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Abstract—We study a distributed algorithm for adjusting
beamforming vectors in a peer-to-peer wireless network
with multiple-input multiple-output (MIMO) channels. Each
transmitter precoding matrix has rank one, and a linear
minimum mean squared error (MMSE) filter is applied at
each receiver. Our objective is to maximize the total utility
summed over all users, where each user’s utility is a function
of the received signal-to-interference-plus-noise ratio (SINR).
Given all users’ beamforming vectors and receive filters,
each receiver announces an interference price, representing the
marginal cost of interference from other users. A particular
transmitter updates its beamforming vector to maximize its
utility minus the interference cost to other users. We show
that if the utility functions satisfy certain concavity conditions,
then the total utility is non-decreasing with each update. We
also present numerical results that illustrate the effect of
ignoring interference prices from all but the closest users,
and relaxing requirements on the frequency of beam and
price updates.

I. INTRODUCTION

Achieving high spectral efficiencies in multiuser wireless
networks (e.g., cellular and wireless ad-hoc networks) de-
pends critically on the application of interference mitigation
techniques. When users in the network are equipped with
multiple transmitters and receivers, the additional spatial
degrees of freedom can be exploited to reduce interference.
Joint optimization of power and spatial beams becomes
especially challenging in peer-to-peer networks without
centralized resource management, since an optimal allo-
cation of resources at a particular transmitter (e.g., that
maximizes total rate) generally requires information about
other nodes.

We consider a peer-to-peer network with multiple-input
multiple-output (MIMO) links. The performance of each
transmitter-receiver pair is measured by a utility function,
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which is a function of the transmission rate and depends
on the transmitter’s precoding matrix and the received
interference-plus-noise covariance matrix. Our objective is
to maximize the total (sum) utility over all users by apply-
ing a distributed algorithm to adjust the users’ precoding
matrices. We assume that each user’s precoding matrix
has rank one, i.e., the precoding matrix is a beamforming
vector. This case has practical significance, and simplifies
the optimization problem.

The algorithm we study is motivated by the work in
[1]–[3]. In [1], the asynchronous distributed pricing (ADP)
algorithm was presented for distributed power allocation in
single-antenna wireless networks. In that algorithm, each
user announces an interference price to all other users,
which is the user’s marginal change in utility per unit
interference power. Given the interference prices from all
interfering users, each user updates his power and beam by
optimizing his utility minus the interference cost to other
users, which is determined from their announced interfer-
ence prices. It is shown in [1] that the ADP algorithm
converges for a suitable class of utility functions. The proof
is based on relating the updates in the distributed algorithm
to best response updates in a supermodular game.

The ADP algorithm allows completely asynchronous
updates of each users transmission power and prices. In [2]
it is shown that with further restrictions on the updates, the
ADP algorithm will converge monotonically for a broader
class of utility functions. Furthermore, the analysis in [2]
is shown to apply to a generalization of the ADP algorithm
for multiple-input-single-output (MISO) networks. Similar
distributed algorithms are studied for MIMO networks in
[3], which have no restriction on the rank of the pre-
coding matrix. These algorithms are observed to perform
well numerically, although finding analytical conditions for
convergence remains an open problem. The algorithm we
consider here is similar to this, except we restrict the rank
of the precoding matrix to be one.
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As in [1]–[3] we assume that interference is treated as
noise. The goal is to optimize the total utility by selecting an
optimal beamforming vector for each transmitter, assuming
a linear minimum mean squared error (MMSE) receive
filter for each associated receiver. Unlike the MISO network
considered in [2], the receiver MMSE filters must be itera-
tively updated along with beams. Based on the convergence
analysis in [2], it is straightforward to establish convergence
with an appropriate update rule. We also numerically study
the effect of limiting the information exchange. Specifically,
we consider the scenarios in which users update their
beamformers, ignoring interference prices and cross channel
information from all but the closest (local) users. We also
study the performance with infrequent price and receiver
updates.

In terms of related work, the performance of the ADP
algorithm and the effect of limiting the amount of informa-
tion exchange for single-antenna links are studied through
simulations in [4]. The Pareto-optimal rate-pair for a two-
user MISO interference channel is characterized in [5]. For
resource allocation techniques in MIMO networks, iterative
waterfilling has been extensively studied (e.g., [6]–[8]),
in which nodes implement best response updates without
exchanging channel or interference information. However,
iterative waterfilling is suboptimal in terms of the overall
network performance.

