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Abstract—We study distributed algorithms for updating trans-
mit precoding matrices for a two-user Multi-Input/Multi-Output
(MIMO) interference channel. Our objective is to maximize the
sum rate with linear Minimum Mean Squared Error (MMSE)
receivers, treating the interference as additive Gaussian noise.
An iterative approach is considered in which given a set of
precoding matrices and powers, each receiver announces an
interference price (marginal decrease in rate due to an increase in
interference) for each received beam, corresponding to a column
of the precoding matrix. Given the interference prices from the
neighboring receiver, and also knowledge of the appropriate
cross-channel matrices, the transmitter can then update the
beams and powers to maximize the rate minus the interference
cost. Variations on this approach are presented in which beams
are added sequentially (and then fixed), and in which all beams
and associated powers are adjusted at each iteration. Numerical
results are presented, which compare these algorithms with
iterative water-filling (which requires no information exchange),
and a centralized optimization algorithm, which finds locally op-
timal solutions. Our results show that the distributed algorithms
perform close to the centralized algorithm, and by adapting the
rank of the precoder matrices, achieve the optimal high-SNR
slope.

I. INTRODUCTION

In both cellular and wireless ad-hoc networks situations
commonly arise where two or more point-to-point communi-
cation links, consisting of one transmitter and one receiver,
interfere with each other. Even for the elementary case of
two interfering single-antenna links, however, the information
theoretic capacity of the channel and the optimal transmission
strategies are unknown, except for some special cases. In
general, though, to achieve capacity the receivers must know
the codebook used by the interfering transmitter.

In this work, we make the common assumption that the
interfering codebook is not available, and that the interference
behaves like additional (Gaussian) noise at the receivers, that
cannot be distinguished from the thermal noise. Choosing
suitable transmit strategies is then a power control problem
when all terminals have one antenna. Distributed approaches
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for maximizing a sum-utility objective have been presented
in [1], [2].

When multiple antennas are available, the terminals have
additional degrees of freedom and can avoid interference spa-
tially. The problem of finding near-optimal transmit strategies,
however, becomes far more difficult: for the special case of
single-antenna receivers (Multi-Input/Single-Output (MISO)
interference channel), it reduces to an optimization of the
beam direction and can be viewed as a trade-off between
an egoistical (matched filter) and an altruistic (forcing the
interference to zero) solution [3]. A locally optimal solution
with respect to sum utility can again be found in a distributed
way by exchanging “interference prices” [4], [5].

For the general case of more than one receive an-
tenna (Multi-Input/Multi-Output (MIMO) interference chan-
nel), prior work has so far focused on the non-cooperative
strategy of alternatingly maximizing the throughput of the two
links (iterative waterfilling) [6]–[8]. While this strategy does
not require any communication between the links, the optimal
high-SNR slope of the sum throughput, as derived in [9], is
not achieved in general. Alternatively, a centralized gradient
search was proposed in [7], where a locally sum-rate-optimal
transmit strategy is found. (See also [10].)

In this paper, we propose algorithms that require a limited
amount of information exchange between the links, but still
achieve the optimal high-SNR sum rate slope. The key idea is
to treat each transmitter’s beams separately, and to associate a
price with each beam as a measure for how much the utility
will decrease per marginal increase in interference after the
appropriate receive filter. This way, the individual beams can
be updated either successively or iteratively taking into account
the effects of the interference caused to the other beams.

In one proposed algorithm (Sequential Beamforming with
Adaptive Rank), beams are added successively to both users
and then kept fixed with a uniform power allocation, whereas
in another algorithm (Full Beam-Power Adaptation) the beams
are continuously updated both in terms of direction and beam
power. Numerically, the proposed algorithms perform close to
a centralized optimization algorithm.

The paper is organized as follows: in Section II, the system



model and the concept of interference prices are introduced.
In Section III, two distributed algorithms based on exchanging
interference prices are proposed. Simulation results are pre-
sented in Section IV, and conclusions are given in Section V.

