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1 Introduction

Scheduling and resource allocation are essential components of wireless data systems.
Here by scheduling we refer the problem of determining which users will be active
in a given time-slot; resource allocation refers to the problem of allocating physical-
layer resources such as bandwidth and power among these active users. In modern
wireless data systems, frequent channel quality feedback is available enabling both
the scheduled users and the allocation of physical layer resources to be dynamically
adapted based on the users’ channel conditions and quality of service (QoS) require-
ments. This has led to a great deal of interest both in practice and in the research
community on various “channel aware” scheduling and resource allocation algorithms.
Many of these algorithms can be viewed as “gradient-based” algorithms, which select
the transmission rate vector that maximizes the projection onto the gradient of the
system’s total utility [1–4, 8, 9, 25, 28, 29]. One example is the “proportionally fair
rule” [3,4] first proposed for CDMA 1xEVDO based on a logarithmic utility function
of each user’s throughput. A larger class of throughput-based utilities is considered
in [2] where efficiency and fairness are allowed to be traded-off. The “Max Weight”
policy (e.g. [6–8]) can also be viewed as a gradient-based policy, where the utility is
now a function of a user’s queue-size or delay.

Compared to TDMA and CDMA technologies, OFDMA divides the wireless re-
source into non-overlapping frequency-time chunks and offers more flexibility for re-
source allocation. It has many advantages such as robustness against intersymbol
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interference and multipath fading as well as and lower complexity of receiver equal-
ization. Owing to these OFDMA has been adopted the core technology for most recent
broadband wireless data systems, such as IEEE 802.16 (WiMAX), IEEE 802.11a/g
(Wireless LANs), and LTE for 3GPP.

This chapter discusses gradient-based scheduling and resource allocation in OFDMA
systems. This builds on previous work specific to the single cell downlink [28] and
uplink [25] setting (e.g., Fig. 1). The key contribution of the book chapter is provid-
ing a general framework that includes each of these as special cases and also applies
to multiple cell/sector downlink transmissions (e.g., Fig. 2). In particular, several
important practical constraints are included in this framework, namely, 1) integer
constraints on the tone allocation, i.e., a tone can be allocated to at most one user; 2)
constraints on the maximum SNR (i.e., rate) per tone, which models a limitation on
the available modulation and coding schemes; 3) “self-noise” on tones due to channel
estimation errors (e.g., [11]) or phase noise [24]; and 4) user-specific minimum and
maximum rate constraints. We not only provide the optimal algorithm for solving
the optimization problem corresponding to the generalized model, but also provide
low complexity heuristic algorithms that achieve close to optimal performance.

Most previous work on OFDMA systems focused on solving the resource allocation
problem without jointly considering the problem of user scheduling. We will briefly
survey this work in the next section. Then we describe our general formulation
together with the optimal and heuristic algorithms to solve the problem. Finally, we
will summarize the chapter and outline some future research directions.
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Figure 1: Example of a single cell downlink (left) and uplink scenerio (right).
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Figure 2: Example of a multiple cell/sector downlink scenerio (the different base
stations could represent different sectors of the same base station shown by the circle).
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2 Related Work on OFDMA resource allocation

A number of formulations for single cell downlink OFDMA resource allocation have
been studied (e.g., [12–21]). In [13, 14], the goal is to minimize the total transmit
power given target bit-rates for each user. In [14], the target bit-rates are determined
by a fair queueing algorithm, which does not take into account the users’ channel
conditions. A number of papers including [15–18, 20, 21] have studied various sum-
rate maximization problems, given a total power constraint. In [16–18] there is also a
minimum bit-rate per user that must be met. [21] considers both minimum and max-
imum rate targets for each user and also takes into account several constraints that
arise in Mobile WiMax. In [20], certain “delay sensitive” users are modeled as having
fixed target bit-rate (i.e. their maximum and minimum rates are the same), while
other “best effort” users have no bit-rate constraints. Thus the scheduler attempts to
maximize the sum-rate of the best effort users while meeting the rate-targets of the
delay sensitive ones. In [12,19], weighted sum-rate maximization is considered. This
is a special case of the resource allocation problem we study here for a given time-
slot but does not account for constraints on the SNR per carrier, rate constraints, or
self-noise. In [12], a suboptimal algorithm with constant power per tone was shown
in simulations to have little performance loss. Other heuristics that use a constant
power per tone are given in [15–17]; we will briefly discuss a related approach in Sec-
tion 4. In [19], a dual-based algorithm similar to ours is considered, and simulations
are given which show that the duality gap of this problem quickly goes to zero as
the number of tones increases. In [22], the information theoretic capacity region of a
single cell downlink broadcast channel with frequency-selective fading using a TDM
scheme is given; the feasible rate region we consider, without any maximum SNR
and rate constraints, can be viewed as a special case of this region. None of these
papers consider self-noise, rate constraints or per user SNR constraints. Moreover,
most of these papers optimize a static objective function, while we are interested in a
dynamic setting where the objective changes over time according to a gradient-based
algorithm. It is not a priori clear if a good heuristic for a static problem applied
to each time-step will be a good heuristic for the dynamic case, since the optimality
result in [1–3,6–8,29] is predicated on solving the weighted-rate optimization problem
exactly in each time-slot. Simulation results in [28] show that this does hold for the
heuristics presented in Section 4.

Resource allocation for a single cell OFDMA uplink has been presented in [32–39].
In [32], a resource allocation problem was formulated in the framework of Nash Bar-
gaining, and an iterative algorithm was proposed with relatively high complexity.
The authors of [33] proposed a heuristic algorithm that tries to minimize each user’s
transmission power while satisfying the individual rate constraints. In [34], the author
considered the sum-rate maximization problem, which is a special case of the problem
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considered here with equal weights. The algorithm derived in [34] assumes Rayleigh
fading on each subchannel; we do not make such an assumption here. In [35], an up-
link problem with multiple antennas at the base station was considered; this enables
spatial multiplexing of subchannels among multiple users. Here, we focus on single
antenna systems where at most one user can be assigned per sub-channel. The work
in [36–39] is closer to our model. The authors in [36] also considered a weighted rate
maximization problem in the uplink case, but assumed static weights. They proposed
two algorithms, which are similar to one of the algorithms described in this chapter.
We propose several other algorithms that outperform those in [36] with similar or
slightly higher complexity. Paper [37] generalized the results in [36] by considering
utility maximization in one time-slot, where the utility is a function of the instan-
taneous rate in each time-slot. Another work that focused on per time-slot fairness
is [39]. Finally, [38] proposed a heuristic algorithm based on Lagrangian relaxation,
which has high complexity due to a subgradient search of the dual variables.

