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Abstract

In cooperative relaying, multiple nodes cooperate to forward a packet within a network. To date,
such schemes have been primarily investigated at the physical layer with the focus on communication of
a single end-to-end flow. This paper considers cooperative relay networks with multiple stochastically
varying flows, which may be queued within the netwoFkroughput optimahetwork control policies
are studied that take into account queue dynamics to jointly optimize routing, scheduling and resource
allocation. To this end, a generalization of tMaximum Differential Backloglgorithm is given, which
takes into account the cooperative gains in the network. Several structural characteristics of this policy

are discussed for the special case of parallel relay networks.

. INTRODUCTION

Given stochastically varying traffic, there is a growing body of worktlmmughput optimal
control schemes for wireless networks that jointly address issues such as routing, scheduling and
physical-layer resource allocation, e.g. [1]-[6]. By “throughput optimal” we mean that a control
scheme stabilizes all the queues within the network whenever it is possible to do so. In other
words, such a scheme stabilizes the network for any rate in the netvatakidity region Many

of these schemes utilize some version afmaximum differential backlog (MDB)olicy (also
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Fig. 1. A four node parallel relay network model.

sometimes called the Backpressure Algorithm) [4], which has the desirable property of requiring
no a priori knowledge of the traffic statistics.

A feature of all the above models is that each packet is forwarded along a single route of point-
to-point links. At any time a packet resides at a single location in the network, and the resources
needed for the next transmission do not depend on the previous transmissions of the packet.
Recently, there has been much interest in varmugperative relayindechniques (e.g. [7]-[12])
that do not satisfy these assumptions. With such techniques, multiple nodes cooperate to relay a
packet. For example, consider the four node “parallel relay” network from [7], in Fig. 1. Suppose
that node 1 has traffic to send to node 4. The arrows in Fig. 1 indicate the feasible links for this
traffic using traditional point-to-point forwardiniglf node 1 broadcasts the same packebath
nodes 2 and 3, then these nodes can cooperatively forward this packet to node 4 by, for example,
forming a distributed antenna array. In certain cases, this cooperative rate will be greater than
the rate achieved by point-to-point forwarding.

To date, cooperative relaying has mainly been addressed at the physical-layer, i.e. by studying
the achievable rates or diversity gains of given cooperative schemes, and often just focusing on
a single end-to-end backlogged session. A goal of this paper is to study models of cooperative
relaying that incorporate the stochastic arrival of traffic for multiple sessions and the related
network queueing dynamics. For example, in Fig. 1, suppose node 2 has its own traffic to send
to node 4. In order to stabilize the network, node 1 may then have to forgo any cooperative
gain and use the single route through node 3. For such models, we are interested in developing
a MDB-like policy which is throughput optimal.

We focus on “decode and forward” cooperative techniques, in which all cooperative nodes

must decode a copy of a packet before forwarding it. With these schemes, a potential trade-

For simplicity, we assume that node 1 cannot directly transmit to node 4, e.g. the direct link may be of too poor a quality

to be feasible.



off emerges: exploiting cooperative gains requires that the congestion in the network must first
increase due to the duplication of a packet in the network. This increase in traffic can be somewhat
ameliorated by exploiting the broadcast nature of the wireless medium, e.g., in Fig. 1, node 1
can simultaneously transmit a packet to both nodes 2 and 3. In addition to decode and forward, a
variety of other cooperative strategies have been considered, such as the “amplify and forward”
technique (e.g. [9]). We do address such schemes here; since they deal with analog information,
it is not obvious how to incorporate them into the queueing models considered here. In addition
to improving throughput, cooperative relaying can also increase diversity in a fading environment
(e.q. [8], [9]). Here, we assume that there is no fading, and so do not address these diversity
gains.