II. SYSTEM MODEL

We consider a wireless network with two interfering, nar-
rowband, time-invariant MIMO links, where each transmitter
has NT antennas and each receiver has NR antennas. The
received signal vector at receiver i, i = 1, 2, is given by

yi = Hiixi + Hijxj + ni, (1)

where Hii is the direct channel matrix, Hij is the cross-
channel matrix between transmitter j and receiver i, x i is the
transmit signal vector for user i, and ni is complex Gaussian
noise with covariance matrix Rni . Let Ui be the precoding
matrix for the transmitter i, and uk

i its k-th column, which we
refer to as the k-th beam of user i. Then, x i =

∑Ni

k=1 uk
i xk

i ,
where xk

i is the corresponding transmitted symbol,1 and Ni is
the number of beams for user i. The transmit covariance matrix
for user i is Qi = E{xixH

i } = UiUH
i , where (·)H denotes

Hermitian transpose. Assuming the interference is treated as
additive Gaussian noise, the achievable rate is given by [11],

Ri = log det
(
I + HH

ii(Rni + HijQjHH
ij)

−1HiiQi

)
. (2)

Our objective is to maximize the sum rate R1 +R2 over the
covariance matrices Q1 and Q2, or equivalently U1 and U2,
given individual power constraints for both users. For trans-
mitter i, the power is E{‖xi‖2

2} = Tr(Qi) =
∑Ni

k=1‖uk
i ‖2

2,
where Tr(·) is the trace operator. The optimization problem is
therefore

max
Q1,Q2∈S

R1 + R2 (P0)

s.t. Tr(Qi) ≤ Pmax
i (i = 1, 2)

where S is the cone of positive semi-definite matrices, R1 and
R2 are given by (2), and P max

i denotes the power constraint
for user i.

To optimize the objective in a distributed manner, each
user must know his own rate function, and also the level
of interference level caused to the other user. As in [2], [4],
[5], [12], the interference to another user can be represented
by an interference price, which is the marginal decrease in
rate for that user due to a marginal increase in interference.
The cost of interfering is then the product of the price
with the corresponding interference power. This method has
been applied to single-input/single-output (SISO) and MISO
channels; however, it is not straightforward to extend it to the
MIMO case, because it is not clear how a marginal change
in the precoding matrix Ui will influence the other user’s
rate Rj via (2). However, motivated by prior work for the
MISO channel [4], [5], we can treat beams (columns) in U i

1We assume all symbols are independent and have unit variance.

separately and apply a linear receive filter for each beam. The
filtered signal is then

ŷk
i = gk,H

i

(
Hiiuk

i xk
i +

∑
l �=k

Hiiul
ix

l
i+

Nj∑
l=1

Hijul
jx

l
j+ni

)
, (3)

where gk
i is the receive filter, and the second and third terms

in the parentheses represent the interference from other beams
of the same user and beams from other users, respectively.
The linear MMSE receive filter for the k-th beam of user i is

gk
i =(
Rni +

∑
l �=k

Hiiul
iu

l,H
i HH

ii+
Nj∑
l=1

Hijul
ju

l,H
j HH

ij

)−1

Hiiuk
i .

(4)

If we decode each beam separately, then the achievable rate
for each beam is

Rk
i = log

(
1 + sk

i /
(
Ik
i + (σk

i )2
))

(5)

where sk
i = |gk,H

i Hiiuk
i |2 is the power of the desired sig-

nal, Ik
i =

∑
l �=k|gk,H

i Hiiul
i|2 +

∑Nj

l=1|gk,H
i Hijul

j |2 is the
total interference power for the k-th beam, and (σ k

i )2 =
E{|gk,H

i ni|2} is the noise power. We can then approximate
the objective as the rate summed over beams,

max
u1

1...,u
N1
1 ,u1

2,...,u
N2
2

N1∑
k=1

Rk
1 +

N2∑
k=1

Rk
2 (P1)

s.t.
Ni∑

k=1

‖uk
i ‖2

2 ≤ Pmax
i (i = 1, 2).

Following [5], for any given set of beams we can now define
the interference price for the k-th beam of user i as

πk
i = −∂Rk

i

∂Ik
i

=
1

(σk
i )2 + Ik

i

− 1
sk

i + (σk
i )2 + Ik

i

. (6)

Given the interference prices for all other beams across both
users, and assuming all other beams are fixed, user i can select
beam uk

i to optimize the best response, or payoff

max
uk

i

Rk
i (uk

i ) −
∑
l �=k

πl
i|gl,H

i Hiiuk
i |2 −

Nj∑
l=1

πl
j |gl,H

j Hjiuk
i |2

s.t. ‖uk
i ‖2

2 ≤ pk
i (P2)

where pk
i is the predetermined power allocated to this beam.

It can be seen that the necessary Karush-Kuhn-Tucker (KKT)
conditions [13] for Problem P2 with respect to uk

i match the
KKT conditions for Problem P1. In other words, the global
optimum for Problem P1 is also a locally optimal solution for
uk

i in Problem P2. Problem P2 for user i can also be viewed
as a subproblem of P1, in which the loss in total utility due
to user i’s interference is replaced by a linear approximation.

