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Abstract—We study distributed algorithms for allocating pow-
ers and/or adjusting beamforming vectors in a peer-to-peer
wireless network which may have multiple-input-single-output
(MISO) links. The objective is to maximize the total utility
summed over all users, where each user’s utility is a function of
the received signal-to-interference-plus-noise ratio (SINR). Each
user (receiver) announces an interference price, representing the
marginal cost of interference from other users. A particular user
(transmitter) then updates its power and beamforming vector to
maximize its utility minus the interference cost to other users,
which is determined from their announced interference prices.
We show that if each transmitter update is based on a current
set of interference prices and the utility functions satisfy certain
concavity conditions, then the total utility is non-decreasing with
each update. The proof is based on the convexity of the utility
functions with respect to received interference, and applies to rate
utility functions, and an arbitrary number of interfering MISO
links. The extension to multi-carrier links is discussed as well as
algorithmic variations in which the prices are not immediately
updated after power or beam updates.

I. I NTRODUCTION

Achieving high spectral efficiencies in multiuser wireless
networks depends critically on the application of interference
mitigation techniques. This becomes especially challenging
in peer-to-peer networks with distributed resource manage-
ment, since an optimal allocation of resources at a particular
transmitter (e.g., that maximizes total rate) generally requires
information about interference at other nodes along with asso-
ciated channel gains. An efficient mechanism for exchanging
information is therefore needed to allocate resources while
minimizing the associated overhead.

We consider a peer-to-peer network where the transmit-
ters may have multiple antennas. Resources therefore include
power across available degrees of freedom in frequency and
space, and also beamforming vectors (directions). Each user
is assigned a utility function, which depends on the received
signal-to-interference-plus-noise ratio (SINR), and our objec-
tive is to allocate powers and/or beams to maximize the total
(sum) utility over the users. Furthermore, we seek distributed
resource allocation algorithms, which require relatively little
information exchange.

Here we analyze the performance of distributedinterference
pricing, presented in [1] for allocating power in single-antenna

This work was supported in part by ARO under grant W911NF-07-1-0028
and by NSF under grant CNS-0626558.

wireless networks. Specifically, receivers announceinterfer-
ence prices, defined as the marginal decrease in utility per unit
increase in interference power. A transmitter then updates its
power by maximizing its utility minus the interference cost
to others, which is determined by the set of announced in-
terference prices. In [1], anAsynchronous Distributed Pricing
(ADP) algorithm is given in which powers and interference
prices can be iteratively updated asynchronously. Extensions of
the ADP algorithm to power allocation for multi-carrier chan-
nels and beam updates for multi-input-single-output (MISO)
channels are presented in [2], [3].

It is shown in [1] that with single-antenna nodes the set of
powers and prices determined by the ADP algorithm converges
for a suitable class of utility functions. The proof is based
on relating the updates in the distributed algorithm to best
response updates in a supermodular game. A limitation of this
result is that the class of utility functions does not include
the the Shannon rate function. Hence the convergence of
the sum rate with the ADP algorithm was left as an open
problem. In [3] convergence of a MISO version of the ADP
algorithm was established for two users with the same class
of utility functions as in [1]. The proof is again based on
supermodularity.

Here we present a different approach to the convergence
analysis of distributed pricing algorithms, which is based on
establishing a convexity property of certain utility functions
with respect to the received interference power. For utilities
with this property, all interference prices are current (i.e.,
have been updated since the last power/beam update) then a
subsequent power or beam update cannot decrease the total
utility. Hence the total utility must monotonically converge
to a limit. Satisfying this convexity property is a weaker
conditions than those required in [1], and includes the rate
utility. Furthermore, there is no restriction on the number of
users in the MISO setting.1 We also give counter-examples,
which show that when either the condition on the utility
functions or the condition on current prices is violated, the
total utility may not converge.

Related work for single-antenna networks is presented in
[4], which considers gradient updates, and [5] which con-

1Note, however, that the convergence result in [1] does not require current
prices, hence the results presented here are complementary to those in [1].



siders best response updates with rate utility functions and
shows convergence for a restricted set of channel gains.
The MISO-ADP algorithm is also presented in [6], although
convergence is not addressed. The Pareto-optimal rate-pairs
for a two-user MISO interference channel are characterized
in [7]. The convergence of iterative waterfilling, in which
nodes implement best response updates without exchanging
channel or interference information, is discussed in [8]–[10]
for frequency-selective channels, and in [11]–[13] for multiple-
input and multiple-output (MIMO) links.

