of the genie-aided channel. For a
block of lengthn, Fano’s inequality gives

n(R1 + R2 + · · · + RK)

≤
K
∑

i=1

I(Xn
i ;Y n

i , Sn
i ) + nǫn

=

K
∑

i=1

I(Xn
i ;Sn

i ) + I(Y n
i ;Xn

i |Sn
i ) + nǫn

=
2
∑

i=1

h(Sn
i ) − h(Sn

i |Xn
i ) + h(Y n

i |Sn
i ) − h(Y n

i |Sn
i ,Xn

i )

+

K
∑

i=3

h(Y n
i |Sn

i ) − h(Y n
i |Sn

i ,Xn
i ) + nǫn

= h(Sn
1 ) − h(Zn

2 ) + h(Y n
1 |Sn

1 ) − h(Sn
2 +

K
∑

i=3

hXi)

+ h(Sn
2 ) − h(Zn

1 ) + h(Y n
2 |Sn

2 ) − h(Sn
1 )

+

K
∑

i=3

h(Xn
i + Zn

i ) − h(Zn
i ) + nǫn

≤ h(Y n
1 |Sn

1 ) − h(Zn
1 ) + h(Y n

2 |Sn
2 ) − h(Zn

2 )

(7)

+

K
∑

i=3

h(Xn
i + Zn

i ) − h(Zn
i ) + nǫn

≤
n
∑

t=1

[

h(Y1t|S1t) − h(Z1t) + h(Y2t|S2t) − h(Z2t) (8)

+

K
∑

i=3

h(Xit + Zit) − h(Zit)
]

+ nǫn (9)

where, (8) from the fact thath(Sn
2 )−h(Sn

2 +
∑K

i=3 hXi) ≤ 0
while (9) follows by the fact that removing conditioning
cannot reduce differential entropy and that Gaussian noise
is independent. Also note thatǫn → 0 as n → ∞. Let
E[|Xit|2] = Pit such that

∑n

t=1 Pit ≤ nP . Now, for i = 1, 2,
h(Yit|Sit) ≤ log(2πeVar(Yit − αSit)) whereα =

E[YitS
∗

it
]

E[SitS
∗

it
] as

shown in [20]. Thus we obtain,

1

n

n
∑

t=1

h(Y1t|S1t) ≤
1

n
log

[

πe

(

1 + |h|2
K
∑

i=2

Pit

+
P1t

1 + |h|2P1t

)]

≤ log

[

πe

(

1 + |h|2(K − 1)

(

1

n

n
∑

t=1

P1t

)

+

(

1
n

∑n

t=1 P1t

)

1 + |h|2
(

1
n

∑n

t=1 P1t

)

)]

≤ log

[

πe

(

1 + |h|2(K − 1)P +
P

1 + |h|2P

)]

(10)

where the second step follows by Jensen’s inequality applied
to a concave function and the last step is due to the fact the
function is increasing inP . Similar calculations yield

1

n

n
∑

t=1

h(Y2t|S2t) ≤ log

[

πe

(

1 + |h|2P +
P

1 + |h|2P

)]

.

(11)

Further, noting that the Gaussian distribution maximizes dif-
ferential entropy under a given variance constraint so that
h(Xit + Zit) ≤ log (πe(Pit + 1)) and applying Jensen’s
inequality again, we get

1

n

n
∑

t=1

K
∑

i=3

h(Xit + Zit) ≤ (K − 2) log (πe(1 + P )) . (12)

Finally, using equations (9), (10), (11), (12) and the fact
that the noise has variance1, we get the desired upperbound
Rweak

ub2 .
For the third upperbound, we first consider a network where

all the crosslinks between user1 and users4, 5, . . . K have
been removed. Clearly, any upperbound on the sum-capacity
of this channel (a3-user IC - where user1 is interfered by and
also interferes with users2 and 3, andK − 3 parallel point-
to-point channels) is also an upperbound on the sum-capacity
of the original channel. First we look at this3-user IC. Let
the genie provide side-informationS1 = hX1 +Z3 to receiver



1 and S2 = X1 to receiver2. Then, considering a block of
lengthn, Fano’s inequality gives

n(R1 + R2 + R3)

≤ I(Xn
1 ;Y n

1 , Sn
1 ) + I(Xn

2 ;Y n
2 |Xn

1 ) + I(Xn
3 ;Y n

3 ) + nǫn

= I(Xn
1 ;Sn

1 ) + I(Xn
1 ;Y n

1 |Sn
1 ) + I(Xn

2 ;Y n
2 |Xn

1 )

