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Abstract—We study distributed algorithms for allocating pow-  wireless networks. Specifically, receivers annouiterfer-
ers and/or adjusting beamforming vectors in a peer-to-peer ence pricesdefined as the marginal decrease in utility per unit
wireless network which may have multiple-input-single-output i, crease in interference power. A transmitter then updates its

(MISO) links. The objective is to maximize the total utility S . - . .
summed over all users, where each user’s utility is a function of power by maximizing its utility minus the interference cost

the received signal-to-interference-plus-noise ratio (SINR). Each t0 others, which is determined by the set of announced in-
user (receiver) announces an interference price, representing the terference prices. In [1], aAsynchronous Distributed Pricing
marginal cost of interference from other users. A particular user (ADP) algorithm is given in which powers and interference
(transmitter) then updates its power and beamforming vector 0 yjces can be iteratively updated asynchronously. Extensions of

maximize its utility minus the interference cost to other users, the ADP al ithm t I tion f i . h
which is determined from their announced interference prices. € aigorithm to power aflocation for mufti-carrier chan-

We show that if each transmitter update is based on a current Nels and beam updates for multi-input-single-output (MISO)
set of interference prices and the utility functions satisfy certain channels are presented in [2], [3].

concavity conditions, then the total utility is non-decreasing with It is shown in [1] that with single-antenna nodes the set of

each update. The proof is based on the convexity of the utility )\ orq and prices determined by the ADP algorithm converges
functions with respect to received interference, and applies to rate

utility functions, and an arbitrary number of interfering MISO ~ {OF @ suitable class of utility functions. The proof is based
links. The extension to multi-carrier links is discussed as well as on relating the updates in the distributed algorithm to best
algorithmic variations in which the prices are not immediately response updates in a supermodular game. A limitation of this
updated after power or beam updates. result is that the class of utility functions does not include
I. INTRODUCTION the the Shannqn rate function. I_-lence the convergence of
the sum rate with the ADP algorithm was left as an open
roblem. In [3] convergence of a MISO version of the ADP
e ) : . -algorithm was established for two users with the same class
mltlgatlon techniques. Thls_becpmgs especially Challeng"fﬂggutility functions as in [1]. The proof is again based on
in peer-to-peer networks with distributed resource mana ipermodularity.

ment, since an optimal allocation of resources at a particular .
Here we present a different approach to the convergence

transmitter (e.g., that maximizes total rate) generally requires_,~ o Iy : C

. . . . analysis of distributed pricing algorithms, which is based on

information about interference at other nodes along with asso-,_ 7 . . . . . o .
establishing a convexity property of certain utility functions

ciated channel gains. An efficient mechanism for exchangir\}\g . : Iy
) S th respect to the received interference power. For utilities
information is therefore needed to allocate resources whjle

minimizing the associated overhead. with this property, all interference prices are current (i.e.,

) nave been updated since the last power/beam update) then a
We consider a peer-to-peer network where the transmit-

. .~ subsequent power or beam update cannot decrease the total

ters may have multiple antennas. Resources therefore inclu - .

utllity. Hence the total utility must monotonically converge

power across available degrees of freedom in frequency and " imit Satisfying this convexity property is a weaker
space, and also beamforming vectors (directions). Each user § 9 y Property

) k . . . .—conditions than those required in [1], and includes the rate
is assigned a utility function, which depends on the recelve(g. . e
utility. Furthermore, there is no restriction on the number of

signal-to-interference-plus-noise ratio (SINR), and our objec- ; : )

LY o ers in the MISO settin.We also give counter-examples,

tive is to allocate powers and/or beams to maximize the tota] . : o o
which show that when either the condition on the utility

(sum) utility over the USErs. Furthermore, we seek .dlsmb.uu;f\unctions or the condition on current prices is violated, the
resource allocation algorithms, which require relatively “m?otal utility may not converge

information exchange. . . .
9 Related work for single-antenna networks is presented in