In the next section, we present the system model and
resource optimization problem. In Section III, we propose
a distributed algorithm and consider some variations with
reduced information exchange. Simulation results are pre-
sented in Section IV, and conclusions are given in Section
V.

II. SYSTEM MODEL

We consider a time-invariant wireless network with K
pairs of transmitters and receivers, where each transmitter
has NT antennas and each receiver has NR antennas.
Given channel matrices Hik’s, representing the channel
from transmitter k to receiver i, the received signal at
receiver k is given by

yk = Hkkxk +
∑
i 6=k

Hkixi + nk (1)

where xk is the transmit signal vector for user k and
nk is additive complex Gaussian noise with covariance
matrix Rnk

. Assuming the interference is treated as additive
Gaussian noise, the achievable rate for user k is given by
[9],

Rk = log det
(
I+HH

kk

(
Rnk

+
∑
i 6=k

HkiQiHH
ki

)−1
HkkQk

)
(2)

where Qk = E
[
xkxH

k

]
is the transmit covariance matrix for

user k and (·)H denotes Hermitian transpose. Generally, Qk

is determined by the precoding matrix Vk at the transmitter
k. In this paper, we assume that each precoding matrix Vk

is rank one, i.e., Vk = vk is a vector and xk = vkxk where
xk is a single transmitted symbol with E

[
|xk|2

]
= 1.

With an optimized beamforming vector, the capacity in
(2) can be achieved with a linear MMSE filter, given by

gk =
(
Rnk

+
∑
i 6=k

HkivivH
i HH

ki

)−1

Hkkvk. (3)

The filtered signal is then

ŷk = gH
k

(
Hkkvkxk +

∑
i 6=k

Hkivixi + ni
)
, (4)

and the corresponding signal-to-interference-plus-noise ra-
tio (SINR) for user k can be written as

γk = (Hkkvk)H
(
Rnk

+
∑
i 6=k

HkivivH
i HH

ki

)−1
Hkkvk. (5)

The quality of service for each user is measured by
a utility function of the transmission rate. Equivalently,
we define the utility uk(γk) as a function of γk. We
assume that for all k, the utility function is monotonically
increasing, concave and twice differentiable function of γk.
Our objective is to choose the beamforming vector uk for
each user k to maximize the utility summed over all users,
i.e.,

max
v1,··· ,vK

K∑
k=1

uk(γk) (P)

s.t. ‖vk‖2 ≤ Pmaxk , k = 1, . . . ,K,

where γk is determined by the beamforming vectors via (5),
and Pmaxk denotes the power constraint for user k.

The nonlinear optimization problem P is difficult to solve
in general. Furthermore, we seek a distributed algorithm for
solving this in which users do not know the entire network
topology and the other users’ utility functions. The users
must then exchange limited information so that each user
can locally decide on their own beamforming vector. As
discussed in the introduction, our approach to this problem
is based on a variation of the interference pricing algorithms
studied in [2], [3]. In these algorithms, the limited informa-
tion exchanged by the users is the interference prices, which
reflect the marginal change in utility per unit interference
power. A particular user then updates his beamforming
vector to maximize his utility minus the interference cost
to other users, which is determined from their announced
interference prices. The exact distributed pricing algorithm
we study here we refer to as the MIMO Distributed pricing
algorithm (MIMO-DP). This details of the MIMO-DP are
specified in the next section.
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III. DISTRIBUTED PRICING ALGORITHM

A. MIMO Distributed Pricing (MIMO-DP) Algorithm

From (5), it is not clear what is the “interference power”,
and how a change in interference will influence the corre-
sponding SINR and utility. However, if we fix each receive
filter, the MIMO network reduces to the MISO case in
which the channel vector from transmitter k to receiver
i is hH

ik = gH
i Hik. Then, given a set of receive filters

{g1,g2, · · · ,gK}, we can re-cast the algorithm in [2] to
solve Problem P with

γk =
|gH
k Hkkvk|2

|gH
k nk|2 +

∑
i 6=k|gH

k HH
kivi|2

. (6)

Define the interference price for user k, given a fixed gk,
as

πk = −∂uk(γk)
∂Ik

(7)

where Ik =
∑
i 6=k|gH

k Hkivi|2 is the interference power
after the receive filter. Given fixed interference prices and
the receive filters and beamforming vectors for the other
users, transmitter k then updates its beamforming vector
by solving the subproblem:

max
vk

uk(γk(vk;v−k))−
∑
i 6=k

πi|gH
i Hikvk|2 (Pk)

s.t. ‖vk‖2 ≤ Pmaxk ,

where v−k denotes the beamforming vectors of users other
than user k.

