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Abstract—Informational cascades are said to occur when
rational agents ignore their own private information and
blindly follow the actions of other agents. Models for such
cascades have been well studied for Bayesian agents, who
observe perfectly the actions of other agents. In this paper,
we investigate the impact of errors in these observations;
the errors are modelled via a binary symmetric channel
(BSC). Using a Markov chain model, we analyze the net
payoff of each agent as a function of his signal quality and
the crossover error probability in the channel. Our main
result is that a lower error level does not always lead to a
higher payoff when the number of agents is large.

I. INTRODUCTION

Consider a recommendation system where agents se-
quentially decide whether to buy an item, for which
they have some prior knowledge of its quality/utility.
Later agents benefit from the information obtained by
observing their predecessors’ choices. Herding or an
informational cascade occurs when it is optimal for the
agents to ignore their own signals and follow the actions
of others. In addition to the possibility of herding to the
wrong conclusion, an informational cascade results in a
loss of information about the private signals held by all
the agents following the onset of herding.

The study of herding was initiated in the seminal
papers [2] and [3]. In these papers, each individual can
observe exactly the actions of the previous agents. This
assumption leads to herding eventually happening, with
positive probability of it being in error. In our paper, the
observations process is assumed to have imperfections.
We assume that information of the history of past actions
can be in error as it is received via a BSC, with crossover
probability ε, by the subsequent agents. For example, this
could model a setting where agents are asked to report
their decision on a website and agents occasionally
misreport. The objective is to study the effect of such
noise in the observation process. Our main results, shown
in Fig. 1, demonstrate a counter-intuitive phenomenon
for the behavior of the asymptotic welfare: For both
low and high prior signal quality p, while having no
observation noise ε maximizes the asymptotic welfare,
it is not monotonically decreasing in the noise. Thus, for

certain cases, an agent’s total payoff can be increased by
increasing the noisiness of the observation process.
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Figure 1: Limiting welfare for low and high signal quality.

Herding is typically studied as a form of Bayesian
learning, where each agent has a private signal and ob-
serves the actions of others. As in [6], these observations
may depend on an underlying network structure. Here,
we focus on a simple structure, as in [2], [3], [4], where
individuals take actions sequentially and observe all past
actions (though in our case these observations are noisy).

In [4], the authors consider a different form of noise
by allowing a fraction of individuals to randomly choose
their actions. This leads to occasional irrational actions in
the history. The authors prove that such irrational actions
would be ignored by later individuals in an informational
cascade and thus this type of noise does not qualitatively
affect the final herding behavior. Our model, on the other
hand, assumes that all actions are rational, with noise
uniformly introduced through the observation process.

This paper is organized as follows. In Section II we
first develop a noisy version of the model in [2]. We
study the effect of the added noise in Section III and
model this as a Markov chain. In Section IV, we discuss
the agent welfare for high and low signal qualities and
noise levels. We conclude in Section V.

II. MODEL

We consider a model similar to [2] in which there is
a countable population of agents, indexed i = 1, 2, . . .
with the index reflecting the time and order of actions



of the agents. Each agent i has an action choice Ai of
saying either Yes (Y ) or No (N ) to a new item. The
true value (V ) of the item can be either 0 (bad) or
1 (good); both possibilities are assumed to be equally
likely. The agents are Bayes-rational utility maximizers
whose payoff structure is based on the agent’s choice
of action and the true value of the item. If an agent
chooses N , his payoff is 0. On the other hand, if he
chooses Y , he faces a cost of C = 1/2 and two
possibilities of outcomes: his gain is 0 if V = 0 and
1 if V = 1. Thus, the ex-ante payoff of each agent is
E[V ] − C = 0. To reflect the agents’ prior knowledge
about the true value of the item, we assume that each
agent i receives a private signal Si through a BSC with
crossover probability 1 − p, where 1/2 < p < 1. (See
Fig. 2.) Thus, the private signals are informative, but not
revealing. We further assume that each agent i makes
a one-time action Ai based on his own private signal
Si and the observations O1, . . . , Oi−1 of all previous
agents’ actions A1, . . . , Ai−1.
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Figure 2: The BSC over which agents receive signals.

It was shown in [2] and [5] when observations are
perfect (i.e., Oi = Ai), this model exhibits a herding
phenomenon. Herding happens when an agent chooses to
follow the majority of his predecessors’ actions regard-
less of his own private signal. Here, we instead consider
a model where later agents’ observations are noisy
versions of their predecessors’ actions. For simplicity,
our model assumes that each agent reports his action to
a public database which is available to all successors.
The errors in this process are modelled by passing
every action Ai through another BSC with crossover
probability ε ∈ (0, 1/2). This means with probability
1 − ε, Oi = Ai, and with probability ε, Oi = Ai,
where Ai is the opposite action of Ai. This assumption
reduces the dependence of every agent’s decision on the
predecessors’ choices and drives him toward using his
own signal.