+ I(Xn
3 ;Y n

3 ) + nǫn

= h(Sn
1 ) − h(Sn

1 |Xn
1 ) + h(Y n

1 |Sn
1 ) − h(Y n

1 |Sn
1 ,Xn

1 )+

h(Y n
2 |Xn

1 ) − h(Y n
2 |Xn

1 ,Xn
2 ) + h(Y n

3 ) − h(Y n
3 |Xn

3 ) + nǫn

= h(Y n
3 ) + h(Y n

1 |Sn
1 ) − h(Zn

2 ) − h(Zn
3 )

− h(hXn
2 + hXn

3 + Zn
1 ) + h(Xn

2 + Zn
2 ) + nǫn

≤ h(Y n
3 ) + h(Y n

1 |Sn
1 ) − h(Zn

2 ) − h(Zn
3 )

− h(hXn
2 + Zn

1 ) + h(Xn
2 + Zn

2 ) + nǫn

≤
n
∑

t=1

[h(Y3t) + h(Y1t|S1t) − h(Z2t) − h(Z3t)] (13)

− h(hXn
2 + Zn

1 ) + h(Xn
2 + Zn

2 ) + nǫn (14)

where (13) follows from the fact thath(hXn
2 + Zn

1 ) =
h(hXn

2 + hXn
3 + Zn

1 |Xn
3 ) ≤ h(hXn

2 + hXn
3 + Zn

1 ). Now,
since in the low interference regime|h| < 1, by the worst
case noise result [21], we get the following upperbound:

−h(hXn
2 + Zn

1 ) + h(Xn
2 + Zn

2 ) ≤ log

(

1 + SNR

1 + INR

)

. (15)

Also, as in the proof of the second upperbound, we have,

1

n

n
∑

t=1

h(Y1t|S1t) ≤ log

[

πe

(

1 + 2|h|2P +
P

1 + |h|2P

)]

.

(16)

Further,h(Y3t) is maximized whenX1t,X3t ∼ CN (0, P ) so
that

1

n

n
∑

t=1

h(Y3t) ≤ log
[

πe
(

1 + |h|2P + P
)]

. (17)

Using (14),(15),(16),(17) and the point-to-point capacity
bounds for each of the users4, . . . K, we getRweak

ub3 as the
desired upperbound on the sum-rate.

Theorem 2: For the K-user Gaussian symmetric star IC,
the sum-capacity in the strong interference regime is upper-
bounded by the minimum of the following two quantities:

Rstrong
ub1 = log (1 + INR + SNR) + (K − 2) log (1 + SNR)

(18)
Rstrong

ub2 = K log (1 + SNR) . (19)

Proof: In the strong interference regime, to prove the
first upperbound, consider a channel where all crosslinks
between user1 and users3, 4, . . . K have been removed. Any
upperbound to this reduced channel (a2-user IC andK − 2
parallel point-to-point channels) is also an upperbound tothe
original channel. In the strong interference regime, a2-user
IC must satisfy MAC constraint at each receiver, so that
log(1+ INR+SNR) is an upperbound toR1 +R2. Combining
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Fig. 3. Per-user generalized degrees of freedom for the symmetric star GIC

this with the point-to-point constraint of the otherK − 2
parallel channels, we getRstrong

ub1 .

On the otherhand,Rstrong
ub2 is simply obtained by combining

the individual point-to-point rate constraints of all the users.

As in [8], we illustrate these bounds by plotting the
corresponding per-user generalized degrees of freedom as a
function of the paramterα for different values ofK. We also
include the corresponding curve from [8] forK = 2, which
is a symmetric fully connected GIC. In the next section we
show that these degrees of freedom are achievable. Examining
Fig. 3, several observations can be made. First, forK > 2 the
corresponding curve has a “U” shape instead of the “W” shape
seen forK = 2. Second forα < 2 the degrees of freedom per
user are increasing withK. Essentially, compared toK = 2,
the sum-rate optimal strategy is giving more rate to usersi ≥ 2
and reducing the rate of user1. As K increases, there are more
of these users and their share of the total rate is increasing.

IV. A CHIEVABILITY

The main result of this paper is stated in the theorem below:

Theorem 3: For theK-user symmetric Gaussian star IC, a
sum-rate withinO(K) bits of the bounds in Theorems 1 and
2 is achievable.

Proof: The achievability (uptoO(K) bits) will be proved
separately in different parameter regimes.