Here we analyze the performance of distribuigdrference . . . .
pricing, presented in [1] for allocating power in single-antenn[af']’ which considers gradient updates, and [5] which con-

Achieving high spectral efficiencies in multiuser wireles
networks depends critically on the application of interferen

This work was supported in part by ARO under grant W911NF-07-1-0028 'Note, however, that the convergence result in [1] does not require current
and by NSF under grant CNS-0626558. prices, hence the results presented here are complementary to those in [1].



siders best response updates with rate utility functions aaldange in their utility per unit interference. Specifically, the
shows convergence for a restricted set of channel gaiigerference price for useris given by
The MISO-ADP algorithm is also presented in [6], although ,

: - o  Oui(v(p)  wi(vi(P))pihii
convergence is not addressed. The Pareto-optimal rate-pairs = — = > (2)
for a two-user MISO interference channel are characterized O1i(p-i) (0 + 222 Pihyi)

in [7]. The convergence of iterative waterfilling, in whichwherep_; denotes the power profile for all users other than
nodes implement best response updates without exchangiggr;, 1;(p_,) = >, Pihji is the interference power at
channel or interference information, is discussed in [8]-[1 A V(o du _ ; :

for frequency-selective channels, and in [11]-[13] for multipl Q_(]acewerz, andv, (:(p)) = g, evaluated ati(p). Given fixed
, > Shterference prices and powers for the other users, transmitter
input and multiple-output (MIMO) links.

X : : o 1 then updates its power by solving the subproblem:
Next, in Section Il we consider convergence of distributed

pricing algorithms for single-antenna nodes, and in Section Il max ;i (vi(pi, P-i)) = pi 3 wihij (P)
we extend these results to the MISO setting. Section IV pi i
presents variations to the price update rule, and conclusions st. 0<p; < Pmer

are given in Section V.
which can be viewed as a useti®st responsevhen faced

Il. SINGLE ANTENNA NETWORKS with the problem of maximizing his utility minus a cost given
A. System Model by 7; per unit mterference caused at each recejver
) ] ) ) In the ADP algorithm each user repeatedly adjusts its power
In this section we consider a single antenna peer-10-pe{d interference price according #®i§ and (2), respectively.
wireless network withK distinct transmitter/receiver pairsThis requires users to announce a single price and to measure

sharing the same spectrum (i.e.kauser interference chan-on|y “|ocal” information. It is shown in [1] that for any number

nel). Initially, we assume that the transmitted signal of eagf ysers, if each user’s utility satisfies
useri is spread over the entire bandwidth (normalized to 1 B
H?z), and so the signal at receiveis the superposition of all Ki(y;) == W (vi)vi € [1,2] 3)

transmitted signals plus additive Gaussian noise with power VA

spectr_al density:y. We assume that all ?nterferen_ce is treatef), 41| feasible SINRs, then the ADP algorithm globally
as noise and each uses performance is determined by the;qnyerges to the optimal power allocation with arbitrary

received SINR asynchronous updatésThe quantityX;(v;) is referred to as

(p) = pihii 1) the coefficient of relative risk aversioof the utility function
ViP) = ng + Zj# pihji’ u;; larger values of this quantity indicate that is “more
) , . . concave.” For example, (3) is satisfied by = log(y;)
wh.erehij is the _chgnnel gain from'transmltteto receiverj, (f;(y) = 1) but not byu; = log(1 + ) (K;(7) < 1).
pi is the transmission power of usgrandp = {p1,--- ,px}  Next we give a modification of the ADP algorithm, which

denotes the power profile of all users. works for a larger class of utility functionand ensures
The quality of service for each uséris measured by a ponotonic convergence of the total utility. We refer to this

utility function u;(~;), which is assumed to be a monotonicallyys thegistributed pricing(DP) algorithm and formally state it
increasing, concave and twice differentiable functionvef 55 follows:

One example is the rate utility; = log(l + ), which 1) Each useri chooses an initial powep; satisfying the
corresponds to the user's maximum achievable rate assuming .
power constraint.