If the users repeatedly update their beamforming vectors
and interference prices according to Pk and 7, as in [2], then
the MISO-DP algorithm will converge. Hence this gives
(locally) optimal beamforming vectors, if we start with the
optimal receive filters. However, the receiver updates must
now be included in the analysis.

We formally state the MIMO-DP algorithm as follows:
1) Initialization: Each user (link) k chooses an initial

beamforming vector vk satisfying the power con-
straint, and applies the corresponding MMSE filter
(3) at the receiver.

2) Price Update: Each receiver k calculates the interfer-
ence price πk from (7) given the current beamforming
vectors vk and receive filters gk, and announces this
price to every other user.

3) Beamformer Update: A randomly chosen user k
solves Problem Pk and updates his beamforming
vector, given the interference prices {πi}i 6=k.

4) Receive Filter Update: Any set of users update their
receive filters using (3), given beamforming vectors
vk and announce to other users.

5) Repeat from step 2).

In general, there may be multiple solutions to Problem
Pk, which gives the beamformer update. In that case, one
of the solutions can be randomly chosen assuming the
previous beam is not a solution. Otherwise, the previous
beam is kept. The MIMO-DP algorithm assumes that each
user k knows the product HH

ikgi for all i, in addition to
local information, namely, his own utility function and the
interference-plus-noise power at the output of gk. Hence,
receiver k must announce gk after each update. Later we
show results illustrating the performance if each transmitter
uses the initial values of gk’s in Pk, with no successive
update or infrequent updates. Note that each transmitter
does not need to know the other users’ beamforming vectors
or the channel matrices Hij for j 6= k and all i.

B. Convergence

The beamformer update in the MIMO-DP algorithm is
the same as that in the algorithm in [3]. However, the
algorithm in [3] updates both beams and associated powers,
whereas here we assume the precoding matrices are rank
one. As in [2], it can be shown that if the utility function
satisfies that −u′′(γ)γ

u′(γ) ∈ [0, 2], then it is convex with
respect to the received interference power. If all interference
prices are current (i.e., have been updated since the last
beamformer update), it can then be shown that a subsequent
beamformer update cannot decrease the total utility. Also,
updating the receive filter gk further increases user k’s
SINR and utility without changing others’ utilities. Hence
the total utility must monotonically converge to a limit
with beam and receiver updates. This is summarized in the
following proposition

Proposition 1: If for each user k, −u′′
k (γk)γk

u′
k(γk) ∈ [0, 2] for

all feasible γk, then the MIMO-DP algorithm converges to
a stationary point, which satisfies the Karush-Kuhn-Tucker
(KKT) conditions of Problem P with MMSE receive filters.

C. Solving Pk

In the MIMO-DP algorithm, each user must solve the
subproblem Pk repeatedly, which is a nonlinear optimiza-
tion problem. Since this may be time-consuming for large
networks, we present an efficient numerical algorithm for
solving that problem.

The KKT conditions for Problem Pk for user k are[
ak(vk)HH

kkgkg
H
k Hkk −

∑
i 6=k

πiHH
ikgig

H
i Hik

]
︸ ︷︷ ︸

Xk

vk = λkvk,

(8)
where

ak(vk) =
u′k(γk)

|gH
k nk|2 +

∑
i 6=k|gH

k Hkivi|2
,
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and λk is the Lagrange multiplier associated with the power
constraint. In general, ak is a function of vk. However,
if the utility function is linear in the SINR, then the
optimal beamforming vector v∗k is either the eigenvector
of the matrix Xk in (8) corresponding to its largest positive
eigenvalue with an appropriate scale factor if the largest
eigenvalue is positive, or is the zero vector if all eigenvalues
are negative.