Next, in Section II we consider convergence of distributed
pricing algorithms for single-antenna nodes, and in Section III
we extend these results to the MISO setting. Section IV
presents variations to the price update rule, and conclusions
are given in Section V.

II. SINGLE ANTENNA NETWORKS

A. System Model

In this section we consider a single antenna peer-to-peer
wireless network withK distinct transmitter/receiver pairs
sharing the same spectrum (i.e., aK user interference chan-
nel). Initially, we assume that the transmitted signal of each
user i is spread over the entire bandwidth (normalized to 1
Hz), and so the signal at receiveri is the superposition of all
transmitted signals plus additive Gaussian noise with power
spectral densityn0. We assume that all interference is treated
as noise and each useri’s performance is determined by the
received SINR

γi(p) =
pihii

n0 +
∑

j 6=i pjhji
, (1)

wherehij is the channel gain from transmitteri to receiverj,
pi is the transmission power of useri, andp = {p1, · · · , pK}
denotes the power profile of all users.

The quality of service for each useri is measured by a
utility function ui(γi), which is assumed to be a monotonically
increasing, concave and twice differentiable function ofγi.
One example is the rate utility,ui = log(1 + γi), which
corresponds to the user’s maximum achievable rate assuming
Gaussian codebooks. Our objective is to choosep to maximize
the utility summed over all users, i.e.,

max
p

K∑
i=1

ui(p) (P1)

s.t. 0 ≤ pi ≤ Pmax
i , i = 1, . . . ,K,

wherePmax
i denotes the power constraint for useri. Moreover,

we are interested in a distributed solution, in which each
user does not know the entire network topology or the utility
functions of other users. One such distributed algorithm is the
ADP algorithm from [1], which we review next.

B. Distributed Interference Pricing

The key idea behind the ADP algorithm is for users
to exchangeinterference prices, which reflect the marginal

change in their utility per unit interference. Specifically, the
interference price for useri is given by

πi = −∂ui(γi(p))
∂Ii(p−i)

=
u′

i(γi(p))pihii

(n0 +
∑

j 6=i pjhji)2
, (2)

wherep−i denotes the power profile for all users other than
user i, Ii(p−i) =

∑
j 6=i pjhji is the interference power at

receiveri, andu′
i(γi(p)) = dui

dγi
evaluated atγi(p). Given fixed

interference prices and powers for the other users, transmitter
i then updates its power by solving the subproblem:

max
pi

ui(γi(pi,p−i))− pi

∑
j 6=i

πjhij (Pi
1)

s.t. 0 ≤ pi ≤ Pmax
i ,

which can be viewed as a user’sbest responsewhen faced
with the problem of maximizing his utility minus a cost given
by πj per unit interference caused at each receiverj.

In the ADP algorithm each user repeatedly adjusts its power
and interference price according to (Pi

1) and (2), respectively.
This requires users to announce a single price and to measure
only “local” information. It is shown in [1] that for any number
of users, if each user’s utility satisfies

Ki(γi) := −u′′
i (γi)γi

u′
i(γi)

∈ [1, 2] (3)

for all feasible SINRs, then the ADP algorithm globally
converges to the optimal power allocation with arbitrary
asynchronous updates.2 The quantityKi(γi) is referred to as
the coefficient of relative risk aversionof the utility function
ui; larger values of this quantity indicate thatui is “more
concave.” For example, (3) is satisfied byui = log(γi)
(Ki(γ) = 1) but not byui = log(1 + γi) (Ki(γ) < 1).

Next we give a modification of the ADP algorithm, which
works for a larger class of utility functionsand ensures
monotonic convergence of the total utility. We refer to this
as thedistributed pricing(DP) algorithm and formally state it
as follows:

1) Each useri chooses an initial powerpi satisfying the
power constraint.

2) Using (2), each useri calculates the interference price
πi given the current power profile and announces this
price to every other user.

3) One random useri solves ProblemPi
1 and updates his

power, given the interference prices{πj}j 6=i.
4) Repeat from step 2).

This has the same information requirements as the ADP
algorithm in [1] but is more restrictive in the timing of each
user’s price and power updates. In particular, only one user
is allowed to update its power at a time and after each
power update,all users must announce new interference prices.
The next proposition characterizes the convergence of this
algorithm.