Resource allocation and interference management of multi-cell downlink OFDMA
systems were presented in [42–49]. A key focus of these works is on interference
management among multiple cells. Our general formulation includes the case where
resource coordination leads to no interference among different cells/sectors/sites. In
our model, this is achieved by dynamically partitioning the subchannels across the
different cells/sectors/sites. In addition to being easier to implement, the interfer-
ence free operation assumed in our model allows us to optimize over a large class of
achievable rate regions for this problem. If the interference strength is of the order
of the signal strength, as would be typical in the broadband wireless setting, then
this partitioning approach could also be the better option in an information theoretic
sense [31].1

3 OFDMA Scheduling and Resource Allocation

3.1 Gradient-based Wireless Scheduling and Resource Allo-
cation Problem Formulation

Let us consider a network with a total of K users. In each time-slot t, the schedul-
ing and resource allocation decision can be viewed as selecting a rate vector rt =
(r1,t, . . . , rK,t) from the current feasible rate region R(et) ⊆ RK

+ . If a user is not
scheduled his rate is simply zero. Here et indicates the time-varying channel state

1We note that our discussions do not directly apply to the case of frequency reuse, where different
non-adjacent cells may use the same frequency bands. In practice, frequency reuse is typically
considered together with fixed frequency allocations, while here we consider dynamic frequency
allocations across different cells.
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information of all users available at the scheduler at time t. The decision on the
rate vector is made according to the gradient-based scheduling framework in [1–3,29]
that is basically a stochastic version of the conditional gradient/Frank-Wolfe algo-
rithm [26]. Namely, an rt ∈ R(et) is selected that has the maximum projection onto
the gradient of the system’s total utility function

U(Wt) :=
K∑
i=1

Ui(Wi,t), (1)

where Ui(·) is an increasing concave utility function that measures user i’s satisfaction
for different values of throughput, and Wi,t is user i’s average throughput up to time
t. In other words, the scheduling and resource allocation decision is the solution to

max
rt∈R(et)

∇U(Wt)
T · rt = max

rt∈R(et)

K∑
i=1

U ′i(Wi,t)ri,t, (2)

where U ′i(·) is the derivative of Ui(·). As a concrete example, it is useful to consider
the class of commonly used iso-elastic utility functions given in [2, 5],

Ui(Wi,t) =

{
ci
α

(Wi,t)
α, α ≤ 1, α 6= 0,

ci log(Wi,t), α = 0,
(3)

where α ≤ 1 is a fairness parameter and ci is a QoS weight. In this case, after taking
derivatives, (2) becomes

max
rt∈R(et)

∑
i

ci(Wi,t)
α−1ri,t. (4)

With equal class weights (ci = c for all i), setting α = 1 results in a scheduling rule
that maximizes the total throughput during each slot. For α = 0, this results in the
proportionally fair rule, and as α increases without bound, we get closer to a max-min
fair solution. Thus, this family of utility functions yields a flexible class of policies:
the α parameter allows for the choice of an appropriate fairness objective while the
ci parameter allows one to distinguish relative priorities within each fairness class.

However, more generally, we consider the problem of

max
rt∈R(et)

∑
i

wi,tri,t, (5)

where wi,t ≥ 0 is a time-varying weight assigned to the ith user at time t. In the case
of (4), we let wi,t = ci(Wi,t)

α−1. In (4) these weights are given by the gradients of
throughput-based utilities; however, other methods for generating the weights (pos-
sibly depending upon queue-lengths and/or delays [6–8]) are also possible. We note
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that (5) must be re-solved at each scheduling instance because of changes in both the
channel state and the weights (e.g., the gradients of the utilities). While the former
changes are due to the time-varying nature of wireless channels, the latter changes
are due to new arrivals and past service decisions.

3.2 General OFDMA rate regions

The solution to (5) depends on the channel state dependent rate region R(e), where
we suppress the dependence on time for simplicity. We consider a model appropriate
for general OFDMA systems including single cell downlink and uplink as well as
multiple cell/sector/site downlink with frequency sharing; related single cell downlink
and uplink models have been considered in [12, 22, 25, 28]. In this model, R(e) is
parameterized by the allocation of tones to users and the allocation of power across
tones. In a traditional OFDMA system at most one user may be assigned to any
tone. Initially, as in [13,14], we make the simplifying assumption that multiple users
can share one tone using some orthogonalization technique (e.g. TDM).2 In practice,
if a scheduling interval contains multiple OFDMA symbols, we can implement such
sharing by giving a fraction of the symbols to each user; of course, each user will be
constrained to use an integer number of symbols. Also, with a large number of tones,
adjacent tones will have nearly identical gains, in which case this time-sharing can
also be approximated by frequency sharing. The two approximations becomes tight
as the number of symbols or tones increases, respectively. We discuss the case where
only one user can use a tone in Section 4.

Let N = {1, . . . , N} denote the set of tones3 and K = {1, 2, . . . , K} the set of
users. For each j ∈ N and user i ∈ K, let eij be the received signal-to-noise ratio
(SNR) per unit transmit power. We denote the transmit power allocated to user i on
tone j by pij, and the fraction of that tone allocated to user i by xij. As tones are
shared resources, the total allocation for each tone j must satisfy

∑
i xij ≤ 1. For a

given allocation, with perfect channel estimation, user i’s feasible rate on tone j is

rij = xijB log

(
1 +

pijeij
xij

)
,

which corresponds to the Shannon capacity of a Gaussian noise channel with band-
width xijB and received SNR pijeij/xij.

4 This SNR arises from viewing pij as the

2We focus on systems that do not use superposition coding and successive interference cancellation
within a tone, as such techniques are generally considered too complex for practical systems.

3In practice, tones may be grouped into subchannels and allocated at the granularity of sub-
channels. As discussed in [28], our model can be applied to such settings as well by appropriately
redefining the sub-channel gains {eij} and interpreting N as the set of sub-channels.

4To better model the achievable rates in a practical system we can re-normalize eij by γeij , where
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energy per time-slot user i uses on tone j; the corresponding transmission power be-
comes pij/xij when only a fraction xij of the tone bandwidth is allocated. Similarly
this can also be explained by time-sharing as follows: a channel of bandwidth B is
used only a fraction xij of the time with average power pij which leads to the power
during channel usage to be pij/xij. Without loss of generality we set B = 1 in the
following.

3.2.1 Self-noise

In a realistic OFDMA system, imperfect carrier synchronization and channel esti-
mation may result in “self-noise” (e.g. [11, 24]). We follow a similar approach as
in [11] to model self-noise. Let the received signal on the jth tone of user i be given
by yij = hijsij + nij, where hij, sij and nij are the (complex) channel gain, trans-
mitted signal and additive noise, respectively, with nij ∼ CN (0, σ2).5 Assume that
hij = h̃ij + hij,δ, where h̃ij is receiver i’s estimate of hij and hij,δ ∼ CN (0, δ2

ij). After

matched-filtering, the received signal will be zij = h̃∗ijyij resulting in an effective SNR
of

Eff-SNR =
‖h̃ij‖4pij

σ2
ij‖h̃ij‖2 + δ2

ijpij‖h̃ij‖2
=

pijeij
1 + βijpijeij

, (6)

where pij = E(‖sij‖2), βij =
δ2ij

‖h̃ij‖2
and eij =

‖h̃ij‖2
σ2
ij
.6 Here, βijpijeij is the self-noise

term. As in the case without self-noise (βij = 0), the effective SNR is still increasing
in pij. However, it now has a maximum of 1/βij.

In general, βij may depend on the channel quality eij. For example, this happens
when self-noise arises primarily from estimation errors. The exact dependence will
depend on the details of channel estimation. As an example, using the model in [23,
Section IV] it can be shown that when the pilot power is either constant or inversely
proportional to channel quality subject to maximum and minimum power constraints
(modeling power control), β is inversely proportional to the channel condition for
large e. On the other hand βij = β is a constant when self-noise is due to phase noise
as in [24]. For simplicity of presentation, we assume constant βij = β in the remainder
of the paper (except in Fig. 4 where we we allow β(e) ∝ 1/e to illustrate the impact

γ ∈ [0, 1] represents the system’s “gap” from capacity.
5We use the notation x ∼ CN (0, b) to denote that x is a 0 mean, complex, circularly-symmetric

Gaussian random variable with variance b := E(‖x‖2).
6This is slightly different from the Eff-SNR in [11] in which the signal power is instead given by

‖hij‖4pij ; the following analysis works for such a model as well by a simple change of variables. For
the problem at hand, (6) seems more reasonable in that the resource allocation will depend only on
h̃ij and not on hij . We also note that (6) is shown in [23] to give an achievable lower bound on the
capacity of this channel.
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of self-noise on the optimal power allocation). The analysis is almost identical if users
have different βij’s.