With this observation, we start with any feasible beam-
forming vector v0

k, and treat the coefficient ak as a constant.
We then compute v1

k by recomputing ak and finding the
appropriate eigenvector of Xk. Iterating we get the sequence
{v0

k,v
1
k, · · · ,vnk , · · · }. If it converges, then the limit point

satisfies the KKT conditions. Although convergence is not
guaranteed, the algorithm works well in our simulations.

D. Localized Distributed Pricing Algorithm

The MIMO-DP algorithm provides an efficient approach
to optimize network performance. However, each user re-
quires knowledge of cross channels and interference prices,
which might incur large overhead. In addition, this overhead
may provide little benefit for relatively weak (far away)
users. On the other hand, to guarantee the convergence, we
require users to follow the update rules. In what follows,
we study the following modifications to the MIMO-DP
algorithm.

1) Limited Information Exchange: In practice, we can
modify the MIMO-DP algorithm by taking into account
the interference cost to a limited number of interfering
users in Problem Pk (those that are relatively close). The
criterion for making this reduction depends on the cost
of exchanging prices. This corresponds to limited power
for price updates. Obviously, keeping all channel and price
information gives the best performance. In Section IV, we
examine the performance in different scenarios.

2) Localized Update Rule: The convergence proof for
the MIMO-DP algorithm relies on the fact that whenever
one user updates his beamformer, he knows the current
interference prices from every user in the network. To
reduce the overhead required to broadcast these prices,
it is desirable to relax this restriction and allow multiple
users to simultaneously update their beamformers before
new prices are announced. In [2] it is observed that such
simultaneous updates can cause oscillations and prevent
convergence with another choice for the utility function.
Here, in an attempt to avoid this, we only allow users to
update simultaneously provided that they are sufficiently far
away from each other. In other words, within a threshold
distance from any updating user, there can be no other user
updating his beam. (In practice, the undesired simultaneous
update can be avoided by sensing a beacon signal, which

indicates that a user in the vicinity is updating.) With
this restriction, although there is no proof to guarantee
convergence, the MIMO-DP algorithm still converges in all
cases we simulated with the rate utility function.

IV. SIMULATION RESULTS

In this section, we first show a typical convergence plot
for the MIMO-DP algorithm in Section III-A. Then the
performance of algorithms with the variations presented in
Section III-D are shown and discussed.

A. MIMO Distributed Pricing Algorithm

We consider a MIMO network of 5 users with 3 transmit
and 3 receive antennas for each user, randomly placed in
a square of 100m x 100m. The direct and cross channel
matrices have i.i.d. complex Gaussian entries with each
variance determined by the attenuation due to path-loss.
Namely, the average gain (received power) of each single
link is σ2(d) = σ2

0(
d
d0

)−4, where d0 = 10m is the reference
distance and also the minimum distance allowed between
any transmitter and receiver, and σ2

0 is the reference power.
The maximum power, noise, and σ0 are selected so that the
expected received signal-to-noise ratio (SNR) of a single
link with a separation of 10m is 100 (20 dB). The rate
utility function, uk(γk) = log(1 + γk) is assumed for all
users.

Figure 1 shows the sum rate versus the number of
iterations for a particular model realization achieved by
applying the MIMO-DP algorithm. We also examine the
scenario in which receive filter updates are only announced
every n iterations (even though the filters are updated after
every beam update). In other words, the transmitter uses
obsolete information for the receive filters when updating
its beamformers. The algorithm starts from an arbitrary
selection of beamformers, and converges to a stationary
point, predicted by Proposition 1. To check whether the
limit point is indeed optimal, we use MATLAB to solve
the global optimization problem P directly, starting from
the limit point achieved by the MIMO-DP algorithm. The
total utility obtained in this way is indicated by the dash-dot
line in Fig. 1, which matches the limit point of the MIMO-
DP algorithm. The figure shows that the more frequently the
receive filter updates are announced, the faster the algorithm
converges.

B. Effects of Limited Information Exchange

Here, we consider the scenario where users ignore prices
announced by remote users.

Similar to the previous subsection, now we consider a
MIMO network of N users with 3 transmitter antennas and
3 receive antennas for each user, in which each transmitter
and the associated receiver are randomly placed at nodes
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Fig. 1. Illustration of the convergence of the MIMO-DP algorithm with
different periods for announcing receive filter updates.

in a grid of 200m x 200m formed from minimum squares
of 10m x 10m according to a uniform distribution. Channel
matrices are configured the same way as before with the
reference SNR at 10m set to be 30 dB.

