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Throughput Optimal Control of

Cooperative Relay Networks

Edmund M. Yeh and Randall A. Berry

Abstract

In cooperative relaying, multiple nodes cooperate to forward a packet within a network. To date,

such schemes have been primarily investigated at the physical layer with the focus on communication of

a single end-to-end flow. This paper considers cooperative relay networks with multiple stochastically

varying flows, which may be queued within the network.Throughput optimalnetwork control policies

are studied that take into account queue dynamics to jointly optimize routing, scheduling and resource

allocation. To this end, a generalization of theMaximum Differential Backlogalgorithm is given, which

takes into account the cooperative gains in the network. Several structural characteristics of this policy

are discussed for the special case of parallel relay networks.

I. I NTRODUCTION

Given stochastically varying traffic, there is a growing body of work onthroughput optimal

control schemes for wireless networks that jointly address issues such as routing, scheduling and

physical-layer resource allocation, e.g. [1]–[6]. By “throughput optimal” we mean that a control

scheme stabilizes all the queues within the network whenever it is possible to do so. In other

words, such a scheme stabilizes the network for any rate in the network’sstability region. Many

of these schemes utilize some version of amaximum differential backlog (MDB)policy (also
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Fig. 1. A four node parallel relay network model.

sometimes called the Backpressure Algorithm) [4], which has the desirable property of requiring

no a priori knowledge of the traffic statistics.

A feature of all the above models is that each packet is forwarded along a single route of point-

to-point links. At any time a packet resides at a single location in the network, and the resources

needed for the next transmission do not depend on the previous transmissions of the packet.

Recently, there has been much interest in variouscooperative relayingtechniques (e.g. [7]–[12])

that do not satisfy these assumptions. With such techniques, multiple nodes cooperate to relay a

packet. For example, consider the four node “parallel relay” network from [7], in Fig. 1. Suppose

that node 1 has traffic to send to node 4. The arrows in Fig. 1 indicate the feasible links for this

traffic using traditional point-to-point forwarding.1 If node 1 broadcasts the same packet toboth

nodes 2 and 3, then these nodes can cooperatively forward this packet to node 4 by, for example,

forming a distributed antenna array. In certain cases, this cooperative rate will be greater than

the rate achieved by point-to-point forwarding.

To date, cooperative relaying has mainly been addressed at the physical-layer, i.e. by studying

the achievable rates or diversity gains of given cooperative schemes, and often just focusing on

a single end-to-end backlogged session. A goal of this paper is to study models of cooperative

relaying that incorporate the stochastic arrival of traffic for multiple sessions and the related

network queueing dynamics. For example, in Fig. 1, suppose node 2 has its own traffic to send

to node 4. In order to stabilize the network, node 1 may then have to forgo any cooperative

gain and use the single route through node 3. For such models, we are interested in developing

a MDB-like policy which is throughput optimal.

We focus on “decode and forward” cooperative techniques, in which all cooperative nodes

must decode a copy of a packet before forwarding it. With these schemes, a potential trade-

1For simplicity, we assume that node 1 cannot directly transmit to node 4, e.g. the direct link may be of too poor a quality

to be feasible.
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off emerges: exploiting cooperative gains requires that the congestion in the network must first

increase due to the duplication of a packet in the network. This increase in traffic can be somewhat

ameliorated by exploiting the broadcast nature of the wireless medium, e.g., in Fig. 1, node 1

can simultaneously transmit a packet to both nodes 2 and 3. In addition to decode and forward, a

variety of other cooperative strategies have been considered, such as the “amplify and forward”

technique (e.g. [9]). We do address such schemes here; since they deal with analog information,

it is not obvious how to incorporate them into the queueing models considered here. In addition

to improving throughput, cooperative relaying can also increase diversity in a fading environment

(e.g. [8], [9]). Here, we assume that there is no fading, and so do not address these diversity

gains.

The MDB policy in [4], [5] makesmyopicdecisions based on “backpressure weights” given

by the differences in queue backlogs between two adjacent nodes on each link in a network. In

adapting such a policy to a cooperative network, several new issues arise. First, in cooperative

networks packets are not forwarded only over point-to-point links as in [4], [5]; hence, the

underlying network model in [4], [5] must be generalized. Second, the notion of a backpressure

weight must be generalized to account for the fact that a packet may be stored at multiple nodes.

Third, since an MDB-like policy is myopic, it is not obvious if it would allow for the temporary

increase in the congestion needed to exploit cooperative gains. We show that these issues can

be addressed in a network with “two-hop” cooperative relaying. This model accommodates the

example in Fig. 1 as well as a number of other important cooperative scenarios.