III. HERDING IN NOISY OBSERVATIONS

A. Herding properties

In this section we outline some basic properties of
herding with noisy observations. These naturally extend
properties for the noiseless case shown in [2], [5] and
so we omit detailed derivations.

The first agent always follows his private signal since
no observation history is available. Starting from the
second agent, every agent i considers his private signal
Si and the observations O1, ..., Oi−1. Let the information
set of agent i be Ii = {Si, O1, ..., Oi−1}. Based on
Ii, agent i will update his posterior probability denoted
as γi,Ii = Pr[V = 1|Ii] using Bayes’ formula. If
this posterior probability is greater than the cost C, the
agent will choose Y . If γi,Ii is less than C, the agent i
will declare N . Thus, agent i is said to herd Y (N) if
γi,Ii > C (< C) for all Si ∈ {H,L}. Finally, if γi,Ii
equals the cost, then agent i follows his private signal.1

Property 1. Until herding occurs, each agent’s Bayesian
update depends only on their private signal and the dif-
ference in the number of Y ’s and N ’s in the observation
history.

In other words, the difference in the number of Y ’s
and N ’s is a sufficient statistic for the observation
history; we denote this quantity by Hn = #Y ′s−#N ′s
for agent n. This follows from the symmetry of the signal
quality and the channel noise, which enables each agent
to “cancel out” opposite observations.

Property 2. Once herding happens, it lasts forever.

The reason for this phenomenon is that when herding
starts, agents stop using their private signals and thus
provide no more information to their successors. The
successors are left in the same situation as the first agent
who started the herding and thus have the same optimal
action choice.

B. Error thresholds

In contrast to the model in [2], where the second agent
has 50% of the chance creating a herd, in our model he
always follows his own signal. However, depending on
the noise, this will not be the case starting from the
third agent. As the amount of error, ε, introduced into
the observation is increased, each observation provides
less information. Therefore, every agent does not herd
unless the magnitude of the sufficient statistic, |Hn|, is
sufficiently high as shown in the following lemma.

Lemma 1. An agent n with |Hn| < k, and k ≥ 2, will
never herd if ε ≥ ε∗(k, p), where:

ε∗(k, p) =
1− ( 1−p

p )
k−2
k−1

1− ( 1−p
p )

k−2
k−1 + ( 1−p

p )
−1
k−1 − ( 1−p

p )
. (1)

1This differs from [2], where it is assumed that indifferent agents
randomly choose one action. Our assumption simplifies the analysis
but does not qualitatively change the conclusions.



A simple consequence of this Lemma is that agents
with index n ≤ k will never herd when ε ≥ ε∗(k, p).
The proof of this follows from direct calculation of γi,Ii .
Fig. 3 shows the thresholds ε∗(k, p) for different values
of k and p ∈ (1/2, 1). For k = 2, this Lemma yields
ε∗(2, p) = 0 which is the case of noiseless observations
as in [2].
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Figure 3: Thresholds for ε

From (1) we can obtain some useful insights about the
properties of the threshold ε∗(k, p). First, ε∗(k, p) is an
increasing function of k, and as k →∞, ε∗(k, p)→ 1/2
for all values of signal quality p ∈ (1/2, 1). Later agents
have a higher likelihood of herding and such effects can
be countered if the channel is noisier. In the limit, if the
channel flips the bits half of the time, no information is
passed through. Thus agents only use their own signals
and herding is prevented. However, no learning occurs
either and the ex-post payoff of each agent remains
2p−1

4 . Secondly, ε∗(k, p) is a decreasing function in
p ∈ (1/2, 1); as p → 1, ε∗(k, p) → 0. This agrees with
the intuition that the more accurate the private signal,
the less likely it is for herding to occur in the “wrong”
direction. Notice that the threshold curves are relatively
flat for a wide interval of p and only drop quickly when
p is sufficiently close to 1. This means that even if the
private signal quality is very high, with an intermediate
level of noise herding may still occur for most agents.

By Property 1, 2 and Lemma 1, for a given observation
error ε ∈ [ε∗(k, p), ε∗(k + 1, p)), herding would happen
for agent n if and only if Hn ≥ k. This helps establish
a simple finite-state birth-death Markov chain for our
model as presented in the next section.

C. Markov analysis of herding

By the symmetry of the model, first consider the case
V = 1. From the previous section, for an arbitrary agent
n who has not herded, the observations history can be
summarized by Hn = #Y ′s − #N ′s. Thus, viewing
each agent as a time-epoch, we can consider the agent’s
observation as a state of a discrete time Markov chain.