The MDB policy in [4], [5] makesmyopicdecisions based on “backpressure weights” given
by the differences in queue backlogs between two adjacent nodes on each link in a network. In
adapting such a policy to a cooperative network, several new issues arise. First, in cooperative
networks packets are not forwarded only over point-to-point links as in [4], [5]; hence, the
underlying network model in [4], [5] must be generalized. Second, the notion of a backpressure
weight must be generalized to account for the fact that a packet may be stored at multiple nodes.
Third, since an MDB-like policy is myopic, it is not obvious if it would allow for the temporary
increase in the congestion needed to exploit cooperative gains. We show that these issues can
be addressed in a network with “two-hop” cooperative relaying. This model accommodates the

example in Fig. 1 as well as a number of other important cooperative scenarios.

I[I. GENERAL NETWORK MODEL

We study a generalization of the model in [5] to include cooperative relaying. A net@ork
consists of a set of nodag, and a setC of non-cooperativeor direct links given by ordered
pairs (u,v) for u,v € V. These represent point-to-point linksAdditionally, G contains two
other sets of “links.” First, we define a s&tof cooperative linksThese are denoted by ordered
pairs (S,v), whereS C V is a subset of nodes which cooperate to forward a packet to a single

destinationv € V. Second, we define a s&t of broadcast links denoted by ordered pairs

2In principle, a “link” exists between every pair of nodes. However, we do not requireCtiratiude all such links, e.g. certain

poor links may not be considered to reduce routing complexity.



(u,T), whereu € V is a node which may broadcast a packet to all of the noddsdnV. For
example, letlG = (V,&,S,7) be a model for the network in Fig. 1. Herg,= {1, 2, 3,4}, and

& consists of the four direct links, shown by the arrows in the figure. Seflirg{({2,3},4)}

and7 = {(1,{2,3})} allows us to model the case where node 1 can broadcast to nodes 2 and
3, who can then cooperatively relay a packet to node 4.

We restrict our attention towo-hopcooperative relay networks in which) for each cooper-
ative link (S,v) there is at least one broadcast litk 7') with 7= S and (i) the only traffic
that can be sent ovélS, v) is that which is received on such a broadcast link. These restrictions
rule out several possibilities, including the case where one cooperative group forwards a packet
to a second cooperative group, which then forwards it on, or the case where different copies of
a packet arrive at a cooperative group over different paths. Such possibilities are not considered
in part to simplify notation and in part because the implementation complexity quickly becomes
intractable.

We assume the network operates in slotted time, where the length of each time-slot is
normalized to 1. There is no fading or changes in the topology over the time-scale of iAterest.
Within time-slott, let R(t) = (R,;(t)) denote the vector of realized transmission rates for all
l € LUSUT. This vector is constrained to lie in amstantaneous link capacity regiah which
is a bounded subset (’R'fUSUT', i.e., C is the set of feasible rates in any time-slot, including
the rates on all cooperative and broadcast links.

Next, we give several examples 6fwhere the channel between each pair of nodgsis
given by an additive Gaussian noise channel with g@(mT unit variance noise, and bandwidth
W = 1 Hz. Each transmitter is assumed to have a power constraift dtiring each time-
slot. If link (i,7) is the only link activated, then the feasible transmission rate is given by
R;; =log(1+ h;;P), i.e., the Shannon capacity of this chanhdlhe results in Section Il are
not restricted to this case, but apply to any modelddhat gives a bounded subsetR® WSUT],

Example 1:Let R = (Rg, Ri2, R13, Rs4, Ro4, R34) be a vector of transmission rates for the
6 links in the network in Fig. 1, wher8 = {2, 3}. Suppose that only one of the following two

sets of transmitters may be simultaneously actide:= {1} or A, = {2,3}. This enforces a

3Such effects can be incorporated in our analysis at the expense of more complicated notation.

“This is reasonable provided that each time-slot has sufficiently many degrees of freedom to allow for sophisticated coding.



half-duplexing constrainat nodes 2 and 3.t follows thatC = conv(C; U C,), where(; is the

set of feasible rates correspondingA@ Here,conv(X) indicates the convex hull of the sat.