We assume that eij is known by the scheduler for all i and j as is β. For example, in
a frequency division duplex (FDD) downlink system, this knowledge can be acquired
by having the base station transmit pilot signals, from which the users can estimate
their channel gains and feedback to the base station. In a time division duplex (TDD)
system, these gains can also be acquired by having the users transmit uplink pilots;
for the downlink case, the base station can then exploit reciprocity to measure the
channel gains. In both cases, this feedback information would need to be provided
within the channel’s coherence time.

With self-noise, user i’s feasible rate on tone j becomes

rij = xij log

(
1 +

pijeij
xij + βpijeij

)
=: xijf

(
pijeij
xij

)
, (7)

where again xij models time-sharing of a tone and the function f(·) is given by

f(s) = log

(
1 +

1

β + 1/s

)
, β ≥ 0. (8)

More generally, we assume that a user i’s rate on channel j is given by

rij = xijf

(
pijeij
xij

)
, (9)

for some function f : R+ → R+ that is non-decreasing, twice continuously differ-
entiable and concave with f(0) = 0, (without loss of generality)7 f ′(0) := df

ds
(0) =

lims↓0
f(s)
s

= sups>0
f(s)
s

= 1, and limt→+∞
df
ds

(t) = 0. We also assume by continuity8

that xf(p/x) is 0 at x = 0 for every p ≥ 0. From the assumptions on the function
f(·) it follows that xf(p/x) is jointly concave in x, p; this can be easily proved by
showing that the Hessian is negative semidefinite [26, 27]. It is easy to verify that f
given by (8) satisfies the above properties. We should, however, point out that using
the theory of subgradients [26,27], our mathematical results easily extend to a general

7Using the idea that Shannon capacity log(1 + s) is a natural upper bound for f(s), it follows
that 0 < df

ds (0) ≤ 1. Therefore, if f ′(0) 6= 1, then we can solve the problem using a scaled version of

function, i.e., f̃(s) = f(s)/ dfds (0), after scaling the rate constraints by the same amount; the power
and subchannel allocations will be the same in the two cases. The Shannon capacity upper bound

also yields that 0 ≤ limt→+∞
df
ds (t) ≤ lims→+∞

f(s)
s ≤ lims→+∞

log(1+s)
s = 0, as concavity of f(·)

and f(0) = 0 imply that df
ds (t) ≤ f(t)

t for all t > 0.
8Using the Shannon capacity function, log(1 + s), upper bound, we have for p > 0, that

limx↓0 xf(p/x) = p limt↑+∞
f(t)
t ≤ p limt↑+∞

log(1+t)
t = 0. For p = 0, we directly get the prop-

erty from f(0) = 0.
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f(·) that is only non-decreasing and concave. For instance, it can be easily proved
from first principles that xf(p/x) is jointly concave in (x, p) if f(·) is merely concave.
We consciously choose the simpler setting of twice continuously differentiable func-
tions to keep the level of discussion simple, but to aid a more interested reader, we
will strive to point out the loosest conditions needed for each of our results. Before
proceeding we should point out that, operationally, f(·) is a function of the received
signal-to-noise ratio, and thus, abstracts the usage of all possible single-user decoders,
including the optimal decoder that yields Shannon capacity.

3.2.2 General power constraint - single cell downlink, uplink and multi-
cell downlink with frequency sharing

Let {Km}Mm=1 be non-empty subsets of the set of users K that form a covering, i.e.,
∪Mm=1Km = K. We assume that there is a vector of non-negative power budgets
{Pm}Mm=1 associated with these subsets, so that

∑
i∈Km

∑
j pij ≤ Pm for each m. This

condition ensures that there is no user who is unconstrained in its power usage. This
provides a common formulation of the single cell downlink and uplink scheduling prob-
lems as described in [28] and [25], respectively. For the single cell downlink problem
M = 1 and K1 = K, and for the single cell uplink problem M = K and Ki = {i} for
i ∈ K. More generally, if {Km}Mm=1 is a partition, i.e., mutually disjoint, then we can
view the “transmitters” for users i ∈ Km as co-located with a single power amplifier.
For example, such a model may arise in the downlink case whereM := {1, 2, . . . ,M}
represents sectors or sites across which we need to allocate common frequency/channel
resources, but which have independent power budgets. A key assumption, however,
is that we can make the transmissions from the different sectors/sites non-interfering
by time-sharing or by some other suitable orthogonalization technique.

3.2.3 Capacity Region - max SNR and min/max rate constraints

Under these assumptions, the rate region can be written as

R(e) =

{
r : ri =

∑
j

xijf
(
pijeij
xij

)
and Rmin

i ≤ ri ≤ Rmax
i , ∀i,

∑
i∈Km

∑
j

pij ≤ Pm, ∀m,
∑
i

xij ≤ 1, ∀j, (x,p) ∈ X
}
,

(10)

where
X :=

{
(x,p) ≥ 0 : xij ≤ 1, pij ≤ xijsij

eij
∀i, j

}
. (11)

Here and in the following, a boldfaced symbol will indicate the vector of the corre-
sponding scalar quantities, e.g. x := (xij) and p := (pij). Also, any inequality such
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as x ≥ 0 should be interpreted componentwise. The linear constraint on (xij, pij)
in (11) using sij models a constraint on the maximum rate per subchannel due to a
limitation on the available modulation and coding schemes; if user i can send at a
maximum rate of r̃ij on tone j, then sij = f−1(r̃ij). We have also assumed that each
user i ∈ K has maximum and minimum rate constraints Rmax

i and Rmin
i , respectively.

In order to have a solution we assume that the vector of minimum rates {Rmin
i }i∈K

is feasible. For the vector of maximum rates, it is more convenient to assume that
{Rmax

i }i∈K is infeasible. Otherwise the optimization problem associated with feasibil-
ity (see Section 3.5) will yield an optimal solution. Typically we will set Rmin

i = 0
and Rmax

i to be the (time-varying) buffer occupancy. However, with tight minimum
throughput demands one can imagine using a non-zero Rmin

i to guarantee this.

3.3 Optimal Algorithms

From (5) and (10), the optimal scheduling and resource allocation problem can be
stated as:

max
(x,p)∈X

V (x,p) :=
∑
i

wi
∑
j

xijf
(
pijeij
xij

)
(P2)

subject to:
∑
j

xijf

(
pijeij
xij

)
≥ Rmin

i ∀i ∈ K (ηi)

∑
j

xijf

(
pijeij
xij

)
≤ Rmax

i ∀i ∈ K (γi)∑
i

xij ≤ 1 ∀j ∈ N (µj)∑
i∈Km

∑
j

pij ≤ Pm ∀m = 1, 2, . . . ,M (λm)

where set X is given in (11). As a rule, variables at the right of constraints will indicate
the dual variables that we will use to relax those constraints while constructing the
dual problem later.

One important point to note is that as described above, the optimization problem
(P2) is not convex and so we can not appeal to standard results such as Slater’s
conditions to guarantee that is has zero duality gap [26, 27]. In particular, note
that the maximum rate constraints have a concave function on the left side. To
show that we still have no duality gap, we will consider a related convex problem in
higher dimensions that has the same primal solution and the same dual. The new
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optimization problem (P1) is given by

max
∑
i

wiri (P1)

subject to: ri ≤
∑
j

xijf

(
pijeij
xij

)
, ∀i ∈ K (αi)∑

i

xij ≤ 1, ∀j ∈ N (µj)∑
i∈Km

∑
j

pij ≤ Pm, ∀m = 1, 2, . . . ,M (λm)

Rmin
i ≤ ri ≤ Rmax

i , ∀i ∈ K
(x,p) ∈ X .