To compute the best response update according to P2,
transmitter i must know the effective cross-channels Hjigl

j ,
l = 1, · · · , Nj . A distributed pricing algorithm for adjusting a



particular beam uk
i consists of alternately solving P2 for the

best response update and updating interference prices (across
both users). If the receive filters gk

i are fixed and viewed
as part of the channel, then the MIMO model considered
with interference pricing essentially reduces to multiple MISO
channels. In [5] some conditions for the convergence of
such a distributed algorithm are provided, but analyzing the
convergence for the MIMO case considered is more difficult
since the receive filters are also updated periodically.

In what follows we describe particular algorithms for up-
dating all beams, which are based on distributed pricing for
updating individual beams. Variations depend on the order in
which beams are updated and prices are exchanged, and how
power is allocated at each iteration. Assuming the algorithm
converges, the fixed-point should approximate the solution to
Problem P1 and Problem P0.

III. DISTRIBUTED PRICING ALGORITHMS

A. Sequential Beamforming with Adaptive Rank (SBAR)

In this algorithm, users add beams sequentially, i.e., one
at a time, until the algorithm terminates. Here we assume
that the power for a particular user is distributed uniformly
among the beams. More specifically, starting from an initial
condition of zero beams each, the users both attempt to add a
single beam, corresponding to an iteration in an “outer loop”.
All beams added in previous iterations are fixed, and power
is allocated uniformly over those beams and the new beam.
Each user determines the current beam by solving Problem P2
(without considering future beams). The “inner loop” consists
of exchanging interference prices and beam updates.

Once the beam updates in the inner loop have converged
(or the maximum number of iterations has been reached), each
user can independently decide whether to keep or discard the
resulting beam according to a performance criterion. Hence
the number of beams assigned to the two users in a particular
iteration (and at termination) can be different. The algorithm
terminates when both users discard the new beams. (Note that
a user can choose to discard a beam in one iteration, but add
a beam in a succeeding iteration.)

Each newly added beam causes interference to the fixed
beams for both users (from previous iterations), so that the pre-
vious beams are no longer solutions to the corresponding best
response problem P2. Therefore, to reduce the interference,
we restrict each new beam to lie in the subspace orthogonal
to the previous beams of that user at the channel output. 2

The k-th beam for user i (denoted with index k i) is therefore
determined by solving

max
u

ki
i

Rki

i (uki

i ) −
kj∑
l=1

πl
j |gl,H

j Hjiuki

i |2 (P2′)

s.t. ‖uki

i ‖2
2 ≤ Pmax

i /ki

gl,H
i Hiiuki

i = 0 ∀ l ∈ {1, . . . , ki − 1} (7)

2Another possibility is to enforce orthogonality to all previous beams of
both users; however, that generally does not perform as well due to the loss
in degrees of freedom.

where Rki

i is again given by (5).
An equivalent optimization problem can be obtained by

dropping the orthogonality constraints (7) and replacing u ki

i

by Πki

i uki

i in the utility function, where Πki

i is the projection
matrix defined by

Πki

i = I − Aki

i (Aki,H
i Aki

i )−1Aki,H
i

with

Aki

i =
[
HH

iig
1
i , . . . ,H

H
iig

(ki−1)
i

]
.

The necessary condition for optimality, obtained by taking the
derivative of the Lagrangian function, has the form

Xki

i uki

i = λuki

i , λ ≥ 0 (8)

where

Xki

i =
∂Rki

i

∂
∣∣gki,H

i Hiiuki

i

∣∣2 × Πki

i HH
iig

ki

i gki,H
i HiiΠki

i

−
kj∑

l=1

πl
jΠ

ki

i HH
jig

l
jg

l,H
j HjiΠki

i , (9)

which has the form of an eigenvector equation, except that
Xki

i depends on uki

i . If we, however, assume Xki

i to be
constant by evaluating (9) with the precoder uki

i from the
previous iteration, we obtain a suboptimal update for uki

i . If
Xki

i does not have any positive eigenvalues, then the updated
precoder is the zero vector, otherwise the updated precoder is
the eigenvector corresponding to the dominant eigenvalue of
Xki

i , scaled so that ‖uki

i ‖2
2 = Pmax

i /ki.
Once the new beams converge to a fixed-point, or the

maximum number of iterations in the inner loop is reached,
each user decides whether or not to keep the beam. For the
numerical results that follow, the user keeps the new beam
only if it is nonzero, so that power is not wasted on an
all-zero beam. Although quite simple, numerical results have
shown that this criterion performs as well as evaluating more
complicated metrics.