This is included to model the possibility of time-sharing between the two activation sets within
a time-slot.

When A, is active, the network can be viewed as a Gaussian broadcast channel, where the
traffic sent over link(1,{2,3}) representscommon information Without loss of generality,
assume that,, < hy3. The feasible rates must then satigfil;» + Ris, R13) € Cpc, Where
Cpc is the capacity region of the Gaussian Broadcast channel. Therefore, we can(iedime
the set of all( Rys, Ri2, R13,0,0,0) such that(Ris + Ris, R13) € Cpe-

When A, is active, nodes 2 and 3 transmit over a Gaussian multiaccess channel. When these
nodes send only direct trafficRg, = 0), the transmission rateGR.,, R34) must lie in the

corresponding multiaccess capacity regibnac, i.e. they must satisfy

Y Ru<log(L+) huP), ¥V C{2,3}. (1)
% %
Suppose that the nodes cooperate by beamforming so that if they send only cooperatife traffic
R54 = 10g<1 + (\/ h24 + h34)2p). (2)

In addition, we can allow the nodes to transmit both cooperative and direct traffic simultaneously.
This can be modeled as a variation of a three-user multiaccess channel where two users corre-
spond to the direct traffic from nodes 2 and 3, and a third user corresponds to the cooperative
traffic.” The difference here is that the power constraints of the “users” are coupled. We assume
that if both users 2 and 3 devote a fractiore [0, 1] of their power to cooperative traffic, then

they can achieve any raté8, 0,0, Rg4, Ro4, R34) = (0,0,0, Ry, R5, Rg) € RS satisfying

D> R;<log(1+> Pia)), VVC{4,5,6}, (3)

IS% i€V

This example does not allow some schedules that do not violate the half-duplexing constraint, such as node 1 transmitting
to node 2, while node 3 transmits to node 4. This can easily be accommodated in the general model; here we omit them to
simplify the discussion.

®This requires that the two transmitters have perfect synchronization and so can coherently combine their signals at the
receiver. Models for distributed beamforming that relax this assumption can also be found, e.g. [11]; these can be incorporated
into the model by simply re-definings,.

A key assumption here is that the encoding of the traffic by these three “users” depends only on their own message and that

the messages are independent.



Fig. 2. A n+ 2 node parallel relay network model.

where Py(a) = (vVhas + Vhas)?aP, Ps(a) = hy(1 — )P, and Ps(a) = hsy(1 — a)P. Let
Comac(a) be the set of rates which satisfy (3) for a particular valuexofVe then setC, =
Uae[w Ccomac(a). It can be verified that the resulting region is conflex.

Example 2: The network in Fig. 2 is a generalization of Example 1 to the case where there
aren relay nodes between a nodeand nodeb. Here, alln nodes may form a cooperative
link ({1,...,n},b). Additionally, any subset of these nodes can also form a cooperative
link. Allowing all such possibilities, there are potentially — 1 — n different cooperative links
betweena andb in this network, each with its own corresponding broadcast link. In this case,
the instantaneous link capacity region would have a dimensid2(2f — 1 — n) + 2n, which

can be modeled similarly as in Example 1.

)

Fig. 3. A three node simple relay network model.

Example 3: The network in Fig. 3 is based on the classical relay channel [13]. Assume that
his > hy13. We discuss two ways in which packets from node 1 can be cooperatively relayed
to node 3. First, consider a cooperative liok, 2}, 3), in which nodesl and 2 cooperatively
forward a packet to node 3 again using cooperative beamforming. To do this, node 1 must first

send a packet to node 2 and save a copy of the packet for itself. To incorporate such a scheme

8Note that here we require both nodes 2 and 3 to devote the same fraction of their power to the cooperative traffic. More

generally, one can consider a model where each may devote a different fraction.



into our model, we view the first transmission as occurring over a broadcastllifk, 2}),
i.e. a link in which the source is also one of the destination nodes. The transmission rate on
this link will be the same as the direct rate from node 1 to 2. Rate vectarswill then have
the form (R, R12, R13, Rss3, Ro3). Assuming a duplexing constraint at nog2leC can again be
decomposed into two set§ and(C,, whereC; (C;) is the set of feasible rates given that node
2 is receiving (transmitting), which can be modeled as a broadcast (multiaccess) channel.