This problem is easily seen to be convex due to the joint concavity of xf(p/x) as a
function of (x, p) and also will satisfy Slater’s condition.9 Hence, it will have zero
duality gap [26, 27]. The problem (P1) can be practically motivated as follows: the
physical (PHY) layer gives the scheduler (at the MAC layer) a maximum rate that it
can serve per user based upon power and subchannel allocations, and the scheduler
then drains from the queue an amount that obeys the minimum and maximum rate
constraints (imposed by the network layer) and the maximum rate constraint from
the PHY layer output. If the scheduler chooses not to use the complete allocation
given by the PHY layer, then the final packet sent by the MAC layer is assumed
to be constructed using an appropriate number of padded bits. However, we will
now show that at the optimal, there is no of loss optimality in assuming that the
scheduler never sends less than what the PHY layer allocates, i.e., the first constraint
in Problem (P1) is always made tight at an optimal solution. This point of view is
exemplified in schematic shown in Figure 3.

Assume that there is an optimizer of (P1) at which for some user i, ri <
∑

j xijf(
pijeij
xij

).

We will now construct another feasible solution that will satisfy the above relation-
ship with equality. Let γ ∈ [0, 1] and set p̃ij := γpij. Note that by convexity,
both the power and subchannel constraints are satisfied for every value of γ. Now∑

j xijf(γ
pijeij
xij

) is a non-decreasing and continuous function of γ taking values 0 at

γ = 0 and
∑

j xijf(
pijeij
xij

) at γ = 1. Therefore, there exists a γ∗ ∈ (0, 1) such that

ri =
∑

j xijf(γ∗
pijeij
xij

) as desired. This procedure can be followed for every user i for

whom ri <
∑

j xijf(
pijeij
xij

), so that at the end we satisfy ri =
∑

j xijf(
p̃ijeij
xij

) for a

feasible (x, p̃). Therefore both the optimal value and an optimizer of problem (P1)

9More precisely, Slater’s condition will be satisfied provided that the minimum rate (Rmin
i ) are

strictly in the interior of rate-region R(e). If Rmin
i = 0 for all i this will trivially be true.
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Figure 3: Schematic of a scheduler that has cross-layer visibility.
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coincides with those for problem (P2). The loosest condition needed for the above
to hold is f(·) being non-decreasing and concave with f(0) = 0. Henceforth, we will
only work with Problem (P1).

Before proceeding to solve the problem by dual methods, we first define some key
notation. For two numbers, x, y ∈ R we set x ∧ y := min(x, y), x ∨ y := max(x, y)
and (x)+ = [x]+ := x ∨ 0.

3.3.1 Dual of Problem

We now proceed to derive a closed-form expression for the dual function for problem
(P1). The Lagrangian obtained by relaxing the marked constraints of (P1) using the
corresponding dual variables is given by

L(r,x,p,α,µ,λ) =
∑
i

(wi − αi)ri +
∑
j

µj +
M∑
m=1

λmPm +
∑
i,j

αixijf

(
pijeij
xij

)
−
∑
j

µj
∑
i

xij −
∑
m

λm
∑
i∈Km

∑
j

pij. (12)

The corresponding dual function is then given by maximizing this Lagrangian over
r,x and p. First optimizing over rate ri ∈ [Rmin

i , Rmax
i ] and noting that the La-

grangian is linear in ri we get

L(x,p,α,µ,λ) =
∑
i

(wi − αi)+R
max
i −

∑
i

(αi − wi)+R
min
i +

∑
j

µj +
M∑
m=1

λmPm

+
∑
i,j

αixijf(
pijeij
xij

)−
∑
j

µj
∑
i

xij −
∑
m

λm
∑
i∈Km

∑
j

pij.

The optimizing r∗ is given by the following

∀i ∈ K, r∗i ∈


{Rmax

i } if αi < wi;

{Rmin
i } if αi > wi; and

[Rmin
i , Rmax

i ] if αi = wi

(13)

Note that the last term of equation (12) can be rewritten as∑
m

λm
∑
i∈Km

∑
j

pij =
∑
i,j

pij
∑

m:i∈Km

λm =
∑
i,j

pijλ̂i (14)

where λ̂i :=
∑

m:i∈Km
λm.
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Now maximizing the Lagrangian over power p requires us to maximize

αixij

[
f

(
pijeij
xij

)
− λ̂i
αieij

pijeij
xij

]
(15)

over pij for each i, j. From the assumptions on the function f , it is easy to check that
the maximizing p∗ij will be of the form

p∗ijeij

xij
= g

(
λ̂i
αieij

)
∧ sij, (16)

for some function g : R+ → [0,∞] with g(x) = 0 for x ≥ f ′(0). Specifically if df/ds

is monotonically decreasing, we may show that g(·) =
(
df
ds

)−1
(·), i.e., the inverse of

the derivative of f(·). Otherwise, since df/ds is still a non-increasing function we
can set g(x) = inf{t : df/ds(t) = x}. Using the non-increasing property of df/ds
we can see that g(x) ∧ y = g

(
x ∨ df

ds
(y)
)
. Note that we have assumed df/ds(0) = 1

and limt→+∞ df/ds(t) = 0 but we do not assume that lims→+∞ f(s) = +∞ (e.g., see
the self-noise example). In case f(·) is not differentiable, then we would define the
function g(·) using the subgradients of f(·). In all cases, the key conclusion from (16)
is that the optimal value of p∗ij is always a linear function of xij.

Note that when f = log(1 + 1
β+1/s

), with β ≥ 0, as given by (8), then

g(x) = q((1/x− 1)+),

where

q(z) =

{
z, if β = 0,(

2β+1
2β(β+1)

)(√
1 + 4β(β+1)

(2β+1)2
z − 1

)
, if β > 0.

Figure 4 shows p∗ij in (16) as a function of eij for the specific choice of f from (8)
with three different values of β = 0, 0.01, 0.1. When β = 0, (16) becomes a “water-
filling” type of solution in which p∗ij is non-decreasing in eij. For a fixed β > 0, this
is not necessarily true, i.e., due to self-noise, less power may be allocated to “better”
subchannels. We also consider the case where β = 10/e to model the case where
self-noise is due to channel estimation error.

Inserting the expression for p∗ij into the Lagrangian yields

L(x,α,µ,λ) =
∑
i

(wi − αi)+R
max
i −

∑
i

(αi − wi)+R
min
i +

∑
j

µj +
M∑
m=1

λmPm

+
∑
i,j

xij

[
αif

(
g

(
λ̂i
αieij

)
∧ sij

)
− λ̂i
eij

(
g

(
λ̂i
αieij

)
∧ sij

)
− µj

]
,

(17)
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Figure 4: Optimal power p∗ij as a function of the channel condition eij. Here xij = 1,

αi = 1, sij = +∞, and λ̂i = 15.

which is now a linear function of {xij}. Thus, optimizing over xij yields the dual
function for (P1),

L(α,λ,µ) =
∑
i

(wi − αi)+R
max
i −

∑
i

(αi − wi)+R
min
i +

∑
j

µj +
∑
m

λmPm

+
∑
i,j

[
αif

(
g

(
λ̂i
αieij

)
∧ sij

)
− λ̂i
eij

(
g

(
λ̂i
αieij

)
∧ sij

)
− µj

]
+

=
∑
i

(
(wi − αi)+R

max
i − (αi − wi)+R

min
i

)
+
∑
m

λmPm

+
∑
j

(∑
i

[
µij

(
αi,

λ̂i
αieij

)
− µj

]
+

+ µj

)
, (18)

where

µij(a, b) := a

(
f
(
g(b) ∧ sij

)
− b
(
g(b) ∧ sij

))
.
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Note that any choice such that

x∗ij ∈


{1}, if µij

(
αi,

λ̂i
αieij

)
> µj,

[0, 1], if µij

(
αi,

λ̂i
αieij

)
= µj,

{0}, if µij

(
αi,

λ̂i
αieij

)
< µj

(19)

will optimize the Lagrangian in (17).