II. GENERAL NETWORK MODEL

We study a generalization of the model in [5] to include cooperative relaying. A networkG

consists of a set of nodesV, and a setL of non-cooperativeor direct links, given by ordered

pairs (u, v) for u, v ∈ V. These represent point-to-point links.2 Additionally, G contains two

other sets of “links.” First, we define a setS of cooperative links. These are denoted by ordered

pairs (S, v), whereS ⊂ V is a subset of nodes which cooperate to forward a packet to a single

destinationv ∈ V. Second, we define a setT of broadcast links, denoted by ordered pairs

2In principle, a “link” exists between every pair of nodes. However, we do not require thatL include all such links, e.g. certain

poor links may not be considered to reduce routing complexity.
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(u, T ), whereu ∈ V is a node which may broadcast a packet to all of the nodes inT ⊂ V. For

example, letG = (V , E ,S, T ) be a model for the network in Fig. 1. Here,V = {1, 2, 3, 4}, and

E consists of the four direct links, shown by the arrows in the figure. SettingS = {({2, 3}, 4)}

andT = {(1, {2, 3})} allows us to model the case where node 1 can broadcast to nodes 2 and

3, who can then cooperatively relay a packet to node 4.

We restrict our attention totwo-hopcooperative relay networks in which (i) for each cooper-

ative link (S, v) there is at least one broadcast link(u, T ) with T = S and (ii ) the only traffic

that can be sent over(S, v) is that which is received on such a broadcast link. These restrictions

rule out several possibilities, including the case where one cooperative group forwards a packet

to a second cooperative group, which then forwards it on, or the case where different copies of

a packet arrive at a cooperative group over different paths. Such possibilities are not considered

in part to simplify notation and in part because the implementation complexity quickly becomes

intractable.

We assume the network operates in slotted time, where the length of each time-slot is

normalized to 1. There is no fading or changes in the topology over the time-scale of interest.3

Within time-slot t, let R(t) = (Rl(t)) denote the vector of realized transmission rates for all

l ∈ L∪S∪T . This vector is constrained to lie in aninstantaneous link capacity regionC, which

is a bounded subset ofR|L∪S∪T |
+ , i.e., C is the set of feasible rates in any time-slot, including

the rates on all cooperative and broadcast links.

Next, we give several examples ofC where the channel between each pair of nodesi, j is

given by an additive Gaussian noise channel with gain
√

hij, unit variance noise, and bandwidth

W = 1 Hz. Each transmitter is assumed to have a power constraint ofP during each time-

slot. If link (i, j) is the only link activated, then the feasible transmission rate is given by

Rij = log(1 + hijP ), i.e., the Shannon capacity of this channel.4 The results in Section III are

not restricted to this case, but apply to any model forC that gives a bounded subset ofR|L∪S∪T |
+ .

Example 1:Let R = (R1S, R12, R13, RS4, R24, R34) be a vector of transmission rates for the

6 links in the network in Fig. 1, whereS = {2, 3}. Suppose that only one of the following two

sets of transmitters may be simultaneously active:A1 = {1} or A2 = {2, 3}. This enforces a

3Such effects can be incorporated in our analysis at the expense of more complicated notation.

4This is reasonable provided that each time-slot has sufficiently many degrees of freedom to allow for sophisticated coding.
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half-duplexing constraintat nodes 2 and 3.5 It follows that C = conv(C1 ∪ C2), whereCi is the

set of feasible rates corresponding toAi. Here,conv(X) indicates the convex hull of the setX.

This is included to model the possibility of time-sharing between the two activation sets within

a time-slot.

WhenA1 is active, the network can be viewed as a Gaussian broadcast channel, where the

traffic sent over link(1, {2, 3}) representscommon information. Without loss of generality,

assume thath12 ≤ h13. The feasible rates must then satisfy(R12 + R1S, R13) ∈ CBC , where

CBC is the capacity region of the Gaussian Broadcast channel. Therefore, we can defineC1 as

the set of all(R1S, R12, R13, 0, 0, 0) such that(R12 + R1S, R13) ∈ CBC .

WhenA2 is active, nodes 2 and 3 transmit over a Gaussian multiaccess channel. When these

nodes send only direct traffic (RS4 = 0), the transmission rates(R24, R34) must lie in the

corresponding multiaccess capacity regionCMAC , i.e. they must satisfy∑
i∈V

Ri4 ≤ log
(
1 +

∑
i∈V

hi4P
)
, ∀V ⊆ {2, 3}. (1)

Suppose that the nodes cooperate by beamforming so that if they send only cooperative traffic6

RS4 = log(1 + (
√

h24 +
√

h34)
2P ). (2)

In addition, we can allow the nodes to transmit both cooperative and direct traffic simultaneously.