If the receive filter gki

i is fixed in the inner loop, then the
distributed pricing algorithm is the same as the the MISO-ADP
algorithm presented in [5], which has been proven to converge
from corner points of an appropriately defined constraint
region. Changing the receive filters gki

i , however, greatly
complicates the convergence analysis. Simulation results show
reliable convergence at low SNRs3 (cf. Section IV).

The SBAR algorithm is summarized as follows:

1) Start with zero beams for each user.
2) In the k-th iteration of the outer loop initialize the k i-

th beam (ki ≤ k) for each user i = 1, 2 by selecting
its direction and splitting the power P max

i uniformly
over the ki beams. Then, based on the current profile,
calculate the interference prices for all beams and the

3We define the SNR as Pmax
i /n0, where n0 is the noise power at each

receive antenna.



MMSE filter for the ki-th beam from (6) and (4),
respectively. 4

3) Adapt the new beams in the inner loop according to the
distributed pricing algorithm:
3.a Compute the k1-st beam for user 1 by computing

the top eigenvector of the matrix Xk1
1 from (9) with

uk1
1 from the preceding (inner loop) iteration.

3.b Update user 1’s interference prices πk
1 for all beams

k = 1, · · · , k1, and the receive filter for the k1-th
beam.

3.c Adapt beam k2 for user 2 as in step 3.a.
3.d Update prices πk

2 , k = 1, · · · , k2, and the receive
filter for the k2-th beam.

3.e Repeat from step 3.a until convergence.
4) If beam ki is zero, discard the result obtained in the k-

th iteration of the outer loop. Otherwise, keep the beam
and proceed to the next iteration of the outer loop in
which each user i optimizes a new beam. The outer loop
terminates when both users discard the new beams.

5) To achieve the rate given by (2) with Q i = UiUH
i ,

either the data streams associated with all beams for
user i must be decoded jointly at the receiver, or the
precoder and receiver must be redesigned to diagonalize
the whitened channel.

B. Full Beam-Power Adaptation (FBPA)

In this algorithm each user is assigned an initial set of
beams, all of which are optimized in each iteration (i.e., once
assigned, beams are not fixed as in the SBAR algorithm).
In addition, the power allocation over the beams is also
optimized. We expect this algorithm to perform better than the
preceding SBAR algorithm, although the additional optimiza-
tions incur substantial additional complexity and iterations
(information exchange) for convergence.

Given an initial choice of beams and powers across the
beams, the beam directions are optimized sequentially. That
is, fixing all other beams and powers across both users, the
beam uk

i is determined by solving Problem P2 as in the
SBAR algorithm. After all beams for one user have been
updated, the beam powers for this user are adjusted. This
is equivalent to the power optimization problem with SISO
channels. Following the algorithm proposed in [2], the powers
for user i are determined solving the subproblem

max
pi

ki∑
l=1

Rl
i

(
ul

ip
l
i

‖ul
i‖2

2

)
−

kj∑
m=1

ki∑
l=1

πm
j pl

i

|gm,H
j Hjiul

i|2
‖ul

i‖2
2

s.t.
ki∑

l=1

pl
i ≤ Pmax

i (P3)

where pi = {p1
i , . . . , p

ki

i } is the power profile for user i
across the assigned ki beams. Then, given the updated power
profile, each user can re-optimize the beams. The algorithm is
summarized as follows:

4The MMSE filters for all previous beams are not updated to reduce the
amount of information exchanged.

1) The algorithm can be initialized with an arbitrary pair of
precoding matrices U1 and U2. The interference prices
and receive filters are determined from (6) and (4).

2) For user 1, adapt each beam sequentially by solving
Problem P2 given the fixed power profile. Once a beam
is updated, all interference prices and receive filters are
re-computed.

3) User 1 updates his power profile by solving Problem
P3. All interference prices and receive filters are then
re-computed.

4) User 2 updates the beams and power allocation as in
steps (2) and (3).

5) Repeat from step 2 until convergence.

The numerical results show that the algorithm can improve
the sum rate compared to the initial value, and the average
performance depends on the choice of the starting point. The
FBPA algorithm converges more slowly than the SBAR algo-
rithm. Therefore, in order to speed up convergence and yield
a higher sum rate, we can combine these two algorithms by
using the outcome of the SBAR algorithm as the initialization
for the FBPA algorithm. This initialization is used to generate
the following numerical results.

C. Extensions to Iterative Waterfilling

We also evaluate a simpler algorithm, in which the nor-
malized beams are determined by IWF, but the powers across
beams are then adapted by solving Problem P3. This is referred
to as iterative waterfilling with power pricing (IWF/PP).