3.3.2 Optimizing the Dual Function over µ

From the duality theory of convex optimization [26,27] the optimal solution to prob-
lem P1 is given by minimizing the dual function in (18) over all (α,λ,µ) ≥ 0. We do
this coordinate-wise starting with the µ variables. The following lemma characterizes
this optimization.

Lemma 1 For all α,λ ≥ 0,

L(α,λ) := min
µ≥0

L(α,λ,µ)

=
∑
i

(
(wi − αi)+R

max
i − (αi − wi)+R

min
i

)
+
∑
m

λmPm +
∑
j

µ∗j(α,λ),

(20)

where for every tone j, the minimizing value of µ∗j is achieved by

µ∗j(α,λ) := max
i
µij

(
αi,

λ̂i
αieij

)
. (21)

The proof of Lemma 1 follows from a similar argument as in [9]. Note that (21)
requires searching for the maximum value of the metrics µij across all users for each
tone j. Since L(α,λ) is the minimum of a convex function over a convex set, it is a
convex function of (α,λ).

3.3.3 Optimizing the Dual Function over (α,λ)

Now we are ready to optimize the remaining variables in the dual functions, namely,
(α,λ). In the single cell downlink case with no rate constraints (and thus no α vari-
ables), this reduces to a one dimensional problem in λ and hence, it can be minimized
using an iterated one dimensional search (e.g., the Golden Section method [26]). Since
there is no duality gap, at λ∗ = arg minλ≥0 L(λ), L(λ∗) gives the optimal objective
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value of problem (P1). Similarly, in the absence of rate constraints, the multiple
sites/sectors problem with a partition of the users {Km}Mm=1 also leads to a one di-
mensional problem within each partition.

In general, however, one would need to use subgradient methods [26, 27] to nu-
merically solve for the optimal (α,λ). The following lemma characterizes the set of
subgradients of L(α,λ) with respect to (α,λ).

Lemma 2 About any (α0,λ0) ≥ 0,

L(α,λ) ≥
∑
i

d(α0
i )(αi − α0

i ) +
∑
m

d(λ0
m)(λm − λ0

m), (22)

with

d(λm) = Pm −
∑
i∈Km

p∗ij = Pm −
∑
i∈Km

x∗ij
eij
g

(
λ̂i
αieij

)
∧ sij (23)

d(αm) =
∑
j

x∗ijf

(
g
( λ̂i
αieij

)
∧ sij

)
− r∗i (24)

where x∗ijs satisfy∑
i

x∗ij ≤ 1 and µj(α,λ)

(
1−

∑
i

x∗ij

)
= 0; ∀j,

and satisfy the equation (19) with µj = µ∗j(α,λ) as given in equation (21), and r∗i
satisfy equation (13). Thus the subgradients d(λm) and d(αi) are parameterized by
(r∗,x∗) and are linear in these variables. Moreover, the permissible values of r∗ lie
in a hypercube and those of x∗ in a simplex.

Observe that the dual function at any point (α,λ) is obtained by taking the
maximum of the Lagrangian over (r∗,p∗,x∗) satisfying

∑
i xij ≤ 1,∀j ∈ N , (x,p) ∈

X . In case (r∗,p∗,x∗) is unique, then the resulting Lagrangian is a gradient to
the dual function at (α,λ). In case there are multiple optimizers, the resulting
Lagrangians are each a subgradient, and every subgradient can be obtained by a
convex combination of these subgradients so that the set of subgradients is convex.
The lemma follows easily by substituting for the optimal (r∗,p∗,x∗).

Having characterized the set of subgradients, a method similar to that used in [25]
for the single cell uplink problem can be used to solve for the optimal dual variables
(α∗,λ∗) numerically. In each step of this method we change the dual variables along
the direction given by a subgradient subject to non-negativity of the dual variables.
The convergence of this procedure (for a proper step-size choice) is once again guar-
anteed by the convexity of L(α,λ) (see [26, Exer. 6.3.2], [25]).
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3.3.4 Optimizing the dual function over α

Since the dimension of α equals the number of users and the dimension of µ equals
the number of tones, it may be computationally better to optimize over α instead
of µ if the number of users is greater, and then use numerical methods to solve the
problem. Next we detail the means to optimize over α before µ. The dual function
contains many terms that have definitions with (·)+, and therefore we would need to
identify exactly when these terms are non-zero. For this we need to solve a non-linear
equation which is guaranteed to have a unique solution. We first discuss this and
then apply it to optimizing the dual function over α.

Given y, z ≥ 0, define by v(y, z) the unique solution with 1 ≤ x < +∞ to

xf

(
g
(1

x
∨ df
ds

(z)
))
− g
(1

x
∨ df
ds

(z)
)

= y,

where it is easy to show that xf

(
g
(

1
x
∨ df

ds
(z)
))
− g
(

1
x
∨ df

ds
(z)
)

is a monotonically

increasing function taking value 0 at x = 1 and increasing without bound as x→ +∞.

If y ≥ f(z)/(df/ds(z))−z
(
≥0
)

, then v(y, z) = (y+z)/f(z) where it is easy to verify

that v(y, z) ≥ z/f(z) ≥ 1/(df/ds(z)) ≥ 1/(df/ds(0)) = 1 from the concavity of f(·)
and from f(0) = 0. Otherwise we need to solve for the unique 1 ≤ x ≤ 1/(df/ds(z))
such that

xf

(
g
(1

x

))
− g
(1

x

)
= y.

For our results we will be interested in v
(
µjeij

λ̂i
, sij

)
, using which we also define

νij :=
λ̂iv
(
µjeij

λ̂i
, sij

)
eij

and ζij :=
µj +

sij λ̂i
eij

f(sij)
,

where νij = ζij if
µjeij

λ̂i
≥ f(sij)

df(sij)

ds

− sij.

First note that we can rewrite the function in (18) as follows

L(α,µ,λ) =
∑
j

µj +
∑
m

λmPm +
∑
i

L̃i,

where L̃i = (wi − αi)+R
max
i − (αi − wi)+R

min
i

+
∑
j

λ̂i
eij

[
αieij

λ̂i
f

(
g
( λ̂i
αieij

)
∧ sij

)
−
(
g
( λ̂i
αieij

)
∧ sij

)
− µjeij

λ̂i

]
+

.
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Now using the quantities defined earlier in this section, one can write L̃i as follows

L̃i =
∑
j

λ̂i
eij

[
1{0≤αi≤ζij}

(αieij
λ̂i

f(sij)− sij −
µjeij

λ̂i

)
+

1{ζij<αi≤νij}

(
αieij

λ̂i
f

(
g
( λ̂i
αieij

))
− g
( λ̂i
αieij

)
− µjeij

λ̂i

)]
+ (wi − αi)+R

max
i − (αi − wi)+R

min
i .

Minimizing L̃i over αi ≥ 0 can now be accomplished by a simple one dimensional
search; we define the optimal vector of αis to be α∗(λ,µ). Thereafter one would
need to use a subgradient method [25, 26] to numerically minimize over (µ,λ). A
subgradient of L̃ with respect to λm is given by Pm −

∑
i∈Km

p∗ij where p∗ij is taken

from (16) where one substitutes x∗ij from (19). A subgradient of L̃ with respect to µj
is given by 1 −

∑
i x
∗
ij where we substitute for x∗ij from (19). Note, however, that it

is important that we also meet the following constraints for all i, namely,

Rmin
i ≤

∑
i

x∗ijf

(
p∗ij
x∗ij

)
≤ Rmax

i ;

if α∗i < wi, then
∑
j

x∗ijf

(
p∗ij
x∗ij

)
= Rmax

i ; and

if α∗i > wi, then
∑
j

x∗ijf

(
p∗ij
x∗ij

)
= Rmin

i .