2Synchronous updates are a special case of this. Moreover, each user need
not update his interference price and power allocation simultaneously.



Proposition 1: If for each useri, Ki(γi) ∈ [0, 2] for all
feasibleγi, then the power profile of all the users under the
DP algorithm converges to a limit point satisfying the Karush-
Kuhn-Tucker (KKT) conditions of ProblemP1.

The condition in Proposition 1 applies to a larger set of
utility functions than (3) and in particular applies to the rate
utility log(1 + γ). However, this only guarantees convergence
to a point satisfying the KKT conditions of ProblemP1. If this
problem has multiple local optima, then the algorithm may not
converge to the global optimum.3

The key step in proving Proposition 1 is showing the
following lemma:

Lemma 1: If each user’s utility function satisfies the condi-
tions in Proposition 1, then after each user adjusts his power
in the DP algorithm, the total utility will be non-decreasing.

The proof of Lemma 1 follows from showing that any
utility function in the assumed class is a convex function of
the interference power term and so it is lower bounded by
its tangent at any point. The slope of this tangent for each
user i at the current operating point is given by that user’s
interference price. Using this it can be shown that the objective
in ProblemPi

1 is a lower bound on the total utility which is
tight at the current operating point. Hence, when a user adjusts
his power (by solving ProblemPi

1), this cannot decrease the
total utility. See Appendix A for more details.

Since the total utility is bounded, Lemma 1 directly implies
the convergence of the total utility. Furthermore, it can be
shown that any limit point of the algorithm must satisfy
the KKT conditions of ProblemP1. To complete the proof
of Proposition 1, it suffices to show that if the total utility
converges, then the power profile of each user must also
converge. The details are omitted due to space limitations.

C. Generalization to Multi-channel Networks

Next we consider a generalization of the previous results
to a network withM parallel channels, as in a system which
uses orthogonal frequency division multiple access (OFDMA).
In this case, each useri can allocate its power over theM
channels subject to a total power constraint ofPmax

i . Each
channel is modeled as a Gaussian interference channel, and
all users still treat any interference as noise. Lethm

ij denote
the gain of themth channel between transmitteri and receiver
j, and letpm

i andγm
i denote useri’s transmit power and SINR

on this channel.
We assume that each user’s quality of service is now given

by a total utility that isseparableacross the channels, i.e. the
total utility of useri is given byui =

∑M
m=1 um

i (γm
i ), where

um
i is the utility that user receives from channelm.4 Our

3When Ki(γi) ≥ 1 for each useri then ProblemP1 will have only one
point that satisfies the KKT conditions [14]. It follows that when each user’s
utility satisfies (3), the algorithm must converge to the global optimum.

4Note that ifui represents a maximum achievable rate (assuming Gaussian
codebooks), then this satisfies our separability assumption withum

i = log(1+
γm

i ).

objective in this case becomes

max
p1,··· ,pK

K∑
i=1

M∑
m=1

um
i (γm

i ) (P2)

s.t.
M∑

m=1

pm
i ≤ Pmax

i , i = 1, . . . ,K,

wherepi = {p1
i , · · · , pM

i } is the power profile of useri.
The DP algorithm can be generalized to this setting as

follows. First, in step 2 of the algorithm each useri calculates
an interference priceπm

i for eachchannelm, where

πm
i = −∂um

i (γm
i )

∂Im
i

=
um

i
′(γi)pm

i hm
ii

(n0 +
∑

j 6=i pm
j hm

ji)2
. (4)

These prices are announced to every other user. Next, in step
3 of the algorithm, a random useri updates his power profile
pi across all channels by solving

max
pi

M∑
m=1

um
i (γm

i )−
M∑

m=1

pm
i

∑
j 6=i

πm
j hm

ij

s.t.
M∑

m=1

pm
i ≤ Pmax

i (Pi
2)

pm
i ≥ 0 ∀m.

We refer to the resulting algorithm as themultichannel dis-
tributed pricing (MDP) algorithm. The following corollary
characterizes the convergence of this algorithm, whereKm

i (γ)
denotes the coefficient of relative risk aversion ofum

i .
Proposition 2: If for all i and m, Km

i ∈ [0, 2], then the
power profile of all the users converges to a limit point
satisfying the KKT conditions of ProblemP2.