The receive filters depend on both the beams and the
powers, and should therefore be updated once a change
in those variables occur. The information exchange for the
IWF/PP algorithm can be further reduced by fixing all receive
filters at their initial values (or at least not reporting updates).
Relative to the SBAR and FBPA algorithms, this requires less
information exchange, but is expected to incur a performance
loss. Still, this can improve upon the performance of IWF.

IV. SIMULATION RESULTS

In this section, we discuss a typical performance plot
for the previously proposed algorithms (SBAR, FBPA, and
IWF/PP), and also compare them with the asynchronous IWF
algorithm, as well as the result from a standard nonlinear
optimization package (MATLAB) applied to Problem P0. The
IWF algorithm is the best we can do without any information
exchange, while the centralized solver requires knowledge of
all channel matrices to yield a sum rate that is at least locally
optimal.

We consider a two-user system with 4 transmit antennas
and 4 receive antennas for each user. The direct channels
and the cross-channels are complex Gaussian with the same
variance. In Fig. 1, we show the sum rate performance of
the algorithms versus SNR in dB (defined as in Footnote 3)
averaged over 400 channel realizations. We observe that all
distributed algorithms perform significantly better than the
non-cooperative IWF algorithm, especially in the high-SNR
setting, and that these algorithms appear to achieve the optimal
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Fig. 1. Illustration of the average performance of all proposed distributed
algorithms.

high-SNR slope. Furthermore, it is also verified (but not shown
in the figure) that if only exchanging the interference prices is
allowed with fixed receive filters, we can still improve the sum
rate by adapting powers. The performance is slightly worse
than the IWF/PP algorithm, and the gain compared with the
IWF algorithm is more than 10% when SNR is high (≥ 20dB).

The gain in sum rate performance is accompanied by an
increase in information exchange between the users. While
IWF requires no communication between the users, for the
three distributed algorithms each time a beam and a receive
filter is updated, the scalar price and the filter vector should
be communicated to the other user. The total amount of in-
formation exchange therefore depends on the iterations needed
for convergence. The FBPA algorithm generally requires more
iterations and information exchange than the SBAR algorithm,
and offers a (small) performance improvement.

The simulations have shown that the algorithms do not
always converge. Table I shows the number of trials (channel
realizations) for which each algorithm terminates according
to the convergence criterion, as opposed to reaching the
maximum number of iterations (in our case, 500 updates for
each beam or power). Specifically, convergence is assumed
to occur when the difference in sum rate between two con-
secutive iterations is less than a threshold (e. g., 0.1% in our
simulation). The table shows that convergence becomes more
problematic at high SNRs for all algorithms, and that the FBPA
is the least likely to converge, followed by the SBAR algorithm
and IWF. (The entries for the IWF/PP algorithm are for the
power updates only. The beams are fixed according to the
outcome of IWF.) Although convergence is not guaranteed, in
all cases observed the fluctuations in sum rate, which occur
due to lack of convergence, are quite small (but noticeable).

V. CONCLUSIONS

We have presented distributed algorithms for selecting the
users’ precoding matrices to maximize the sum rate for the
two-user MIMO interference channel. Each beam (column of
the precoding matrix) is adapted separately to maximize a

TABLE I
NUMBER OF CHANNEL REALIZATIONS IN WHICH CONVERGENCE OCCURS

OVER 400 REALIZATIONS.

Alg. 0 dB 5 dB 10 dB 15 dB 20 dB 25 dB 30 dB
SBAR 400 400 400 399 387 357 256
FBPA 400 400 400 398 378 315 211

IWF/PP 400 400 400 400 400 400 400
IWF 400 397 393 388 393 389 396

payoff function, given a set of interference prices for received
beams at the neighboring receiver. In the SBAR algorithm
each user attempts to add beams sequentially, whereas the
FBPA algorithm adapts an initial set of beams along with
the corresponding power allocation. Numerically, our proposed
distributed algorithms perform significantly better than the
asynchronous IWF algorithm and in some cases (e. g., a “Z”-
channel in which only one cross-channel matrix has large
gains, and the other has small gains) perform as well as the
centralized numerical solver.

Determining analytical conditions for convergence of the
distributed algorithms remains an open problem. Although
those appear to be difficult to obtain, due to the complexity
of the updates, it may be possible to gain insight by examin-
ing some special cases. Another interesting topic for further
work is how to reduce the amount of information exchange
between the users without significantly sacrificing sum rate
performance.
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