A. Weak interference

1) INR < 1: In this regime, in the deterministic case, all
users transmit independent bits from interference free levels.
In the Gaussian case, an achievable scheme is to allow allK
transmitters to use Gaussian codebooks and transmit signals
using full powerP . At the receivers, they treat interference
as noise. Clearly, the achievable sum-rate isRweak

achiev1 = (K −
1) log

(

1 + SNR

1+INR

)

+ log
(

1 + SNR

1+(K−1)INR

)

. Comparing this



with Rweak
ub1 , we get,

δweak
1

= Rweak
ub1 − Rweak

achiev1

= (K − 1) log

(

1 + SNR

1 + SNR

1+INR

)

+ log

(

1 + SNR

1+INR

1 + SNR

1+(K−1)INR

)

< (K − 1) log

(

2(1 + SNR)

(2 + SNR)

)

+ log

(

K(1 + SNR)

(K + SNR)

)

< (K − 1) + log K

= O(K). (20)

2) 1 ≤ INR <
√

SNR: (0 ≤ α < 1
2 ): For the deterministic

case, stopping user1 from transmitting from any level, while
allowing other users to use all the available levels is optimum.
But such a scheme would not be optimal in the Gaussian case.
Here, we consider a type of a power controlled transmission
scheme. All transmitters except transmitter1 use Gaussian
codebooks and transmit signals using full powerP . On the
other hand, transmitter1 transmits at a powerP1 = P 1−α. At
the receivers, all interference is treated as noise. Clearly, the
achievable sum-rate is

Rweak
achiev2 = (K − 1) log

(

1 +
P

1 + |h|2P1

)

+ log

(

1 +
P1

1 + (K − 1)|h|2P

)

= (K − 1) log

(

1 +
SNR

2

)

+ log

(

1 +
SNR

INR(1 + (K − 1)INR)

)

. (21)

Comparing this withRweak
ub2 we get,

δweak
2 = Rweak

ub2 − Rweak
achiev2

< (K − 1) + log(K(K − 1)) + log 3

= O(K). (22)

Note that this scheme achieves all theK−2α available degrees
of freedom.

3)
√

SNR ≤ INR < SNR: ( 1
2 ≤ α < 1): Here also

power control is used essentially to silence transmitter1,
which is what is directly obtained from the deterministic case.
All transmitters except transmitter1 use Gaussian codebooks
and transmit signals using full powerP . On the other hand,
transmitter1 does not transmit at all. At the receivers, all
interference is treated as noise. Clearly, the achievable sum-
rate isRweak

achiev3 = (K−1) log(1+SNR). Comparing this with

Rweak
ub3 we get a constant bit gap as shown below:

δweak
3 = Rweak

ub3 − Rweak
achiev3

= log(1 + P + Pα) + log

(

1 + 2Pα +
P

1 + Pα

)

− log(1 + Pα)

= log(1 +
Pα

1 + P
) + log

(

2 +
P

(1 + Pα)2

)

< log(1 + Pα−1) + log(2 + P 1−2α)

< log 2 + log 3

= O(1) (23)

where the second to last step follows from the fact thatα−1 <
0 and1−2α < 0 in this regime. All the availableK−1 degrees
of freedom can be achieved using this strategy.

B. Strong interference

In this regime, the idea of interference alignment becomes
important and lattice coding techniques are used to show
(approximate) achievability.

1) SNR ≤ INR < SNR
√

SNR: (1 ≤ α < 3
2 ): We consider

a nested lattice scheme inspired by the one used in [12]
to replicate the strategy for the deterministic IC in [15]. In
the deterministic case, all the users except user1 transmit
independent bits from all the available levels, while user1
transmits at a lower rate and uses some of its available levels
judiciously to repeat a part of its information bits that allows
other users to cancel the interference. Also, it does not use
some of the middle levels to transmit any bit. We use a similar
idea in the corresponding Gaussian case. The signal power as
observed at receiver1 is partitioned into the following levels:
Pα, P, P 2−α, Pα−1, 1, 0. Note that, forα > 1, the levels are
in a decreasing order of magnitude. Define

θ1 = Pα − P

θ2 = P − P 2−α

θ3 = P 2−α − Pα−1. (24)

All the users except user1 decompose the transmitted signal
into a sum of three independent components given byXi =
∑3

k=1 Xi(k); componentXi(k) being the useri’s input to
the kth transmit level. The signalXi(k) is transmitted with
a power θk

|h|2 = θkP 1−α, so that, at receiver1 where each of
these signals interfere, it has a powerθk.