Gaussian codebooks. Our objective is to chgo$e maximize 2) Using (2), each user calculates the interference price

the utility summed over all users, i.e., . : :
m; given the current power profile and announces this
K price to every other user.
max > ui(p) (P1)  3) One random user solves ProblenP? and updates his
i=1 power, given the interference pricgs;}, ;.
) 4) Repeat from step 2).
This has the same information requirements as the ADP
&Igorithm in [1] but is more restrictive in the timing of each
ser’s price and power updates. In particular, only one user
%allowed to update its power at a time and after each
power updateall users must announce new interference prices.
The next proposition characterizes the convergence of this

B. Distributed Interference Pricing algorithm.

The key !dea behind the ADP algorithm is for _users 2Synchronous updates are a special case of this. Moreover, each user need
to exchangeinterference priceswhich reflect the marginal not update his interference price and power allocation simultaneously.

st. 0<p, <P™* i=1...,K

9

whereP/"** denotes the power constraint for useoreover,
we are interested in a distributed solution, in which ea
user does not know the entire network topology or the utili
functions of other users. One such distributed algorithm is t
ADP algorithm from [1], which we review next.



Proposition 1: If for each useri, K;(v;) € [0,2] for all objective in this case becomes

feasible~;, then the power profile of all the users under the X M
DP algorithm converges to a limit point satisfying the Karush- max Z Z u (4 (Ps)
Kuhn-Tucker (KKT) conditions of ProblerR;. P PR e
The condition in Proposition 1 applies to a larger set of M
utility functions than (3) and in particular applies to the rate s.t. Z pir < Pt i=1,..., K,
utility log(1+ ). However, this only guarantees convergence m=1
to a point satisfying the KKT conditions of ProblePa. If this wherep; = {p!,--- ,pM} is the power profile of user.

problem has multiple local optima, then the algorithm may not The DP algorithm can be generalized to this setting as

converge to the gl.obal opumu?n. . . . follows. First, in step 2 of the algorithm each useralculates
The key step in proving Proposition 1 is showing thep interference price;" for eachchannelm, where
following lemma: / , /
Lemma 1:1f each user’s utility function satisfies the condi- o _Ou (") u (v)pihiE ) 4)
tions in Proposition 1, then after each user adjusts his power ’ onn (no + >, Py hT)?
in the DP algorithm, the total utility will be non-decreasing. 11, a5 prices are announced to every other user. Next, in step

The proof of Lemma 1 follows from showing that any3 of the algorithm, a random useémpdates his power profile
utility function in the assumed class is a convex function ¢f. 4cross all channels by solving

the interference power term and so it is lower bounded by

its tangent at any point. The slope of this tangent for each M o om M m S
useri at the current operating point is given by that user's ax Z ui (") = Z Pi Zﬂj hij
interference price. Using this it can be shown that the objective
in ProblemP? is a lower bound on the total utility which is M m
tight at the current operating point. Hence, when a user adjusts 8- Z pi
his power (by solving ProblerR?), this cannot decrease the m=1
total utility. See Appendix A for more detalils.

Since the total utility is bounded, Lemma 1 directly impliegVe refer to the resulting algorithm as thmeultichannel dis-
the convergence of the total utility. Furthermore, it can bgibuted pricing (MDP) algorithm. The following corollary
shown that any limit point of the algorithm must satisfycharacterizes the convergence of this algorithm, wiié€fg )
the KKT conditions of ProblenP;. To complete the proof denotes the coefficient of relative risk aversiomujf.
of Proposition 1, it suffices to show that if the total utility Proposition 2:If for all i and m, K™ € [0,2], then the
converges, then the power profile of each user must alsower profile of all the users converges to a limit point
converge. The details are omitted due to space limitations.satisfying the KKT conditions of Problerd,.