This can be modeled as a variation of a three-user multiaccess channel where two users corre-

spond to the direct traffic from nodes 2 and 3, and a third user corresponds to the cooperative

traffic.7 The difference here is that the power constraints of the “users” are coupled. We assume

that if both users 2 and 3 devote a fractionα ∈ [0, 1] of their power to cooperative traffic, then

they can achieve any rates(0, 0, 0, RS4, R24, R34) ≡ (0, 0, 0, R4, R5, R6) ∈ R6
+ satisfying∑

i∈V

Ri ≤ log
(
1 +

∑
i∈V

Pi(α)
)
, ∀V ⊆ {4, 5, 6}, (3)

5This example does not allow some schedules that do not violate the half-duplexing constraint, such as node 1 transmitting

to node 2, while node 3 transmits to node 4. This can easily be accommodated in the general model; here we omit them to

simplify the discussion.

6This requires that the two transmitters have perfect synchronization and so can coherently combine their signals at the

receiver. Models for distributed beamforming that relax this assumption can also be found, e.g. [11]; these can be incorporated

into the model by simply re-definingRS4.

7A key assumption here is that the encoding of the traffic by these three “users” depends only on their own message and that

the messages are independent.
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Fig. 2. A n + 2 node parallel relay network model.

where P4(α) = (
√

h24 +
√

h34)
2αP , P5(α) = h24(1 − α)P , and P6(α) = h34(1 − α)P . Let

CCMAC(α) be the set of rates which satisfy (3) for a particular value ofα. We then setC2 =⋃
α∈[0,1] CCMAC(α). It can be verified that the resulting region is convex.8

Example 2:The network in Fig. 2 is a generalization of Example 1 to the case where there

are n relay nodes between a nodea and nodeb. Here, all n nodes may form a cooperative

link ({1, . . . , n}, b). Additionally, any subset of thesen nodes can also form a cooperative

link. Allowing all such possibilities, there are potentially2n − 1− n different cooperative links

betweena and b in this network, each with its own corresponding broadcast link. In this case,

the instantaneous link capacity region would have a dimension of2(2n − 1 − n) + 2n, which

can be modeled similarly as in Example 1.

k���*
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Fig. 3. A three node simple relay network model.

Example 3:The network in Fig. 3 is based on the classical relay channel [13]. Assume that

h12 > h13. We discuss two ways in which packets from node 1 can be cooperatively relayed

to node 3. First, consider a cooperative link({1, 2}, 3), in which nodes1 and 2 cooperatively

forward a packet to node 3 again using cooperative beamforming. To do this, node 1 must first

send a packet to node 2 and save a copy of the packet for itself. To incorporate such a scheme

8Note that here we require both nodes 2 and 3 to devote the same fraction of their power to the cooperative traffic. More

generally, one can consider a model where each may devote a different fraction.
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into our model, we view the first transmission as occurring over a broadcast link(1, {1, 2}),

i.e. a link in which the source is also one of the destination nodes. The transmission rate on

this link will be the same as the direct rate from node 1 to 2. Rate vectors inC will then have

the form (R1S, R12, R13, RS3, R23). Assuming a duplexing constraint at node2, C can again be

decomposed into two setsC1 andC2, whereC1 (C2) is the set of feasible rates given that node

2 is receiving (transmitting), which can be modeled as a broadcast (multiaccess) channel.

A second cooperative scenario is for node 1 to first transmit a packet to node 2, but for node

3 to also store the received signal from this transmission (even though it cannot decode it).

Then when node 2 forwards the packet to node 3, node 3 can use the information from both

transmissions to decode the packet. This case is modeled by a broadcast link(1, {2, 3}) and a

cooperative link({2, 3}, 3). The rate for the broadcast link(1, {2, 3}) is again the rate at which

node 1 can transmit to node 2 (since node 3 is not decoding). The corresponding rate on the

cooperative link({2, 3}, 3) is9

R{2,3}3 = log(1 + h23P ) + log(1 + h13P ). (4)

Here, the first term reflects the mutual information received from node 2’s transmission and

the second term is the mutual information received from node 1’s original transmission to node

2. In this case, one can again defineC for given duplexing constraints. We could also define

C to includes both types of cooperative links; it would then contain vectors of dimension7

corresponding to the three direct rates, two cooperative rates, and two broadcast rates.