The proof of this follows by retracing the steps of the proof of Lemma 2 with the
roles of α and µ being switched.

3.4 Primal optimal solution

For the general OFDMA problem we presented two methods to solve for V ∗: in the
first method we showed how to characterize the dual variables µ(α,λ) and then we
proposed numerically solving for the optimal (α∗,λ∗) using subgradient methods,
while in the second method followed the same strategy after switching the roles of µ
and α. However, we still need to solve for the values of the corresponding optimal
primal variables. Concentrating on the first method, we know by duality theory [26]
that given (α∗,λ∗) we need to find one vector from the set of (r∗,x∗,p∗) that also
satisfies primal feasibility and complementary slackness. These constraints can easily
be seen to translate to the following:

d(λ∗m) ≥ 0, d(λ∗m)λ∗m = 0, ∀m; (25)

d(α∗i ) ≥ 0, d(α∗i )α
∗
i = 0, ∀i. (26)
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From the linearity of d(λ∗m), d(α∗i ) in (r∗,x∗) it follows that the primal optimal
(r,x,p) are the solution of a linear program in (r∗,x∗).

For the single cell downlink case with no rate constraints, as we have previously
noted searching for the dual optimal is a one dimensional numerical search in λ. In
that case, the search for primal optimal solution turns out to have additional structure
as shown in [28].

3.5 OFDMA Feasibility

Next we turn to the corresponding feasibility problem, which can be stated as:

V ∗ = minσ (27)

subject to: Ri ≤
∑
j

xijf(
pijeij
xij

), ∀ i (αi)∑
i

xij ≤ 1 ∀ j (µj)∑
i∈Km

∑
j

pij
Pm
≤ σ ∀ m (λm)

(x,p) ∈ X .

The vector of rates (Ri) is feasible if V ∗ ≤ 1, i.e., all the power constraints will
also be satisfied by a vector (x∗,p∗). As mentioned earlier, we need to check that
(Ri) = (Rmin

i ) is indeed feasible; otherwise problems (P1) and (P2) are both infeasible
as well. Moreover, if (Ri) = (Rmax

i ) is also feasible, then r = (Rmax
i ) is the optimizer

for problems (P1) and (P2). In which case, the optimal solution to the problem above
with (Ri) = (Rmax

i ) will also yield an optimal solution to the scheduling problem.
Observe that problem (27) is convex and satisfies Slater’s conditions. Finally, we also
note that other alternate formulations of the feasibility problem are possible where
one could either apply the σ constraint also on the subchannel utilization or switch the
roles of subchannel and power utilization. All of these will yield the same conclusion
about feasibility although the actual solutions, in terms of (x∗,p∗), would possibly
be different.

The Lagrangian considering the marked constraints is

L(σ,x,p,α,µ,λ) = σ

(
1−

∑
m

λm

)
−
∑
j

µj +
∑
i

αiRi

+
∑
ij

µjxij −
∑
ij

(
αixijf

(
pijeij
xij

)
+ pijλ̃i

)
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where λ̃i :=
∑

m:i∈Km

λm
Pm

. As before, minimizing over pij yields
p∗ijeij

xij
= g

(
λ̃i
αieij

)
∧ sij.

Substituting this in the Lagrangian, we get

L(σ,x,α,µ,λ) =
∑
i

αiRi −
∑
j

µj + σ

(
1−

∑
m

λm

)

−
∑
i,j

xij

[
αif(g(

λ̂i
αieij

) ∧ sij)−
λ̂i
eij

(g(
λ̂i
αieij

) ∧ sij)− µj

]
.

Minimizing over 0 ≤ xij ≤ 1 yields

L(σ,α,µ,λ) =
∑
i

L̃i −
∑
j

µj + σ

(
1−

∑
m

λm

)

where

L̃i = αiRi −
∑
j

[
αif(g(

λ̂i
αieij

) ∧ sij)−
λ̂i
eij

(g(
λ̂i
αieij

) ∧ sij)− µj

]
+

.

Next we minimize L over all values of σ. Since there are no constraints on σ, it
follows that the resulting L is finite only when

∑
m λm = 1; for all other values we

would get L = −∞. Hereafter we will assume that
∑

m λm = 1. Thus

L(σ,x,α,µ,λ) =
∑
i

L̃i −
∑
j

µj.

Note that as before, as a function of αi the problem is now separable. Therefore we
only need to maximize L̃i over αi ≥ 0.

Similarly we can write L as

L(σ,x,α,µ,λ) =
∑
j

L̂j +
∑
i

αiRi,

where we have

L̂j = −

(
µj +

∑
i

[
αif(g(

λ̂i
αieij

) ∧ sij)−
λ̂i
eij

(g(
λ̂i
αieij

) ∧ sij)− µj

]
+

)

As a function of µj the problem is now separable, and we only need to maximize L̂j
over µi ≥ 0.
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Thus, we could optimize first over either µ or α, once again based upon whether
the number of users or subchannels is smaller. In either case, the methodology and the
functions that appear are very similar to the corresponding problem in the scheduling
problem (P1), and due to space constraints we do not elaborate on this. Care must
be take, however, while evaluating subgradients with respect to λ. Here we propose
using a projected gradient method [26, 27] based upon the constraint

∑
m λm = 1 to

numerically solve for the optimal λ.

3.6 Power allocation given subchannel allocation

In many of the suboptimal scheduling algorithms that we will discuss, a central feature
will be a computationally simpler (but still close to optimal) method to provide a
subchannel allocation. Once the subchannel allocation has been made, all that will
remain is the power allocation problem, subject to the various constraints that we
discussed earlier. Here we discuss how this can be solved in an optimal manner. A
similar question can also be asked about the feasibility problem, hence we also discuss
this here. In all cases, we assume that we are given a feasible subchannel allocation.

Since we are given a feasible subchannel allocation x, the Lagrangian of the new
scheduling problem (power allocation only) can be easily derived by setting µ = 0.
For this we once again use the formulation based upon Problem (P1). The optimal

power allocation is then given by p∗ij =
xij
eij

(
g
(

λ̂i
αieij

)
∧ sij

)
. The Lagrangian that

results from substituting this formula is

L(x,α,λ) =
∑
m

λmPm +
∑
i

(wi − αi)+R
max
i −

∑
i

(αi − wi)+R
min
i

+
∑
i

∑
j

αixijf

(
g
( λ̂i
eijαi

)
∧ sij

)
− λ̂ixij

eij

(
g
( λ̂i
eijαi

)
∧ sij

)
.

Now it is easy to argue that if Rmin
i = 0 and Rmax

i = +∞ and if the Kms form a
partition, then within each partition the λms can be solved for as in Section 3.3. In
any case, in this setting solving for the optimal αi ≥ 0 is easier, but uses some of
the functions described at the end of Section 3.3. However, after this step we would
still need to solve for λ numerically; if the partitions assumption holds, then it would
only need a single dimensional search within each partition. A finite-time algorithm
for achieving the optimal λ has been given in [25,28] under the assumption that f(·)
represents the Shannon capacity as in (8) with β = 0.
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3.6.1 Feasibility check

Under the assumption that a feasible subchannel allocation has already been provided,
even the feasibility check problem becomes a lot easier. As before we can assume∑

m λm = 1, and that the optimal power allocation is given by p∗ij =
xij
eij

(
g
(

λ̃i
eijαi

)
∧sij

)
,

and substituting this we get

L(x,α,λ) =
∑
i

αiR̂i −
∑
j

xij

[
αif

(
g
( λ̃i
eijαi

)
∧ sij

)
− λ̃i
eij

(
g
( λ̃i
eijαi

)
∧ sij

)]
.