The proof follows a similar argument as the proof of
Proposition 1; we omit the details due to space considerations.
We note that in [1], a version of the ADP algorithm was given

Next we consider a generalization of the previous resufi@r this type of multichannel model and shown to converge
to a network with)/ parallel channels, as in a system whickvhen the utility per channel satisfied the stronger condition in
uses orthogonal frequency division multiple access (OFDMA(3); however, that convergence result requires relaxing each
In this case, each usércan allocate its power over thk/ user's total power constraint and adjusting a “total power
channels subject to a total power constraint/§f*®. Each price” on a slower time-scale to ensure that those constraints
channel is modeled as a Gaussian interference channel, argl eventually satisfied. This is not needed here, i.e., each
all users still treat any interference as noise. hgt denote power constraint is satisfied during every iteration.
the gain of thenth channel between transmitteand receiver
j, and letp]™ and~;" denote usei’s transmit power and SINR lll. MISO NETWORKS
on this channel. A. System Model

We assume that each user’s quality of service is now givenWwe now consider beamformer updates in a narrowband
by a total utility that isseparableacross the channels, i.e. theMISO network with K users, each equipped wifli transmit
total utility of useri is given byu; = >-™_, u*(y™), where antennas. The channel vector from transmittierreceiver; is
u™ is the utility that user receives from channel® Our denoted byh;; = [hli, hZ;, - ,hf\jf]T. Let v; be the complex

7 7,j7 @j7.

beamforming vector for user. Then the received SINR for

SWhen K;(v;) > 1 for each usef then ProblemP; will have only one useri is® n 9
point that satisfies the KKT conditions [14]. It follows that when each user’s - |VZ- hiz‘\ 5
utility satisfies (3), the algorithm must converge to the global optimum. V= no + Z |vTh |2 ( )
4Note that ifu; represents a maximum achievable rate (assuming Gaussian 0 PR I
codebooks), then this satisfies our separability assumptionuffith= log(1+
). 5t denotes Hermitian transpose.

m=1 m=1 j#i
< pes P

(3

pt >0 Ym.

C. Generalization to Multi-channel Networks




The problem is to select the set of beamforming vectors 1o

{v1,--+, vk}, which maximize the sum utility, i.e.,
K
o nax ;ui(%) (P3)

st |viP<Pmer i=1,...,K,

where-~; is given by (5).

Total Utility

B. MISO Distributed Pricing (MISO-DP) Algorithm

With MISO nodes the interference price at receivisrgiven
by

o Ouily) _ uj(yi)[vihii | ©)
;= =
0L (no+ X, [vihil?)?
and the best response update at transmitsslects the beam o 10 20 30 40 s w0 70 s %0 10
v; to solve
4 Fig. 1. lllustration of the convergence of the MISO-DP algorithm.
max wi(vi) = Y milvih,|® (P5)
1 ]#l . gy
st |vi> < pmos K;(v;) = 1. The figure shows that the sum utilities corre-
.t. < prer,

sponding to the examples with; = 1 and 2 converge, as
The MISO-DP algorithm is then specified as follows:  stated by Proposition 3, whereas the examples corresponding
1) Each user chooses an initial beam; satisfying the to K; =3 and 4 oscillaté. Hence conditions ot; are indeed

power constraint. necessary to guarantee convergence.
2) Each user announces the interference prigg given
) by (6) pries g IV. VARIATIONS ON THE UPDATE RULE
3) One random usei updatesv; according to the best Our convergence proof for each of the previous versions
response (solution to ProbleRt). of the DP algorithm relies on the fact that whenever one
4) Repeat from step 2). user updates his power(s) or beamformer, he has current

In general, there may be multiple solutions to Problejn interference prices from every user in the network. To reduce

In that case, one of the solutions can be randomly chosé'f'\? overhead required to broadcast these prices it would be
assuming the previous beam is not a solution. Otherwise ggsirable to relax this restriction and allow multiple users to
previous beam is kept. update their powers before new prices are announced. In this
Proposition 3: If K;(v;) € [0,2] for each uset, then each Section we consider relaxing these restrictions. _ _
beamforming vector in the MISO-DP algorithm converges to First we consider a modification of the algorithms in which

a limit point satisfying the KKT conditions associated witfo" @ given set of interference prices, a group of users
ProblemPs. simultaneously updates their transmission powers in step 3.