We have focused on relatively simple network topologies to illustrate some possibilities for

cooperation. In a general network, several of these scenarios, as well as others, could exist at

different locations in the network. Moreover, we emphasize that while we restrict our attention

to two-hop cooperative transmissions, we do not require that the overall network has a two-hop

topology.

A. Traffic and queueing dynamics

Following [5], all traffic that enters the network is classified as a particular “commodity,”

which specifies its desired destination. LetK ⊂ V be the set of commodities, where commodity

9For this model, we require that node 1 transmit on link(1, {2, 3}) with full power P . Otherwise, the corresponding rate on

the cooperative link would depend on the power used in the previous time-slots.
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k has destination nodek. Exogenous traffic of each commodityk ∈ K arrives at nodei ∈ V \ k

according to an ergodic processBk
i (t), whereBk

i (t) is the number of exogenous bit arrivals to

nodei in time-slot t. All arriving traffic is buffered until it is transmitted.

Let Uk
i (t) be the unfinished work (in bits) of commodityk at nodei, which is to be sent over

a direct or broadcast link (we refer to this asdirect traffic). For each cooperative link(S, u) ∈ S,

let Uk
S(t) be the unfinished work of commodityk traffic that is to be forwarded cooperatively

by the nodes inS. Each node keeps separate queues for each commodity of the direct traffic as

well as each commodity of traffic for each cooperative setS to which it belongs.10

Let (Rk
l (t))l∈L∪S∪T ,k∈K denote a joint rate allocation/routing assignment at timet, whereRk

l (t)

denotes the rate allocated to commodityk over link l. For feasibility, we must have∑
k∈K

Rk
l (t) ≤ Rl(t) ∀l, and(Rl(t))l∈L∪S∪T ∈ C, (5)

where Rl(t) is the aggregate rate allocated to linkl at time t. Given such a feasible rate

allocation/routing assignment, the dynamics of the direct queue backlogsUk
i (t), for all i, k,

are given by

Uk
i (t + 1) ≤

[
Uk

i (t)−
∑
T∈Ti

Rk
iT (t)−

∑
j∈Oi

Rk
ij(t)

+
∑
S∈Si

Rk
Si(t) +

∑
m∈Ii

Rk
mi(t) + Bk

i (t)

]+

.

(6)

Here,Oi ≡ {j ∈ V|(i, j) ∈ L}, Ti ≡ {T ⊆ V|(i, T ) ∈ T }, Ii ≡ {m ∈ V|(m, i) ∈ L}, Si ≡

{S ⊆ V|(S, i) ∈ S}, and [x]+ denotesmax(x, 0). Similarly, the dynamics for each cooperative

queue satisfy:

Uk
S(t + 1) ≤

[
Uk

S(t)−
∑
j∈OS

Rk
Sj(t) +

∑
m∈IS

Rk
mS(t)

]+

. (7)

Here,OS ≡ {j ∈ V|(S, j) ∈ S} andIS ≡ {m ∈ V|(m,S) ∈ T }.

All traffic for cooperative queues arrives via broadcast links. In particular, there are no

exogenous arrivals. This means that all the nodes in a cooperative set will always have the

same queue backlog in the corresponding cooperative queues. One important caveat to this

statement is in the second cooperative model in Example 3. In that case, the cooperative link

10If a node is part of several cooperative links involving the same cooperative setS, all the traffic of a given commodity for

each of these links can be stored in one queue.
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given by ({2, 3}, 3) corresponds to the case where node 3 cannot decode node 1’s transmission

to node 2, but stores some information about the received signal to aid it in decoding node 2’s

transmission. Thus, the cooperative queue backlog is not the actual amount of information stored

at node 3. If the amount of data stored by node 3 is no greater than some bounded multiple

of the actual number of bits transmitted, then stability ofUk
S(t) still implies the stability of the

cooperative queue at node 3.

III. T HROUGHPUTOPTIMAL RATE ALLOCATION

Next we characterize the network stability region and give a throughput optimal joint rate

allocation/routing policy. Although the results we obtain here may be reminiscent of results

for conventional networks [4], [5], the cooperative nature of the relay network introduces some

subtle differences.

A. Stability Region

Let ρk
i = limt→∞

1
t

∑t
τ=0 Bk

i (τ) be the exogenous bit arrival rate to the direct queue at node

i for commodityk. We say that this queue isstable if lim supt→∞
1
t

∑t
τ=1 1[Uk

i (τ)>ξ]dτ → 0 as

ξ → ∞, where1{·} is the indicator function. Stability for the cooperative queues is defined in

the same manner.