At the receivers of all the other users2, 3, . . . K, the
observed signal power is split into the following levels:
Pα, P, P 2(α−1), Pα−1, 1, 0. Here, 1 ≤ α < 3

2 ensures that
the levels are in order of magnitude. Again define

φ1 = Pα − P

φ2 = P − P 2(α−1)

φ3 = P 2(α−1) − Pα−1. (25)

As before, user1 also decomposes its transmitted signal into
components with a powerφk

|h|2 = φkP 1−α, so that, at all
the receivers where this signal interferes, it has a powerφk.



Fig. 4. Power-split for lattice codes whenα <
3

2

However, user1 assigns no power to the second level, so that
X1 = X1(1) + X1(3). Further, user1 transmits the same
message from both the levels it seeks to use. Note that while
all users2, 3, . . . K satisfy the power constraint with equality,
user1 transmits at a lower power.

For eachθk andφk that is used, a lattice code is selected as
in [22] such that the spherical shaping region has an average
power per dimensionθk and φk, respectively, and the lattice
is good for channel coding. Further, the same code is chosen
for θ1 and φ1 to ensure alignment. The rate of the lattice is
chosen to allow decoding of encoded messages as illustrated
in Figure 4.

Next we describe the decoding procedure at each receiver.
Decoding occurs from the top level downwards, treating the
signals from lower level as Gaussain noise. When the signal on
a level is decoded, it is subtracted off completely, and decoding
proceeds with the next highest level. At any level, an aggregate
signal is decoded first by decoding to the nearest lattice point.
By making use of the available results in lattice coding for
Gaussian channels [22] and the fact that user1 transmits the
same message at both levels1 and3, we arrive at the following
rate bounds for decodability:

r1 ≤ log

(

Pα − P

1 + P

)

r2 ≤ log

(

P − P 2−α

1 + P 2−α

)

r3 ≤ log

(

P 2−α − P 3−2α

1 + P 3−2α

)

r4 ≤ log
(

P 3−2α − 1
)

r
′

3 ≤ log

(

P 2−α − Pα−1

1 + Pα−1

)

r
′

4 ≤ log
(

Pα−1 − 1
)

(26)

which relate to the user rates as follows:

R2 = R3 = · · · = RK = min(r1, r2) + min(r2, r3)

+ min(r
′

3, r4)

= r2 + r3 + r4

R1 = min(r1, r2, r
′

4) = r
′

4. (27)

Hence, the achievable sum-rate is given by,

Rstrong
achiev1 =

(K − 1) log

((

P − P 2−α

1 + P 2−α

)(

P 2−α − P 3−2α

1 + P 3−2α

)

(

P 3−2α − 1
))

+ log
(

Pα−1 − 1
)

. (28)

Comparing this withRstrong
ub1 , we get,

δstrong
1

= Rstrong
ub1 − Rstrong

achiev1

= log(1 + Pα + P ) + (K − 2) log(1 + P )

− (K − 1) log

((

P − P 2−α

1 + P 2−α

)(

P 2−α − P 3−2α

1 + P 3−2α

)

(P 3−2α − 1)
)

− log(Pα−1 − 1)

< log(3Pα) + (K − 2) log(2P ) + (K − 1) log(8)

− (K − 1) log

((

1 + P

1 + P 2−α

)(

1 + P 2−α

1 + P 3−2α

)

(

P 3−2α
)

)

− log(Pα−1 − 1)

< log 3 + log(Pα) + (K − 2) + (K − 2) log(P ) + 3K

− 3 − (K − 1) log

((

P

2P 2−α

)(

P 2−α

2P 3−2α

)

(

P 3−2α
)

)

− log(Pα−1) + 1

= log 3 + 6(K − 1) + log(Pα) + (K − 2) log(P )

− (K − 1) log(P ) − log(Pα−1)

= log 3 + 6(K − 1)

= O(K). (29)

2) SNR
√

SNR ≤ α < SNR
2: ( 3

2 ≤ α < 2): A similar
nested lattice scheme is employed in this regime as well. In
this regime too, the achievable strategy of the deterministic
case provides us the clue to achievability in the Gaussian
case. The achievable strategy is similar to the previous regime,
except that now the unused levels of user1 are used to
transmit independent information bits. In the corresponding
Gaussian case, atall the receivers, power is partitioned into
the following levels:Pα, P 2(α−1), P, Pα−1, P 2−α, 1, 0. Note
that, for 2 > α ≥ 3

2 , this is a decreasing order. As before,
define

θ1 = Pα − P 2(α−1)

θ2 = P 2(α−1) − P

θ3 = P − Pα−1

θ4 = Pα−1 − P 2−α (30)

θ5 = P 2−α − 1. (31)



Fig. 5. Power-split for lattice codes when2 > α >
3

2

As illustrated in Fig. 5, signals transmitted with powerθi

interfere other users at power levelθi+2. The lattice codes
used for transmission at each power level (fromθ3 to θ5) are
different from each other, but same for all users. Further, all
users except user1 transmits independent messages from the
different levels but user1 transmits the same message from
θ3 andθ5.