Again solving for the optimal αi is simpler. Once again the λ vector would need to
be computed numerically, subject to it being a probability vector, i.e.,

∑
m λm = 1

and λm ≥ 0 for each m.

4 Low Complexity Suboptimal Algorithms with

Integer Channel Allocation

There are two shortcomings with using the optimal algorithm outlined in the previ-
ous section for scheduling and resource allocation: (i) the complexity of the algorithm
in general is not computationally feasible for even moderate sized systems; (ii) the
solution found may require a time-sharing channel allocation, while practical imple-
mentations typically require a single user per sub-channel. One way to address the
second point is to first find the optimal primal solution as in the previous section and
then project this onto a “nearby” integer solution. Such an approach is presented
in [28] for the case of a single cell downlink system (M = 1) without any rate con-
straints. In that setting, after minimizing the dual function over µ, one optimizes
the function L(λ), which only depends on a single variable. This function will have
scalar subgradients which can then be used to develop rules for implementing such
an integer projection. Moreover, in this case since L(λ) is a one-dimensional function
the search for the optimal dual values is greatly simplified. However, in the general
setting, this type of approach does not appear to be promising.10

In this section we discuss a family of sub-optimal algorithms (SOA’s) for the
general setting that try to reduce the complexity of the optimal algorithm, while sac-
rificing little in performance. These algorithms seek to exploit the problem structure
revealed by the optimal algorithm. Furthermore, all of these sub-optimal algorithms
enforce an integer tone allocation during each scheduling interval. In the following
we consider the general model from Section 3.1 with the restriction that {Km} forms

10See [25] for a more detailed discussion of this in the context of the uplink scenario.
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a partition of the user groups (i.e. each user is in only one of these sets) and that
Rmin
i = 0 for all i. In a typical setting both of these assumptions will be true.

In the optimal algorithm, given the optimal λ and α, the optimal tone alloca-
tion up to any ties is determined by sorting the users on each tone according to the

metric µij(αi,
λ̂i
αieij

) (cf. (19)). Given an optimal tone allocation, the optimal power

allocation is given by (16). In each SOA, we use the same two phases with some
modifications to reduce the complexity of computing (λ, α) and the optimal tone al-
location. Specifically, we begin with a subChannel Allocation (CA) phase in which we
assign each tone to at most one user. We consider two different SOAs that implement
the CA phase differently. In SOA1, instead of using the metric given by the optimal
λ and α, we consider metrics based on a constant power allocation over all tones
assigned to a partition. In SOA2, we find the tone allocation, once again through
a dual based approach, but here we first determine the number of tones assigned to
each user and then match specific tones and users. In all cases we assign the tones to
distinct partitions which will, in turn, yield an interference-free operation. After the
tone allocation is done in both SOAs, we execute the Power Allocation (PA) phase
in which each user’s power is allocated across the assigned tones using the optimal
power allocation in (16).

4.1 CA in SOA1: Progressive Subchannel Allocation Based
on Metric Sorting

In this family of SOAs, tones are assigned sequentially in one pass based on a per
user metric for each tone, i.e., we iterate N times, where each iteration corresponds
to the assignment of one tone. Let Ni(n) denote the set of tones assigned to user i
after the nth iteration. Let gi(n) denote user i’s metric during the nth iteration and
let li(n) be the tone index that user i would like to be assigned if he/she is assigned
the nth tone. The resulting CA algorithm is given in Algorithm 1. Note that all the
user metrics are updated after each tone is assigned.

We consider several variations of Algorithm 1 which correspond to different choices
for steps 4 and 5. The choices for step 4 are:

(4A): Sort the tones based on the best channel condition among all users. This
involves two steps. First, for each tone j, find the best channel condition among
all users and denote it by µ̃j := maxi eij. Second, find a tone permutation {αj}j∈N
such that µ̃α1 ≥ µ̃α2 ≥ · · · ≥ µ̃αN

, and set li (n) = αn for each user i at the nth
iteration. Each max operation has complexity of O(K), and the sorting operation
has a complexity of O(N log(N)). The total complexity is O (NK +N logN). We
note that this is a one-time “pre-processing” that needs to done before the CA phase
starts. During the tone allocation iterations, the users just choose the tone index

25



Algorithm 1 CA Phase for SOA1

1: Initialization: set n = 0 and Ni (n) = ∅ for each user i.
2: while n < N do
3: n+ 1.
4: Update tone index li (n) for each user i.
5: Update metric gi (n) for each user i.
6: Find i∗ (n) = arg maxi gi (n) (break ties arbitrarily).
7: if gi∗(n)(n) ≥ 0 then
8: Assign the nth tone to user i∗ (n):

Ni (n) =

{
Ni (n− 1) ∪ {li (n)} , if i = i∗n;

Ni (n− 1) , otherwise.

9: else
10: Do not assign the nth tone.
11: end if
12: end while

from the sorted list.
(4B): Sort the tones based on the channel conditions for each individual user.

For each user i at the nth iteration, set li(n) to be the tone index with the largest
gain among all unassigned tones, i.e., li(n) = arg maxj∈N\∪iNi(n−1) eij. This requires
K sorts (one per user); these also need to be performed only once (since each tone
assignment does not change a user’s ordering of the remaining tones) and can be done
in parallel. The total complexity of the K sorting operations is O (KN logN), which
is higher than that in (4A).

During the nth iteration, let ki(n) = | ∪j∈Km(i)Nj(n)| denote the number of tones
assigned to users in the group to which user i belongs, i.e., m(i). The choices for Line
5 are:

(5A): Set gi (n) to be the total increase in user i’s utility if assigned tone li (n),
assuming the power for each user group is allocated uniformly over the tones assigned
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to that group, i.e.,

gi(n) =

wi

[(∑
j∈Ni(n−1)∪{li(n)} f

(
Pieij

ki(n−1)+1
∧ sij

))
∧Rmax

i

−

(∑
j∈Ni(n−1) f

(
Pieij

ki(n−1)
∧ sij

))
∧Rmax

i

] ,if ki(n− 1) > 0;

wi

[(∑
j∈Ni(n−1)∪{li(n)} f

(
Pieij

ki(n−1)+1
∧ sij

))
∧Rmax

i

]
,otherwise.

(28)

(5B): Set gi (n) to be user i’s gain from only tone li (n), again assuming constant
power allocation within each group, i.e.

gi (n) = wi

[
f

(
Piei,li(n)

ki(n− 1) + 1
∧ sij

)
∧Rmax

i

]
.

Compared with (5A), this metric is simpler to calculate but ignores the change in
user i’s utility due to the decrease in power allocated to any tones in Ni(n − 1). It
also does not accurately enforce the maximum rate constraint, since it only considers
one tone at a time.

The complexity of either of these choices over N iterations is O(NK), and so
the total complexity for the CA phase is O (NK +N logN) (if (4A) is chosen) or
O (KN logN) (if (4B) is chosen). Algorithms similar to SOA1 with (4B) and (5B)
have been proposed in the literature for both the single cell downlink setting [12]11 and
the uplink [36] without rate or SNR constraints. In the single cell downlink case, the
algorithm in [12] is shown via numerical examples to have near optimal performance.
In the uplink case, this also performs reasonably well in simulations [36], but [25]
shows that better performance can be obtained using (4B) and (5A) instead.