The network stability regionΛ is defined as the closure of the set of all(ρk
i )i∈V,k∈K ∈

R|K||V|
+ for which there exists some feasible joint rate allocation and routing policyR(u) which

can guarantee that all queues are stable. This includes all policies which dynamically make

rate allocation and routing decisions given (possibly non-causal) knowledge of the joint queue

backlogs,u(t) = ((uk
i (t))i∈V , (uk

S(t))S∈U)k∈K. By feasible, we mean that at each timet, the

policy specifies a rate vector(Rk
l (t))l∈L∪S∪T ,k∈K satisfying (5). The following result characterizes

the stability region for a cooperative relay network. The proof is a direct generalization of the

arguments in [4], [5], and so is omitted.

Theorem 1:The stability regionΛ of a networkG = (V ,L,S, T ) with two-hop cooperative

forwarding is the set of all(ρk
i )i∈V,k∈K ∈ R|K||V|

+ for which there exist non-negative flow variables

((fk
ij)(i,j)∈L, (fk

iT )T∈T , (fk
Si)S∈S)k∈K ∈ conv(C) that satisfy the following flow conservation
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relations:

ρk
i =

∑
j∈Oi

fk
ij +

∑
T∈Ti

fk
iT −

∑
m∈Ii

fk
mi −

∑
S∈Si

fk
Si,

for all k ∈ K and all i ∈ V \ k;

0 =
∑
j∈OS

fk
Sj −

∑
m∈IS

fk
mS,

for all k ∈ K and all cooperative setsS; and∑
i∈V

ρk
i =

∑
i∈Ik

fk
ik +

∑
(S,k)∈S

fk
Sk,

for all k ∈ K.

B. Throughput Optimal Rate Allocation and Routing

Theorem 1 states that ifρ = (ρk
i )i∈V,k∈K ∈ int(Λ), then the queues can be stabilized. In

general, however, this may require knowing the value ofρ. In reality,ρ can be learned only over

time, and may be variable. One would prefer to findadaptiverate allocation/routing policies

which can stabilize the networkwithout knowing ρ, as long asρ ∈ int(Λ). As pointed out

previously in [5], a throughput optimal resource allocation policy for stochastic networks with

physical-layer capacity regions turns out to be a generalization of themaximum differential

backlog(MDB) policy first proposed by Tassiulas [4]. Due to cooperative transmissions, however,

the general relay networks considered here are somewhat different from the networks considered

in [5]. Nevertheless, we show that the MDB policy can be adapted to produce a throughput

optimal rate allocation/routing policy for a cooperative relay network.

Let B(t) = (Bk
i (t))i∈V,k∈K be the vector of bit arrivals in thetth time slot. In this section,

to simplify our arguments, we restrict attention to the case where{B(t) : t ∈ Z+} are

i.i.d. according to distributionπB with finite meanE[B] = ρ, where ρ = (ρk
i )i∈V,k=∈K is

the vector of exogenous bit arrival rates. Furthermore, assume thatE[(Bk
i )2] < ∞ for eachi and

eachk, and Pr
(
∩i∈V ∩k∈K {Bk

i = 0}
)

> 0. These assumptions on the arrival process clearly

hold, for example, for independent homogeneous Poisson arrival processes. Following similar

arguments as in [6], the above assumptions can be relaxed to the Markov modulated case.
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Theorem 2:A throughput optimal rate allocation/routing policyR∗(u(t)) for a network with

two-hop cooperative forwarding is given by first finding a rate allocationR∗(t) which is a

solution to the following optimization problem:

max
R(t)∈C

∑
(i,j)∈L

b∗ijRij(t) +
∑

(i,T )∈T

b∗iT RiT (t) +
∑

(S,i)∈S

b∗SiRSi(t) (8)

where

b∗ij ≡ max
k∈K

uk
i (t)− uk

j (t), (9)

b∗iT ≡ max
k∈K

uk
i (t)− |T |uk

T (t), (10)

b∗Si ≡ max
k∈K

|S|uk
S(t)− uk

i (t). (11)

The corresponding routing policy is then implemented by sending only bits from traffic class

k∗ which attains the maximum in (9) ((10) and (11), respectively) at rateR∗
ij(t) (R∗

iT (t) and

R∗
Si(t), respectively) for all(i, j) ∈ L ((i, T ) ∈ T and (S, i) ∈ S, respectively). That is, over

link l ∈ L ∪ S ∪ T , Rk
l (t) = R∗

l (t) for k = k∗ andRk
l (t) = 0 otherwise.

Note that the policy in (8) is the not the same as the conventional MDB policy of [4], [5]. In

particular, the termsuk
i − |T |uk

T and |S|uk
S −uk

i reflect thequeue couplingeffect induced by the

cooperative transmission structure.11 We refer to the policy of (8) as theCooperative Maximum

Differential Backlog(CMDB) policy.