A second cooperative scenario is for node 1 to first transmit a packet to node 2, but for node
3 to also store the received signal from this transmission (even though it cannot decode it).
Then when node 2 forwards the packet to node 3, node 3 can use the information from both
transmissions to decode the packet. This case is modeled by a broadcdasdt {i2l3}) and a
cooperative link({2, 3}, 3). The rate for the broadcast linK, {2, 3}) is again the rate at which
node 1 can transmit to node 2 (since node 3 is not decoding). The corresponding rate on the

cooperative link({2, 3}, 3) is®
Ryz313 = log(1 + hos P) + log(1 + hi3P). (4)

Here, the first term reflects the mutual information received from node 2's transmission and
the second term is the mutual information received from node 1's original transmission to node
2. In this case, one can again defifigor given duplexing constraints. We could also define

C to includes both types of cooperative links; it would then contain vectors of dimerision
corresponding to the three direct rates, two cooperative rates, and two broadcast rates.

We have focused on relatively simple network topologies to illustrate some possibilities for
cooperation. In a general network, several of these scenarios, as well as others, could exist at
different locations in the network. Moreover, we emphasize that while we restrict our attention
to two-hop cooperative transmissions, we do not require that the overall network has a two-hop

topology.

A. Traffic and queueing dynamics

Following [5], all traffic that enters the network is classified as a particular “commodity,”

which specifies its desired destination. ketC V be the set of commodities, where commodity

°For this model, we require that node 1 transmit on k{2, 3}) with full power P. Otherwise, the corresponding rate on

the cooperative link would depend on the power used in the previous time-slots.



k has destination node. Exogenous traffic of each commoditye K arrives at nodé € V' \ k
according to an ergodic proces# (t), where B¥(t) is the number of exogenous bit arrivals to
node: in time-slott. All arriving traffic is buffered until it is transmitted.

Let UF(t) be the unfinished work (in bits) of commodityat nodei, which is to be sent over
a direct or broadcast link (we refer to this disect traffic). For each cooperative linkS, u) € S,
let U%(t) be the unfinished work of commodity traffic that is to be forwarded cooperatively
by the nodes ir5. Each node keeps separate queues for each commodity of the direct traffic as
well as each commodity of traffic for each cooperative $ab which it belongs?

Let (RF(t))iecusur kex denote a joint rate allocation/routing assignment at tinvehere Ry (t)
denotes the rate allocated to commoditpver link [. For feasibility, we must have

> RE(t) < Ry(t) VI, and(Ri(t))iecusur € C, (5)

ke

where R,(t) is the aggregate rate allocated to linkat time ¢. Given such a feasible rate
allocation/routing assignment, the dynamics of the direct queue backipgs, for all i, k,
are given by

Ukt +1) { — ) RE(t) = ) RE()

TeT; JjEO;

+ZR§i ZR t) + BJ( )}+-

SES; meZ;

(6)

Here, O, = {j € V|(i,5) € L}, T, ={T CV|(;,T) € T}, I, = {m € V|(m,i) € L}, S; =
{S CV|(S,i) € S}, and[z]" denotesmax(x,0). Similarly, the dynamics for each cooperative

gueue satisfy:

Ukt +1 { - Y R+ > Rf‘ns(t)r @)

j€0s melg
Here,Os = {j € V|(S,j) € S} andZs = {m € V|(m,S) € T}.
All traffic for cooperative queues arrives via broadcast links. In particular, there are no
exogenous arrivals. This means that all the nodes in a cooperative set will always have the
same queue backlog in the corresponding cooperative queues. One important caveat to this

statement is in the second cooperative model in Example 3. In that case, the cooperative link