Each state i represents values of Hn that an arbitrary
agent n may see before making his decision. Note that
the first agent starts at state 0 when no observation
history is available.

Assume ε∗(k, p) ≤ ε < ε∗(k + 1, p), so that an agent
will not herd unless he observes the counts of one action
dominate the other by at least k. Since herding lasts
forever once it starts, this Markov Chain is finite-state
with the state space {−k,−k + 1, ..., 0, ..., k − 1, k},
with states ±k being absorbing. The two events N and
Y herding translate into hitting the left (−k) and the
right (k) walls, respectively. The probability of moving
one step to the right is the probability that one more Y
is added to the observation history, i.e., a = Pr[Oi =
Y |V = 1] = (1 − ε)p + ε(1 − p) > 1/2. Likewise, the
probability of moving one-step to the left is 1−a. Hence
this Markov chain is a simple random walk with a drift
to the right as shown in Fig. 4.
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Figure 4: Transition diagram of the random walk when V=1.

We will use methods developed in [1, Sections XIV.4-
5] to calculate the probability of being at each absorbing
state at an arbitrary time. Assume that the process starts
at state i. Let u∗i,n, v

∗
i,n be the probabilities of being at

the left wall, −k, and the right wall, k, at the nth step,
respectively; i.e., the probability of herding of the nth

agent. Let ui,n, vi,n be the probabilities of hitting the
left wall and the right wall for the first time at the nth

step, respectively; i.e., the probability that the nth agent
is the first to herd. If n − i − k is an odd number, the
chain cannot be at either wall for the first time, thus
ui,n = vi,n = 0. Therefore, the absorption probabilities
at steps n and n − 1 are identical, i.e., v∗i,n = v∗i,n−1
and u∗i,n = u∗i,n−1. Moreover, as agent 1 starts at step 0,
agent n+1 cannot herd if n ≤ k−1, i.e., u∗i,n = v∗i,n = 0
for 1 ≤ n ≤ k − 1. For n ≥ k, the probabilities of
agent n + 1 herding the wrong and correct way are,
respectively:

u∗0,n =

n∑
m=k

(m−k)even

u∗−k,n−mu0,m =

n∑
m=k

(m−k)even

u0,m,

(2)

v∗0,n =

n∑
m=k

(m−k)even

v∗k,n−mv0,m =

n∑
m=k

(m−k)even

v0,m, (3)

since u∗−k,n−m = v∗k,n−m = 1 (once agent m is the



first one to herd, the subsequent agents m+ 1, ..., n will
herd with probability 1). The next lemma gives explicit
expressions for the terms on the right-hand side in (2)
and (3).

Lemma 2.

u0,n =

{
0, n− k odd,
1
k2na

n−k
2 (1− a)

n+k
2 Ak, n− k even,

(4)

v0,n =

{
0, n− k odd,
1
k2na

n+k
2 (1− a)

n−k
2 Ak, n− k even,

(5)

where

Ak =

ν<k∑
ν=1
ν odd

cosn−1
(νπ

2k

)
sin
(νπ

2k

)
(−1)

ν−1
2 . (6)

Proof. The proof follows using techniques from [1]. Let
τ−k,i and τk,i be random variables denoting the first time
the Markov chain hits the absorbing states −k and k,
respectively, starting from state i. Let Ui(s), Vi(s) be
the corresponding probability generating functions. We
have:

ui,n = P [τ−k,i = n] , vi,n = P [τk,i = n] , (7)

Ui(s) = E[sτ−k,i ] =

∞∑
n=0

ui,ns
n, (8)

Vi(s) = E[sτk,i ] =

∞∑
n=0

vi,ns
n. (9)

With probabilities a and 1− a, respectively, the state
one step after state i is i + 1 or i − 1. Thus we obtain
the following the difference equations:

Ui(s) = asUi+1(s) + (1− a)sUi−1(s), (10)

Vi(s) = (1− a)sVi+1(s) + asVi−1(s), (11)

where −k < i < k, with the boundary conditions:

U−k(s) = 1, Uk(s) = 0, V−k(s) = 0, Vk(s) = 1. (12)

The solutions to the above equations are:

Ui(s) =
λi+k1 (s)λ2k2 (s)− λ2k1 (s)λi+k2 (s)

λ2k2 (s)− λ2k1 (s)
, (13)

Vi(s) =
λi+k1 (s)− λi+k2 (s)

λ2k1 (s)− λ2k2 (s)
, (14)

where

λ1,2(s) =
[
1±

√
1− 4a(1− a)s2

]
/(2as). (15)

Considering that our Markov chain starts at state i = 0,
u0,n and v0,n can be written as:

u0,n =
dnU0(s)

n!(ds)n
|s=0, v0,n =

dnV0(s)

n!(ds)n
|s=0, (16)

which can be written in closed-form expressions as in
(4) and (5).