Proof: (sketch Comparing ProblenP; and the asso- The next proposition states that with logarithmic utilities, we

ciated subproblenP’ with their counterparts in the single-Still have monotonic convergence. ‘
antenna case (Section II), the difference appears in the specififroposition 4:1f u;(v;) = c;log(v;) for each useri,
expressions for signal and interference powers. Treating tjB€rec; is a constant, then with simultaneous group updates,
interference power as a function of the resources (powers!Bg total utility in the DP, MDP and MISO-DP algorithms
beams), it is easily verified that Lemma 1 still holds in thg'onotonically converges. o

MISO setting. The remainder of the proof then follows fronf N€ Proof is omitted due to space considerations.

a similar argument as the proof of Proposition 1. m Proposition 4 does not hold for any utility which satisfies
To illustrate the preceding convergence result, Fig. 1 shods € [0;2] as the next example illustrates. Consider a single
plots of total utility versus iterations (each correspondingnténna network with three users sharing a single channel,

to a beam update) for the MISO-DP algorithm with fivétnd with linear }Jtll|ty_funct|onmi(%) = v, and simultaneous
transmitter-receiver pairs, each with three transmit antenngE0UP updates in which at every update all three users update
The channel vectors consist of realizationsi.ofi. complex their powers. Suppose that for all £"** = 1, the direct
Gaussian random variables, and the average received sighnnel gaim; = 1, andng = 1. It can be shown that if
to-noise ratio is 23 dB. Four curves are shown, correspondinlg® :31)f13 < 1.@nd (1 + haz)has < 1 and hiy and ha

to utility functions with different values ofi(;(v;) in (3).
y Z(%’) ( ) SInterestingly, fork’; > 2 the underlying problem has a unique point which

Specifi_cally, they are;(v;) = v%/a with a = -1, -2, _.3' satisfies the KKT conditions. Apparently the best response updates used in
for which K;(y;) = 1 — «, and u; = log-~;, for which the DP algorithm are too aggressive to find this point.



are large enough, then if every user simultaneously updatedNow suppose that user updates his power by solving
during each iteration, the DP algorithm will not converge andlroblem P} given the current power profile°. After the
in fact the powers of users 1 and 2 oscillate betweéesand update, we have
Pe* while user 3 transmits at constant power Bf*%*. . N o o
Numerically, we have also observed similar gehavicffwith ratdi (7 (Pi ))727”[“ (py) 2 (P ))727”[“ (p), ()
utilities (u;(y:) = log(1 + 7)) i i
A second variation on our update rule is to consider th@here I;; is the interference power from transmittérto
case where a group of usesequentially updaténeir powers receiverj, andp* = {pf,---,p¢_,p},pj,1, - %} indi-
or beamforming vectors between price updates. This diffefdtes the operating point after uses power update. Since
from the previous model in that after one user updates, the néxt— 17 = I35 — I}, adding constant terms to both sides of (9)
user can update his power to account for the first user’s acti@fd simplifying yields
With logarithmic utilities, if two users sequentially update we K
can again show monotonic convergence. u () + Z {uj (7)) —mi (I} — I]‘?)} > Zui(yf). (10)
Proposition 5: If w;(v;) = ¢; log(+;) for all i and at most j#i i=1
two users sequentially updated between any new price upda{gditionally, from (8), we have
then the total utility in the DP, MDP and MISO-DP algorithms

monotonically converges. > wi(y)) Zwi(y) + [uj(y;?) — (I} — IJQ)]. (11)
V. CONCLUSIONS i=1 J#i

We have studied the convergence of distributed pricifgombining (10) and (11) yieIdEZ.K:1 u;(yF) > ZiK:l u; (v9),
algorithms for adjusting powers and beamforming vectors which is the desired result. |
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