10f a node is part of several cooperative links involving the same cooperativ, et the traffic of a given commodity for

each of these links can be stored in one queue.



given by ({2, 3}, 3) corresponds to the case where node 3 cannot decode node 1's transmission
to node 2, but stores some information about the received signal to aid it in decoding node 2's
transmission. Thus, the cooperative queue backlog is not the actual amount of information stored
at node 3. If the amount of data stored by node 3 is no greater than some bounded multiple
of the actual number of bits transmitted, then stabilityUdf(¢) still implies the stability of the

cooperative queue at node 3.

[11. THROUGHPUTOPTIMAL RATE ALLOCATION

Next we characterize the network stability region and give a throughput optimal joint rate
allocation/routing policy. Although the results we obtain here may be reminiscent of results
for conventional networks [4], [5], the cooperative nature of the relay network introduces some

subtle differences.

A. Stability Region

Let pF = limy_o 1 S _, BF(7) be the exogenous bit arrival rate to the direct queue at node
i for commodity k. We say that this queue &ableif limsup,_ % Zizl Ligk(rsgdr — 0 as
§ — oo, wherely, is the indicator function. Stability for the cooperative queues is defined in
the same manner.

The network stability regionA is defined as the closure of the set of §)icyrexc €
R'f””' for which there exists some feasible joint rate allocation and routing p®i@y) which
can guarantee that all queues are stable. This includes all policies which dynamically make
rate allocation and routing decisions given (possibly non-causal) knowledge of the joint queue
backlogs,u(t) = ((uF(t))iev, (uE(t))seu)rex- By feasible, we mean that at each timethe
policy specifies a rate vectoR! (t)),ccusut rex Satisfying (5). The following result characterizes
the stability region for a cooperative relay network. The proof is a direct generalization of the

arguments in [4], [5], and so is omitted.

Theorem 1:The stability regionA of a networkG = (V, £, S,7) with two-hop cooperative
forwarding is the set of allp);cy e € R for which there exist non-negative flow variables

(B age, (Fi)rer, (f&)ses)nex € conv(C) that satisfy the following flow conservation
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relations:

JjEO; TeT; meZ; SeS;

forall k € K and alli € V \ k;

0= f§— D fns:

j€0g meZlg

for all £ € K and all cooperative setS; and

(

% 1€y, S,k)eS

for all k£ € K.

B. Throughput Optimal Rate Allocation and Routing

Theorem 1 states that p = (pf)icyrex € int(A), then the queues can be stabilized. In
general, however, this may require knowing the valug.di reality, p can be learned only over
time, and may be variable. One would prefer to fimdaptiverate allocation/routing policies
which can stabilize the networkithout knowing p, as long asp € int(A). As pointed out
previously in [5], a throughput optimal resource allocation policy for stochastic networks with
physical-layer capacity regions turns out to be a generalization ofrth@mum differential
backlog(MDB) policy first proposed by Tassiulas [4]. Due to cooperative transmissions, however,
the general relay networks considered here are somewhat different from the networks considered
in [5]. Nevertheless, we show that the MDB policy can be adapted to produce a throughput
optimal rate allocation/routing policy for a cooperative relay network.