We still assume each user k knows the channel matrices
Hik for all i. However, when each user updates his beam-
former by solving Problem Pk, he ignores the interference
cost to user i if yik = 1HHH

ikHik1 is smaller than some
threshold, where 1 is an all-one vector. The reason to
choose this quantity as the criterion is as follows. Consider
the feedback link from receiver i to transmitter k for
broadcasting price πi. If we assume the channel is reciprocal
and receiver i uses the all-one vector as its beamforming
vector, from (5), the received SINR at transmitter k is
determined by yik, assuming the interference and noise
covariance matrix Rn is a scaled identity matrix. Hence,
this quantity should be sufficiently large to enable reliable
reception of πi.

Figs. 2 and 3 show the average rate per user versus
number of users (equivalently density) with different thresh-
olds, averaged over 100 channel realizations. In Fig. 2,
all receivers are uniformly distributed (as are the trans-
mitters), whereas for Fig. 3 each associated receiver is
randomly placed within a 100m x 100m square centered
around its transmitter. To interpret these results in terms
of local interference, we convert the threshold with respect
to channel gain into a threshold with respect to distance.
Specifically, the distance threshold means a single-antenna
link with this separation without considering Rayleigh
fading will have the same received SNR as the MIMO
link using the original threshold for yik. In these figures,
“threshold = ∞” corresponds to the original MIMO-DP
algorithm in which all interfering users’ prices are included,
while “threshold = 0m” corresponds to an algorithm with-
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Fig. 2. Illustration of the effect of ignoring interference prices from
remote users (receivers are uniformly distributed).
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Fig. 3. Illustration of the effect of ignoring interference prices from
remote users (each receiver is near its transmitter).

out information exchange: each user maximizing his own
utility without considering any interference cost. The figures
show that a reasonably small threshold (50m) does not hurt
the performance significantly. Furthermore, although the
average rate per user is higher when each receiver is located
near its transmitter (Fig. 3), the benefit of exchanging price
compared to the myopic strategy without information ex-
change is more significant when that receivers are uniformly
distributed (Fig. 2). This is because when each receiver
is located near its transmitter, the rate reduction due to
interference is smaller.

C. Localized MIMO-DP Algorithm

We now show results assuming simultaneous beamformer
updates can occur outside a given radius from any updat-
ing transmitter. When the distance between two updating
transmitters j and k is large, the change of the interference
price of a particular interfering user due to transmitter j’s
update is negligible for the other transmitter k and vice
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Fig. 4. Illustration of the effect of allowing faraway users to update
beamformers simultaneously.

versa, because that interfering user is at least far away from
one of the transmitters j and k. Hence multiple users can
update at the same time as long as they are far enough away.
We simulated a network of 20 users within a square of 500m
x 500m with the same assumptions as in Section IV-A.
In all cases simulated, no matter how small the threshold
is, we observed convergence of the distributed algorithm.
Fig. 4 shows typical convergence performance with differ-
ent distance thresholds (although the convergence has not
been proven analytically). “Threshold =∞” corresponds to
the original MIMO-DP algorithm, while “threshold = 0m”
refers to the scenario where simultaneous beamformer up-
dates are completely unrestricted. Furthermore, according to
these numerical results, the speed of convergence is faster
when simultaneous updates are allowed.

V. CONCLUSIONS

We have presented a distributed algorithm for adjusting
beamforming vectors in a peer-to-peer MIMO network to
maximize the sum utility over all users, with rank-one
precoding matrices. Convergence is established based on
the result in [2] that each beamformer update increases the
total utility, provided that all interference prices are current,

and the observation that updating receive filters increases
those users’ utilities while others’ utilities are unchanged.
Examples were also presented, which indicate that ignoring
some prices related to remote users, or relaxing the update
rules does not compromise the performance of the MIMO-
DP algorithm significantly.

Due to the spatial degrees of freedom in MIMO networks,
it is not optimal in general to apply a rank-one precoding
matrix for each user. Therefore, how to adjust a precoding
matrix to approach an optimal solution in a MIMO network
without rank estimation is still open. In addition, the con-
vergence rate as a function of system parameters has not
been considered.
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