The proof follows a similar argument as the proof of
Proposition 1; we omit the details due to space considerations.
We note that in [1], a version of the ADP algorithm was given
for this type of multichannel model and shown to converge
when the utility per channel satisfied the stronger condition in
(3); however, that convergence result requires relaxing each
user’s total power constraint and adjusting a “total power
price” on a slower time-scale to ensure that those constraints
are eventually satisfied. This is not needed here, i.e., each
power constraint is satisfied during every iteration.

III. MISO N ETWORKS

A. System Model

We now consider beamformer updates in a narrowband
MISO network withK users, each equipped withN transmit
antennas. The channel vector from transmitteri to receiverj is
denoted byhij = [h1

ij , h
2
ij , · · · , hN

ij ]T . Let vi be the complex
beamforming vector for useri. Then the received SINR for
useri is5

γi =
|v†

ihii|2

n0 +
∑

j 6=i |v
†
jhji|2

. (5)

5† denotes Hermitian transpose.



The problem is to select the set of beamforming vectors
{v1, · · · ,vK}, which maximize the sum utility, i.e.,

max
v1,··· ,vK

K∑
i=1

ui(γi) (P3)

s.t. |vi|2 ≤ Pmax
i , i = 1, . . . ,K,

whereγi is given by (5).

B. MISO Distributed Pricing (MISO-DP) Algorithm

With MISO nodes the interference price at receiveri is given
by

πi = −∂ui(γi)
∂Ii

=
u′

i(γi)|v†
ihii|2

(n0 +
∑

j 6=i |v
†
jhji|2)2

(6)

and the best response update at transmitteri selects the beam
vi to solve

max
vi

ui(γi)−
∑
j 6=i

πj |v†
ihij |2 (Pi

3)

s.t. |vi|2 ≤ Pmax
i .

The MISO-DP algorithm is then specified as follows:

1) Each useri chooses an initial beamvi satisfying the
power constraint.

2) Each useri announces the interference priceπi, given
by (6).

3) One random useri updatesvi according to the best
response (solution to ProblemPi

3).
4) Repeat from step 2).

In general, there may be multiple solutions to ProblemPi
3.

In that case, one of the solutions can be randomly chosen,
assuming the previous beam is not a solution. Otherwise, the
previous beam is kept.

Proposition 3: If Ki(γi) ∈ [0, 2] for each useri, then each
beamforming vector in the MISO-DP algorithm converges to
a limit point satisfying the KKT conditions associated with
ProblemP3.

Proof: (sketch) Comparing ProblemP3 and the asso-
ciated subproblemPi

3 with their counterparts in the single-
antenna case (Section II), the difference appears in the specific
expressions for signal and interference powers. Treating the
interference power as a function of the resources (powers or
beams), it is easily verified that Lemma 1 still holds in the
MISO setting. The remainder of the proof then follows from
a similar argument as the proof of Proposition 1.

To illustrate the preceding convergence result, Fig. 1 shows
plots of total utility versus iterations (each corresponding
to a beam update) for the MISO-DP algorithm with five
transmitter-receiver pairs, each with three transmit antennas.
The channel vectors consist of realizations ofi.i.d. complex
Gaussian random variables, and the average received signal-
to-noise ratio is 23 dB. Four curves are shown, corresponding
to utility functions with different values ofKi(γi) in (3).
Specifically, they areui(γi) = γα/α with α = −1,−2,−3,
for which Ki(γi) = 1 − α, and ui = log γi, for which
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Fig. 1. Illustration of the convergence of the MISO-DP algorithm.

Ki(γi) = 1. The figure shows that the sum utilities corre-
sponding to the examples withKi = 1 and 2 converge, as
stated by Proposition 3, whereas the examples corresponding
to Ki = 3 and 4 oscillate.6 Hence conditions onKi are indeed
necessary to guarantee convergence.

IV. VARIATIONS ON THE UPDATE RULE

Our convergence proof for each of the previous versions
of the DP algorithm relies on the fact that whenever one
user updates his power(s) or beamformer, he has current
interference prices from every user in the network. To reduce
the overhead required to broadcast these prices it would be
desirable to relax this restriction and allow multiple users to
update their powers before new prices are announced. In this
section we consider relaxing these restrictions.

First we consider a modification of the algorithms in which
for a given set of interference prices, a group of users
simultaneously updates their transmission powers in step 3.
The next proposition states that with logarithmic utilities, we
still have monotonic convergence.