Let B(t) = (BF(t))iev.rex be the vector of bit arrivals in theth time slot. In this section,
to simplify our arguments, we restrict attention to the case wHdBgt) : ¢ € Z,} are
i.i.d. according to distributionrg with finite meanE[B] = p, wherep = (pF)icy p=cx iS
the vector of exogenous bit arrival rates. Furthermore, assumé|itfat)?] < oo for eachi and
eachk, and Pr (N;ey Niex {BF = 0}) > 0. These assumptions on the arrival process clearly
hold, for example, for independent homogeneous Poisson arrival processes. Following similar

arguments as in [6], the above assumptions can be relaxed to the Markov modulated case.
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Theorem 2:A throughput optimal rate allocation/routing poli@*(u(t)) for a network with
two-hop cooperative forwarding is given by first finding a rate allocatfdt{t) which is a

solution to the following optimization problem:

max Y bR+ D bR+ ) VRt (8)
(i,7)EL (3,T)eT (Sp)es
where
* _ k k
by = thax u; (t) — uj(0), 9)
b = maxub(t) — Tl (1), (10)
bsi = T]?gédslus(t) ug (t)- (11)

The corresponding routing policy is then implemented by sending only bits from traffic class
k* which attains the maximum in (9) ((10) and (11), respectively) at rgtét) (R;(t) and
R%,(t), respectively) for all(i,5) € £ ((¢,7) € T and (S,:) € S, respectively). That is, over
link I € LUSUT, RF(t) = R (t) for k = k* and RF(t) = 0 otherwise.

Note that the policy in (8) is the not the same as the conventional MDB policy of [4], [5]. In
particular, the terms? — |T'|u% and|S|u% — u reflect thequeue couplingffect induced by the
cooperative transmission structdteWe refer to the policy of (8) as th€ooperative Maximum
Differential Backlog(CMDB) policy.

Proof of Theorem 2We give the outline of the proof here. For details, see [14]. To show that
the CMDB policy stabilizes this network for any = (p¥);cy xex € int(A), it is convenient to
consider a “fictitious network'G; that is the same as the netwogk except that arrivals are
allowed to enter the cooperative queues. idbe the set of all cooperation sets. In the fictitious
network, for eachS € U, i € S, andk € K let pfs denote the exogenous bit arrival rate to the
gueue at node for cooperative sef and commodityk. We assume that the same arrivals occur
simultaneously at eache S, so thatply = pf for all i € S. Let A; be the stability region of
G;. 2 Itis clear that if the CMDB policy stabilize§, for all ((pf), (p¥)secu)icy rex € int(Ay)

"The exact value of these terms is due to our choice of the Lyapunov function used in the proof of Theorem 2, which is
a natural generalization of the Lyapunov function used in [4], [5]. Other choices of Lyapunov functions can be used to derive
other throughput optimal policies.

12This can be characterized as in Theorem 1, except the second flow conservation equation will npfy travke left-hand

side.
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such thatp?s = 0 for S 3 4, all i € V and allk € K, then CMDB also stabilizeg for all
p = (p¥)icvrex € int(A). Therefore, from now on, we concentrate on the artificial netvﬂ}rk
To show that the CMDB policy stabilizeg; for all ((o¥), (p%)seu)icv rex Such thatols
for S >4, all: € V and allk € K, we use an extension of Foster’s Criterion for the convergence
of Markov chains [2], [3], [5]. Consider the Lyapunov function

v = S b by

keK,icV S3i (12)
-y [Z(W Y IS ul)?
ke “iey Seu

We will show that there exists a compact subBet R'f‘('v“r'”') such that under the CMDB
policy,
EVU(t+1) - V(U@®)|U(t) =u] < —¢,

for all w ¢ T', wheree > 0. This, along with some other technical conditions [5], implies the

existence of a steady state distribution t@r
From (6), we can show

(UF(t+1))?