Proof of Theorem 2: We give the outline of the proof here. For details, see [14]. To show that

the CMDB policy stabilizes this network for anyρ = (ρk
i )i∈V,k∈K ∈ int(Λ), it is convenient to

consider a “fictitious network”Gf that is the same as the networkG, except that arrivals are

allowed to enter the cooperative queues. LetU be the set of all cooperation sets. In the fictitious

network, for eachS ∈ U , i ∈ S, andk ∈ K let ρk
iS denote the exogenous bit arrival rate to the

queue at nodei for cooperative setS and commodityk. We assume that the same arrivals occur

simultaneously at eachi ∈ S, so thatρk
iS = ρk

S for all i ∈ S. Let Λf be the stability region of

Gf . 12 It is clear that if the CMDB policy stabilizesGf for all ((ρk
i ), (ρ

k
iS)S∈U)i∈V,k∈K ∈ int(Λf )

11The exact value of these terms is due to our choice of the Lyapunov function used in the proof of Theorem 2, which is

a natural generalization of the Lyapunov function used in [4], [5]. Other choices of Lyapunov functions can be used to derive

other throughput optimal policies.

12This can be characterized as in Theorem 1, except the second flow conservation equation will now haveρk
S on the left-hand

side.
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such thatρk
iS = 0 for S 3 i, all i ∈ V and all k ∈ K, then CMDB also stabilizesG for all

ρ = (ρk
i )i∈V,k∈K ∈ int(Λ). Therefore, from now on, we concentrate on the artificial networkGf .

To show that the CMDB policy stabilizesGf for all ((ρk
i ), (ρ

k
iS)S∈U)i∈V,k∈K such thatρk

iS = 0

for S 3 i, all i ∈ V and allk ∈ K, we use an extension of Foster’s Criterion for the convergence

of Markov chains [2], [3], [5]. Consider the Lyapunov function

V (u) ≡
∑

k∈K,i∈V

[
(uk

i )2 +
∑
S3i

(uk
S)2
]

=
∑
k∈K

[∑
i∈V

(uk
i )2 +

∑
S∈U

|S|(uk
S)2
]
.

(12)

We will show that there exists a compact subsetΓ ⊂ R|K|(|V|+|U|)
+ such that under the CMDB

policy,

E[V (U (t + 1))− V (U (t))|U (t) = u] < −ε,

for all u /∈ Γ, whereε > 0. This, along with some other technical conditions [5], implies the

existence of a steady state distribution forU .

From (6), we can show

(Uk
i (t + 1))2

≤ (Uk
i (t))2 − 2Uk

i (t)
(∑

T∈Ti

Rk
iT (t) +

∑
j∈Oi

Rk
ij(t)−

∑
S∈Si

Rk
Si(t)

+
∑

m∈Ii

Rk
mi(t)−Bk

i (t)
)

+ (Bk
i (t))2 + 2Bk

i (t)
( ∑

S∈Si

Rk
Si(t)

+
∑

m∈Ii

Rk
mi(t)

)
+
( ∑

T∈Ti

Rk
iT (t)−

∑
j∈Oi

Rk
ij(t)

)2

+
( ∑

S∈Si

Rk
Si(t) +

∑
m∈Ii

Rk
mi(t)

)2

(13)

Similarly, using (7) (sinceρk
iS = 0 for all i ∈ S, S ∈ U andk ∈ K), we can show

(Uk
S(t + 1))2 ≤ (Uk

S(t))2 − 2Uk
S(t)

( ∑
j∈OS

Rk
Sj(t)−

∑
m∈IS

Rk
mS(t)

)

+
( ∑

j∈OS

Rk
Sj(t)

)2

+
( ∑

m∈IS

Rk
mS(t)

)2

. (14)
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Taking conditional expected value of both sides of inequalities (13)-(14) given the event

U (t) = u, and re-arranging, we have

E[V (U(t + 1))− V (U(t))|U(t) = u]

≤
∑
k∈K

{∑
i∈V

−2uk
i E

[∑
T∈Ti

Rk
iT (t) +

∑
j∈Oi

Rk
ij(t)−

∑
S∈Si

Rk
Si(t)

−
∑

m∈Ii

Rk
mi(t)−Bk

i (t)|U(t) = u

]

+
∑
S∈U

−2uk
S |S|E

∑
j∈OS

Rk
Sj(t)−

∑
m∈IS

Rk
mS(t)|U(t) = u

}

+ β (15)

whereβ > 0 is an upper bound on a sum of terms involving the second moments of the bit

arrivals in thetth slot (which are bounded since the second moments of the packet arrivals and

the packet sizes are bounded), and powers of transmission rates (which are bounded sinceC is

bounded).