By symmetry, for the case V = 0, the first time hitting
probabilities are ṽ0,n = u0,n, ũ0,n = v0,n, thus ṽ∗0,n =
u∗0,n, ũ

∗
0,n = v∗0,n.

The probability of wrong herding eventually,
lim
n→∞

u∗0,n, is shown in Fig. 5. At the threshold where
k changes, this probability discontinuously decreases.
For an observation error ε between thresholds, the
probability of wrong herding increases with more noise.
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Figure 5: Probability of wrong herding eventually

IV. AGENT WELFARE

Let πi be the payoff or welfare of agent i. From
Section II we have that πi = 0 if Ai = N , while if
Ai = Y , πi is either 1/2 or −1/2 corresponding to
V = 1 or V = 0, respectively. All agents i from 1 to k
use their own signals, thus they all have the same welfare
given by:

E [πi] =
1

4
{P [Ai = Y |V = 1]− P [Ai = Y |V = 0]}

=
2p− 1

4
> 0, since p > 1/2. (17)

For agents i ≥ k + 1:

E [πi] =
1

4

[
v∗0,i−1 + p(1− v∗0,i−1 − u∗0,i−1)

]
− 1

4

[
ṽ∗0,i−1 + (1− p)(1− ṽ∗0,i−1 − ũ∗0,i−1)

]
= F +

1− p
2

i−1∑
j=k

(j−k)even

v0,j −
p

2

i−1∑
j=k

(j−k)even

ṽ0,j , (18)

where F = 2p−1
4 is the fixed welfare of the first k agents.

Theorem 1. With the same signal quality p and k
satisfying ε∗(k, p) ≤ ε < ε∗(k + 1, p), we have:



1) The welfare for each agent is at least equal to the
welfare of his predecessors. Thus E [πi] ≥ F and
is non-decreasing in i.

2) lim
i→∞

E [πi] exists and equals:

Π(ε) =
2p− 1

4
+

1

2

[
1

1 +
(
1−a
a

)k − p
]
, (19)

where a = (1− ε)p+ ε(1− p).
3) Π(ε) decreases continuously as ε increases over a

range where k is fixed. More specifically:

lim
ε↓ε∗(k,p)

Π(ε) > Π(ε) > lim
ε↑ε∗(k+1,p)

Π(ε) = F.

(20)

Furthermore, the maximum value of Π(ε) for each value
of k is decreasing in k. More specifically:

lim
ε↓ε∗(k,p)

Π(ε) > lim
ε↓ε∗(k+1,p)

Π(ε). (21)

Proof. An outline of the proof is as follows: 1), 3) and
(21) are proved by noting that ε∗(k, p) ≤ ε < ε∗(k+1, p)

leads to 0 <
(
1−a
a

)k
< 1−p

p < 1; and 2) is proved by
using lim

i→∞
E [πi]−F = 1

2 [(1− p)V0(1)− pU0(1)].

This result, illustrated in Fig. 1, implies that zero
error probability, ε = 0, yields the maximum asymptotic
welfare Π(ε). But at the thresholds where k changes,
Property 3 of the theorem shows that Π(ε) will discon-
tinuously increase. Comparing Fig. 5 to Fig. 1 and noting
that the discontinuities occur at the same place, this
suggests that for ε near these values, adding more noise
to the observations reduces the probability of wrong
herding which leads to increased overall welfare. Our
proof does not apply to an arbitrary agent. However, by
plotting (17) and (18) numerically, as shown in Fig. 6
and Fig. 7, the same behaviors are seen for agents when
the index is small.2
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Figure 6: Agent welfare for low signal quality p=0.51.

2Also by summing these welfare across the agents, it can be seen
that the same insights apply to the total welfare.

0.245

0.25

0.245

0.25

E
[π

i
]

0 0.1 0.2 0.3 0.4 0.5

0.245

0.25

ǫ

i=10

i=5

i=100

Figure 7: Agent welfare for high signal quality p=0.99.

V. CONCLUSIONS AND FUTURE WORK

This paper studied the effect of noise in a simple
informational cascade model. By assuming that the
agents observe the actions of others through a BSC, and
using a Markov chain based analysis, we determined the
probabilities of herding for an arbitrary agent and used
these to calculate the agents’ welfare based on the given
signal quality and the crossover probability in the BSC.
Our main result shows that even though an error-free
channel is the optimal case, a lower noise channel does
not guarantee a higher total welfare as the number of
agents get large. As the noise level approaches specific
thresholds, there is benefit from adding a controlled
amount of noise into the observations in order to achieve
the next local maximum. Studying the possibility of
decision errors by the agents and heterogeneous private
signals are possible directions for future work.
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