< (UF0)? — 20 () (Z Ry + 3 RE® — 3 R ()

TET, JEO; SeSi
+ Y R0 - L)+ o)+ 2mko (3 Rk
meZL; SES;
£ Xm0+ (X a0 X Ro)

meL; TeT; JEO;

2
- ( S REM+ D Rfm@)) (13)

SES; meZL;

Similarly, using (7) (sincefs =0 for all i € S, S € U andk € K), we can show

UL+ 1)) < (U5 — 20k (ZRSJ ZRms)

j€O0s meZlg

(z Ry 0) + (% R 19



13

Taking conditional expected value of both sides of inequalities (13)-(14) given the event

U(t) = u, and re-arranging, we have

EV(U({+1) - VU@)IU(®) = vl

= Z{Z%?E ST RE@®) + Y RE@) ~ Y RE()
ke (iey

TeT; JEO; SES;

— > Bl OIU(t) = ]

meZ;
+ Z —2uk|S|E Z R, () — Z Ry s(OIU(t) = u] }
Seu j€Os meLg
+p (15)

where 3 > 0 is an upper bound on a sum of terms involving the second moments of the bit
arrivals in thetth slot (which are bounded since the second moments of the packet arrivals and

the packet sizes are bounded), and powers of transmission rates (which are boundédisince

bounded).
Let E, [X] denoteE[X|U(t) = u|. Note that

z{zufa,[z R0+ S B0 - 3 Rb)
SES;

kek \iey TeT; jeEO;

~ 3" REL } + Zu’§|S|Eu{ > Rf%j(t)—mX; ans(t)]}

meT; Seu Jj€Os
- Z{ > Eu (uwf —uf)+ [Eu[RfT(t)]
kel \(i,j)eL (1, T)eT
X (Uf — |T|uf) ] Z =9 Rs7 \S|Us - Uk)} (16)
(S,i)es

For any((p¥), (pfs)scu)iev.kex € int(As) such thatfy = 0 for S 54, alli € V and allk € K,

there existsd > 0 such that((pF + §), (pfs)seu)icvrex € A; such thatpls = & for S 5 i
all i € V and allk € K. Therefore, an application of Theorem 1dg shows that there exist

non-negative flow variable§ f) . ez, (fir)rer, (f&)ses)rex € conv(C) such that

pr+0= Zfilj’"'Z = valizj_ ngmievvke’c

JjeO; TeT; meZ; SEeS;

=Y 15— > frs, Sel.

J€Os meZlg
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We therefore have

5 {zumzf s sw;a}

ke \iev Seu
—Z{ > Skl + N fhu Tk
ke \(i,j)eL (¢, T)eT
Py f§i(|5|u]§—Uf)}-
(S,i)eS

Let ((R};)aj)ec, (Rip)rer, (RE;)ses)rex b€ chosen according to the CMDB rule described

in (8). Then, sincel(f£)qjec, (fl)rer. (F)seshex € conv(C), Syercd Siey ub(of +0) +
> sey |Sukd} is less than or equal to the RHS of (16). Combining this fact with a rearrangement

of the RHS of (15), and notin§[B%(t)] = p¥, we have

EVU({+1) -VUM)U{) = v

<B-2 (Z {Zuf D |5|ug}>

kel \ieVy Seu

Let T = {u : > [>iey uf + Sgey [SIuk] < EE}. Then, for anye > 0, and anyu ¢ T,
EVUE+1) =VUM)U{) = u] < —e.

We have shown that the CMDB policy stabiliz€s for all ((p}), (pfs)seu)icy rex € int(Ay)
such thatp’s = 0 for S >4, alli € V and allk € K. Thus, we have also shown that the CMDB
policy stabilizesg for all p = (pF)icy rex € int(A). O

IV. CALCULATING THE CMBD PoOLICY

Implementing the CMBD policy requires solving (8. In this section, we examine the solution
to this problem for the: + 2 node parallel relay network introduced in Example 2 in Section II.
As in Example 1, we assume there are two activation sets so that the link capacity region is
again given byC = conv(C; U Cs), whereC; corresponds to activation set; = {1} andC,
corresponds to activation sét, ..., n}. As mentioned in Example 2, any subset of theelays
can potentially form a cooperative link. L&t C {1,...,n} be the set of all potential cooperative

subsets. For simplicity of notation, we also include all direct links, i.e. singleton subséfs, in
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Without loss of generality, assunig; < --- < h,,. Let Cgc be the capacity region of the
n-user Gaussian broadcast channel corresponding to the model. It follows that the rate vector