Let Eu[X] denoteE[X|U (t) = u]. Note that

∑
k∈K

{∑
i∈V

uk
i Eu

[∑
T∈Ti

Rk
iT (t) +

∑
j∈Oi

Rk
ij(t)−

∑
S∈Si

Rk
Si(t)

−
∑

m∈Ii

Rk
mi(t)

]
+
∑
S∈U

uk
S |S|Eu

[ ∑
j∈OS

Rk
Sj(t)−

∑
m∈IS

Rk
mS(t)

]}

=
∑
k∈K

{ ∑
(i,j)∈L

Eu[Rk
ij(t)](u

k
i − uk

j ) +
∑

(i,T )∈T

[
Eu[Rk

iT (t)]

× (uk
i − |T |uk

T )
]

+
∑

(S,i)∈S

Eu[Rk
Si(t)](|S|uk

S − uk
i )

}
. (16)

For any((ρk
i ), (ρ

k
iS)S∈U)i∈V,k∈K ∈ int(Λf ) such thatρk

iS = 0 for S 3 i, all i ∈ V and allk ∈ K,

there existsδ > 0 such that((ρk
i + δ), (ρk

iS)S∈U)i∈V,k∈K ∈ Λf such thatρk
iS = δ for S 3 i,

all i ∈ V and all k ∈ K. Therefore, an application of Theorem 1 toGf shows that there exist

non-negative flow variables((fk
ij)(i,j)∈L, (fk

iT )T∈T , (fk
Si)S∈S)k∈K ∈ conv(C) such that

ρk
i + δ =

∑
j∈Oi

fk
ij +

∑
T∈Ti

fk
iT −

∑
m∈Ii

fk
mj −

∑
S∈Si

fk
Si, i ∈ V, k ∈ K.

δ =
∑

j∈OS

fk
Sj −

∑
m∈IS

fk
mS , S ∈ U .
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We therefore have

∑
k∈K

{∑
i∈V

uk
i (ρk

i + δ) +
∑
S∈U

|S|uk
Sδ

}

=
∑
k∈K

{ ∑
(i,j)∈L

fk
ij(u

k
i − uk

j ) +
∑

(i,T )∈T

fk
iT (uk

i − |T |uk
T )

+
∑

(S,i)∈S

fk
Si(|S|uk

S − uk
i )

}
.

Let ((Rk
ij)(i,j)∈L, (Rk

iT )T∈T , (Rk
Si)S∈S)k∈K be chosen according to the CMDB rule described

in (8). Then, since((fk
ij)(i,j)∈L, (fk

iT )T∈T , (fk
Si)S∈S)k∈K ∈ conv(C),

∑
k∈K{

∑
i∈V uk

i (ρ
k
i + δ) +∑

S∈U |S|uk
Sδ} is less than or equal to the RHS of (16). Combining this fact with a rearrangement

of the RHS of (15), and notingE[Bk
i (t)] = ρk

i , we have

E[V (U (t + 1))− V (U (t))|U (t) = u]

≤ β − 2δ

(∑
k∈K

{∑
i∈V

uk
i +

∑
S∈U

|S|uk
S

})

Let Γ = {u :
∑

k∈K[
∑

i∈V uk
i +

∑
S∈U |S|uk

S] ≤ β+ε
2δ
}. Then, for anyε > 0, and anyu /∈ Γ,

E[V (U (t + 1))− V (U (t))|U (t) = u] < −ε.

We have shown that the CMDB policy stabilizesGf for all ((ρk
i ), (ρ

k
iS)S∈U)i∈V,k∈K ∈ int(Λf )

such thatρk
iS = 0 for S 3 i, all i ∈ V and allk ∈ K. Thus, we have also shown that the CMDB

policy stabilizesG for all ρ = (ρk
i )i∈V,k∈K ∈ int(Λ). 2

IV. CALCULATING THE CMBD POLICY

Implementing the CMBD policy requires solving (8. In this section, we examine the solution

to this problem for then+2 node parallel relay network introduced in Example 2 in Section II.