By similar arguments as before, we arrive at the following
rate bounds for decodability:

r1 ≤ log

(

Pα − P 2(α−1)

1 + P 2(α−1)

)

r2 ≤ log

(

P 2(α−1) − P

1 + P

)

r3 ≤ log

(

P − Pα−1

1 + Pα−1

)

r3 ≤ log

(

Pα−1 − P 2−α

1 + P 2−α

)

r5 ≤ log
(

P 2−α − 1
)

(32)

which relate to the user rates as follows:

R2 = R3 = · · · = RK = min(r1, r3) + min(r2, r4) + r5

= r3 + r4 + r5

R1 = min(r1, r3, r5) + min(r2, r4) = r4 + r5. (33)

Hence the achievable sum-rate is given by,

Rstrong
achiev2 =

(K − 1) log

((

P − Pα−1

1 + Pα−1

)(

Pα−1 − P 2−α

1 + P 2−α

)

(

P 2−α − 1
))

+ log

((

Pα−1 − P 2−α

1 + P 2−α

)

(

P 2−α − 1
)

)

.

As before, comparing this withRstrong
ub1 , we get,

δstrong
2

= Rstrong
ub1 − Rstrong

achiev2

= log(1 + Pα + P ) + (K − 2) log(1 + P )

(K − 1) log

((

P − Pα−1

1 + Pα−1

)(

Pα−1 − P 2−α

1 + P 2−α

)

(

P 2−α − 1
))

− log

((

Pα−1 − P 2−α

1 + P 2−α

)

(

P 2−α − 1
)

)

< log(3Pα) + (K − 2) log(2P ) + (K − 1) log(8)

− (K − 1) log

((

1 + P

1 + Pα−1

)(

1 + Pα−1

1 + P 2−α

)

(

P 2−α
)

)

− log

((

1 + Pα−1

1 + P 2−α

)

(

P 2−α
)

)

+ log 4

< log 3 + log(Pα) + (K − 2) + (K − 2) log(P ) + 3K

− 3 − (K − 1) log

((

P

2Pα−1

)(

Pα−1

2P 2−α

)

(

P 2−α
)

)

− log

((

Pα−1

2P 2−α

)

(

P 2−α
)

)

+ log 4

= 2 + log 3 + 6(K − 1) + log(Pα) + (K − 2) log(P )

− (K − 1) log(P ) − log(Pα−1)

= 2 + log 3 + 6(K − 1)

= O(K). (34)

Note that for the entire range1 < α < 2, all the K + α −
2 degrees are freedom are achievable by doing interference
alignment using lattice codes.

3) INR ≥ SNR
2: (α ≥ 2): The deterministic case strategy

is simply to ignore the interference as all of it sits above the
signal level of each user. Correspondingly, in the Gaussian
case in this regime, we use a very simple strategy where
all the users transmit at full power using the same lattice
code. At each receiver, first the total interference is decoded,
treating its own signal as noise; then the decoded interfer-
ence is canceled out to decode its own signal. Clearly then,
Ri = min

(

log
(

INR

1+SNR

)

, log(SNR)
)

, ∀i = 1, 2, . . . K,

so that the achiveable sum-rate isRstrong
achiev3 = K log(SNR).

Comparing withRstrong
ub2 , we see that

δstrong
3 = Rstrong

ub2 − Rstrong
achiev3 < K

= O(K). (35)

Thus we see that, for the entire range of interference, there
are signalling strategies that achieve a sum-rate withinO(K)
bits of the sum-capacity, irrespective of the channel gains.

V. CONCLUSIONS

In this work we have characterized to within a finite number
of bits the sum-capacity of aK-user symmetric star Gaussian
IC. The achievable schemes are designed from observations
made in the corresponding deterministic case. Future research
directions might include considering ICs with more connec-
tivity than the star network, as also asymmetric parameter



regimes, which would potentially increase our knowledge
about capacity regions of variousK-user Gaussian ICs.
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