((Rus)seu; 0) € R2 lies in ¢y if and only if (R,s)sey Satisfies

Ri=> Res,i=1,...,n and (Ri,...,R,) € Cpc (17)
Seu;
whereld; = {S € U : i = min S}. For a symmetric networkhf; = --- = hy,), C; reduces to

the set of all((Rus)scu,0) € Ri’“' satisfying the simplex constraint

> " Rus < log(1+ hai P). (18)
Seu

77777

power splitting parameters, wheté P is the power allocated by node¢o cooperation sef > i.
The multiaccess capacity regi@ia ac () for a givena is the set of all(0, (Rsp))seu € Ri’”'

such that

Y R, <log (1 +) Ps(a)> vV Cu. (19)

Sev Sev
Note thatCcyrac(a) is defined by as many a®"~! — 1 constraints! Finally, the overall
multiaccess regiolds = UaConac(a).

Let u, be the queue backlog at nodeand us be the queue backlog corresponding to

cooperative seb. The CMDB policy can now be expressed as
max (ua - ‘S|US)R(Z5 + ‘S|USR5(,. (20)

ReC
Seu

Note that the solutionR* to (20) lies inconv(Cy,Comac(a®)) for somea*. SinceC; and
Comac(a®) are orthogonal and the objective is lined®; lies either inC; or in Coprac(a®).

We consider two cases.

Case 1 R" lies in C;. In the symmetric caseR™ takes the formR’¢. = log(1 + h, P) and
R’ = 0 otherwise, wher&™ = arg maxgey[u, —|S|us]. Thus, at any time, only one cooperative
set (or direct link) is active. In the asymmetric case, due to the linear constraint in (17), (20)

reduces to

(Rl,.‘%?;,})CGCBC ; (gle%fx[u“ N |S|u5]) i (21)
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Let (R}, ..., R;) be the solution to (21). Then the optimal solution to (20) has the Bfm =

R} for S* = argmaxgey, [u, — |S|us] and R = 0 for all otherS € U;, i = 1,...,n. That

is, at any time, multiple cooperative sets (or direct links) can be activeedxh relay node
participates in only one cooperative set (or direct linkamely the cooperative set (or direct
link) in ¢; with the largest differential backlog, — |S|us. For a general broadcast regiGpc,

the optimization in (21) can be solved using the greedy technique from [16], [17]. Note that even
though the number of variablé®,s)s<;, in the original optimization (20) can be exponentially

large inn, the actual resulting optimization problem in (21) is omhdimensional.

Case 2 R” lies in Copac(a®). In this case, the optimization in (20) reduces to

max " Z |S|USRS(, (22)

(0.Rsp)seu€Comac(er) &=
As mentioned aboveCcyac(a®) is potentially defined by a doubly exponential number of
constraints. However, sin@&;a¢(a*) is apolymatroid[15], the maximization in (22) merely
involves asorting of the coefficients.S|us. The solution to (22) is then given by successively
decoding the cooperative sets (or direct links) in increasing order of the coeffici8nts[15].
Since there are at mo&t' — 1 coefficients|S|ug, the maximization in (22) can be solved in

O(n) (linear) time.

V. CONCLUSIONS

We considered throughput optimal control of a wireless networks with cooperative relaying.
Our model applies to a general network topology and several different types of cooperative
scenarios. We established the network stability region and gave a variation of the Maximum
Differential Backlog policy, which we proved to be throughput optimal. We focused on a
centralized implementation and showed how the structure of the underlying capacity regions can
aid in implementing this policy. In practice, a distributed solution is more desirable, particularly
for managing the complexity of a cooperative network. Moreover, in a large network, there may
be many potential cooperative sets. A useful direction for future work would be to develop a

means for determining the most “useful” of these sets.
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