As in Example 1, we assume there are two activation sets so that the link capacity region is

again given byC = conv(C1 ∪ C2), whereC1 corresponds to activation setA1 = {1} and C2

corresponds to activation set{1, . . . , n}. As mentioned in Example 2, any subset of then relays

can potentially form a cooperative link. LetU ⊆ {1, . . . , n} be the set of all potential cooperative

subsets. For simplicity of notation, we also include all direct links, i.e. singleton subsets, inU .
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Without loss of generality, assumeha1 ≤ · · · ≤ han. Let CBC be the capacity region of the

n-user Gaussian broadcast channel corresponding to the model. It follows that the rate vector

((RaS)S∈U ,0) ∈ R2|U|
+ lies in C1 if and only if (RaS)S∈U satisfies

Ri =
∑
S∈Ui

RaS, i = 1, . . . , n and (R1, . . . , Rn) ∈ CBC (17)

whereUi = {S ∈ U : i = min S}. For a symmetric network (ha1 = · · · = han), C1 reduces to

the set of all((RaS)S∈U ,0) ∈ R2|U|
+ satisfying the simplex constraint∑

S∈U

RaS ≤ log(1 + ha1P ). (18)

.

For the multiaccess side of the parallel relay network, letα = (αi
S)S3i,i=1,...,n be the vector of

power splitting parameters, whereαi
SP is the power allocated by nodei to cooperation setS 3 i.

The multiaccess capacity regionCCMAC(α) for a givenα is the set of all(0, (RSb))S∈U ∈ R2|U|
+

such that ∑
S∈V

RSb ≤ log

(
1 +

∑
S∈V

PS(α)

)
∀V ⊆ U . (19)

Note that CCMAC(α) is defined by as many as22n−1 − 1 constraints! Finally, the overall

multiaccess regionC2 = ∪αCCMAC(α).

Let ua be the queue backlog at nodea and uS be the queue backlog corresponding to

cooperative setS. The CMDB policy can now be expressed as

max
R∈C

∑
S∈U

(ua − |S|uS)RaS + |S|uSRSb. (20)

Note that the solutionR∗ to (20) lies in conv(C1, CCMAC(α∗)) for someα∗. Since C1 and

CCMAC(α∗) are orthogonal and the objective is linear,R∗ lies either inC1 or in CCMAC(α∗).

We consider two cases.

Case 1: R∗ lies in C1. In the symmetric case,R∗ takes the formR∗
aS∗ = log(1 + ha1P ) and

R∗
aS = 0 otherwise, whereS∗ = arg maxS∈U [ua−|S|uS]. Thus, at any time, only one cooperative

set (or direct link) is active. In the asymmetric case, due to the linear constraint in (17), (20)

reduces to

max
(R1,...,Rn)∈CBC

n∑
i=1

(
max
S∈Ui

[ua − |S|uS]

)
·Ri. (21)
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Let (R∗
1, . . . , R

∗
n) be the solution to (21). Then the optimal solution to (20) has the formR∗

aS∗ =

R∗
i for S∗ = arg maxS∈Ui

[ua − |S|uS] and R∗
aS = 0 for all other S ∈ Ui, i = 1, . . . , n. That

is, at any time, multiple cooperative sets (or direct links) can be active, buteach relay nodei

participates in only one cooperative set (or direct link), namely the cooperative set (or direct

link) in Ui with the largest differential backlogua − |S|uS. For a general broadcast regionCBC ,

the optimization in (21) can be solved using the greedy technique from [16], [17]. Note that even

though the number of variables(RaS)S∈U in the original optimization (20) can be exponentially

large inn, the actual resulting optimization problem in (21) is onlyn-dimensional.

Case 2: R∗ lies in CCMAC(α∗). In this case, the optimization in (20) reduces to

max
(0,RSb)S∈U∈CCMAC(α∗)

∑
S∈U

|S|uSRSb (22)

As mentioned above,CCMAC(α∗) is potentially defined by a doubly exponential number of

constraints. However, sinceCCMAC(α∗) is a polymatroid[15], the maximization in (22) merely

involves asorting of the coefficients|S|uS. The solution to (22) is then given by successively

decoding the cooperative sets (or direct links) in increasing order of the coefficients|S|uS [15].

Since there are at most2n − 1 coefficients|S|uS, the maximization in (22) can be solved in

O(n) (linear) time.

V. CONCLUSIONS

We considered throughput optimal control of a wireless networks with cooperative relaying.

Our model applies to a general network topology and several different types of cooperative

scenarios. We established the network stability region and gave a variation of the Maximum

Differential Backlog policy, which we proved to be throughput optimal. We focused on a

centralized implementation and showed how the structure of the underlying capacity regions can

aid in implementing this policy. In practice, a distributed solution is more desirable, particularly

for managing the complexity of a cooperative network. Moreover, in a large network, there may

be many potential cooperative sets. A useful direction for future work would be to develop a

means for determining the most “useful” of these sets.
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