Proposition 4: If ui(γi) = ci log(γi) for each useri,
whereci is a constant, then with simultaneous group updates,
the total utility in the DP, MDP and MISO-DP algorithms
monotonically converges.
The proof is omitted due to space considerations.

Proposition 4 does not hold for any utility which satisfies
Ki ∈ [0, 2] as the next example illustrates. Consider a single
antenna network with three users sharing a single channel,
and with linear utility functionsui(γi) = γi and simultaneous
group updates in which at every update all three users update
their powers. Suppose that for alli, Pmax

i = 1, the direct
channel gainhii = 1, and n0 = 1. It can be shown that if
(1 + h31)h13 < 1 and (1 + h32)h23 < 1 and h12 and h21

6Interestingly, forKi > 2 the underlying problem has a unique point which
satisfies the KKT conditions. Apparently the best response updates used in
the DP algorithm are too aggressive to find this point.



are large enough, then if every user simultaneously updates
during each iteration, the DP algorithm will not converge and
in fact the powers of users 1 and 2 oscillate between0 and
Pmax

i while user 3 transmits at constant power ofPmax
3 .

Numerically, we have also observed similar behavior with rate
utilities (ui(γi) = log(1 + γi)).

A second variation on our update rule is to consider the
case where a group of userssequentially updatetheir powers
or beamforming vectors between price updates. This differs
from the previous model in that after one user updates, the next
user can update his power to account for the first user’s action.
With logarithmic utilities, if two users sequentially update we
can again show monotonic convergence.

Proposition 5: If ui(γi) = ci log(γi) for all i and at most
two users sequentially updated between any new price update,
then the total utility in the DP, MDP and MISO-DP algorithms
monotonically converges.

V. CONCLUSIONS

We have studied the convergence of distributed pricing
algorithms for adjusting powers and beamforming vectors in
a peer-to-peer network. In contrast to previous analysis, based
on supermodularity, our results rely upon the convexity of
the utility functions with respect to the received interference
power. Convergence is established for a class of algorithms
in which prices are updated after each (individual) power or
beam update. These results complement prior work in [1], [3],
which do not require such frequent price updates, but impose
stricter concavity constraints on the utility functions. Examples
were also presented to show that violating the conditions for
convergence can lead to oscillations in total utility.

Although convergence of distributed pricing algorithms has
been established for many scenarios of interest, the speed of
convergence (number of iterations to reach a target utility) as a
function of channel gains and system parameters has not been
considered. In addition, extensions to MIMO channels (both
narrowband and wideband) are left for future work.

APPENDIX A

Proof of Lemma 1:If Kj(γi) ∈ [0, 2], then by direct
calculation it can be verified that

∂2uj(γi(p))
∂I2

j (p−j)
≥ 0, (7)

which means thatuj is a convex function ofIj , given that all
other parameters are fixed. Therefore, if we fix all parameters
exceptIj (i.e. we are considering a userj when some user
i 6= j is updating its power) it follows that

uj(γi) ≥ uj(γo
j ) +

∂uj

∂Ij

∣∣∣
po

(Ij − Io
j ) (8)

= uj(γo
j )− πj(po)(Ij − Io

j )

where γo
j and Io

j are userj’s SINR and interference power
at the current operating pointpo, and γj and Ij are the
corresponding values at any new operating point after varying
Ij .

Now suppose that useri updates his power by solving
Problem Pi

1 given the current power profilepo. After the
update, we have

ui(γi(p∗
i ))−

∑
j 6=i

πjIij(p∗i ) ≥ ui(γi(po))−
∑
j 6=i

πjIij(po
i ), (9)

where Iij is the interference power from transmitteri to
receiverj, and p∗ = {po

1, · · · , po
i−1, p

∗
i , p

o
i+1, · · · , po

K} indi-
cates the operating point after useri’s power update. Since
I∗j − Io

j = I∗ij − Io
ij , adding constant terms to both sides of (9)

and simplifying yields

ui(γ∗
i ) +

∑
j 6=i

[
uj(γo

j )− πj(I∗j − Io
j )

]
≥

K∑
i=1

ui(γo
i ). (10)

Additionally, from (8), we have
K∑

i=1

ui(γ∗
i ) ≥ ui(γ∗

i ) +
∑
j 6=i

[
uj(γo

j )− πj(I∗j − Io
j )

]
. (11)

Combining (10) and (11) yields
∑K

i=1 ui(γ∗
i ) ≥

∑K
i=1 ui(γo

i ),
which is the desired result. �
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