4.2 CA in SOA2: tone Number Assignment & tone User
Matching

SOA2 implements the CA phase through two steps: tone number assignment (CNA)
and tone user matching (CUM). The algorithm is summarized in Algorithm 2.

11The main difference with the algorithm in [12] is that after each iteration n, it then checks to
see if

∑
i wiri is increasing and if not it stops at iteration n − 1. Such a step can be added to

Algorithm 1; however, unless the system is lightly loaded it is unlikely to have a large impact on the
performance.
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Algorithm 2 CA Phase of SOA2

1: subChannel Number Assignment (CNA) step: determine the number of tones ni
allocated to each user i such that

∑
i∈K ni ≤ N .

2: subChannel User Matching (CUM) step: determine the tone assignment xij ∈
{0, 1} for all users i and tones j, such that

∑
j∈N xij = ni.

4.2.1 subChannel Number Assignment (CNA)

In the CNA step, we determine the number of tones ni assigned to each user i ∈ K.
The assignment is calculated based on the approximation that each user sees a flat
wide-band fading tone. Notice that here we do not specify which tone is allocated
to which user; such a mapping will be determined in the CUM step. The CNA
step is further divided into two stages: a basic assignment stage and an assignment
improvement stage.

Stage 1, Basic Assignment : Here, the assignment is based on the normalized SNR
averaged over all tones. Specifically, we model each user i as having a normalized
SNR ei = 1

N

∑
j∈N eij, and then determine a tone number assignment ni for all i by

solving:

max
{ni≥0,i∈K}

∑
i∈K

winif

(
Pm(i)ei∑
j∈Km(i)

nj
∧ si

)
subject to:

∑
i∈K

ni ≤ N

nif

(
Pm(i)ei∑
j∈Km(i)

nj
∧ si

)
≤ Rmax

i .

(SOA2-CNA)

Here, we are again assuming that power is allocated uniformly over all the channels
assigned to a given user group.

Unfortunately, in general the objective in Problem SOA2-CNA is not concave.
However, in the special case of the uplink (Km(i) = {i}) it will be.12 In the case
of the single cell downlink, if nf(a/n) is increasing for all a > 0 (as in our general
formulation), then the problem can be re-formulated to have a concave objective
by noting that in this case it must be that

∑
i∈K ni = N at any optimal solution.

Additionally, due to the maximum rate constraint, the constraint set may not be
convex; this can be accommodated by considering a higher dimensional problem as
in Section 3.3.

12Some care is required at the point where the SNR constraint becomes active as the objective is
not differentiable there; nevertheless, by evaluating left and right derivatives the concavity can be
shown.

28



Next, we focus on solving Problem SOA2-CNA in the uplink setting without
maximum rate constraints. In this case, the problem will have a unique and possibly
non-integer solution, which we can again use a dual relaxation to find. Consider the
Lagrangian

L(n, λ) :=
∑
i∈K

winif

(
Piei
ni
∧ si

)
− λ

(∑
i∈K

ni −N

)
.

Optimizing L(n, λ) over n ≥ 0 for a given λ is equivalent to solving the following K
subproblems,

n∗i (λ) = arg max
ni≥0

winif

(
Piei
ni
∧ si

)
− λni,∀i. (29)

Problem (29) can be solved by a simple line search over the range of (0, N ]. Substi-
tuting the corresponding results into the Lagrangian yields

L(λ) :=
∑
i∈K

win
∗
i (λ) f

(
Piei
n∗i (λ)

∧ si
)
− λ

(∑
i∈K

n∗i (λ)−N

)
,

which is a convex function of λ [26]. The optimal value

λ∗ = arg min
λ≥0

L(λ) (30)

can be found by a line section search over: [0,maxiwif( Piēi
N/K

)]13. For a given search

precision, the maximum number of iterations needed to solve either (29) or (30) is
fixed.14. Hence, the worst case complexity of the solving each subproblem is inde-
pendent of K or N . Since there are K subproblems in (29), it follows that the
complexity of the basic assignment step is O(K). If the resultant channel alloca-
tions contain non-integer values, we will approximate with an integer solution that
satisfies

∑
i∈K ni = N .15 Since each user is allocated only a subset of the tones, the

normalized SNR ei = 1
N

∑
j∈N eij is typically a pessimistic estimate of the averaged

13The upperbound of the search interval can be obtained by examining the first order optimality
condition of (29).

14For example, if we use bi-section search to solve (29) and stop when the relative error of the
solution is less than N/210, then we only need a maximum of ten search iterations.

15One possible integer approximation is the following. Assume n∗i is the unique optimal so-
lution of Problem SOA2-CNA. First, sort users in the descending order of the mantissa of
n∗i , fr (n∗i ) = n∗i − bn∗i c. That is, find a user permutation subset {αk, 1 ≤ k ≤ N} such that
fr
(
n∗α1

)
≥ fr

(
n∗α2

)
≥ · · · ≥ fr

(
n∗αM

)
. Second, for each user i, let ñ∗i = bn∗i c. Third, calcu-

late the number of unallocated tones, NA = N −
∑
i ñ
∗
i . Finally, adjust users with large mantissas

such that all the tones are allocated, i.e., ñ∗αi
= ñ∗αi

+ 1 for all 1 ≤ i ≤ NA. The resulting {ñ∗i }i∈K
give the integer approximation.
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tone conditions over the allocated subset. This motivates us to consider the following
assignment improvement stage of CNA.

Stage 2, Assignment Improvement : Here, assignment is performed by means of
iterative calculations using the normalized SNR averaged over the best tone subset.
Specifically, we iteratively solve the following variation of Problem SOA2-CNA (stated
here for the uplink without maximum rate constraints):

max
n(t)≥0

∑
i∈K

wini(t)f

(
Piei (t)

ni(t)
∧ si

)
subject to:

∑
i∈K

ni (t) ≤ N

nif

(
Pm(i)ei (t)∑
j∈Km(i)

nj
∧ si

)
≤ Rmax

i ,

(SOA2-CNA-t)

for t = 1, 2, .... During the t-th iteration, ei (t) is a refined estimate of the normalized
SNR based on the best bni (t− 1)c (or dni (t− 1)e) tones of user i; additionally,
ni(0) := N for all i. The iteration stops when the tone allocation converges or the
maximum number of iterations allowed is reached. An integer approximation will be
performed if needed.

The complete algorithm for the CNA phase of SOA2 is given in Algorithm 3.
In order to perform the assignment improvement, we need to perform K sorting
operations, with a total complexity O(KN log(N)). Note that this only needs to
be done once. Step 4 of each iteration has complexity of O(K) due to solving K
subproblems for a fixed dual variable. The maximum number of iterations is fixed
and thus is independent of N or K. The integer approximation stage requires a
sorting with the complexity of O(K log(K)). So the total complexity for the CNA
phase of SOA2 is O(KN log(N) +K log(K)).

Algorithm 3 CNA Phase of SOA2

1: Initialization: integer MaxIte> 0, t = 0, ni(0) = N and ni(1) = N/2 for each
user i.

2: while (ni (t+ 1) 6= ni (t) for some i) & (t <MaxIte) do
3: t = t+ 1.
4: For each user i, ei (t) = average gain of user i’s best ni (t− 1) tones.
5: Solve Problem (SOA2-CNA-t) to determine the optimal ni (t) for each user i.
6: end while
7: let n∗i = ni(t) for each user i.
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4.2.2 subChannel User Matching (CUM) Step

After the CNA step, we know how many tones are to be allocated to each user.
However, we still need to determine which specific tones are assigned to which user.
This is accomplished in the CUM step by finding a tone assignment that maximizes
the weighted-sum rate assuming each user employs a flat power allocation, i.e. we
solve the problem:

max
xij∈{0,1}

∑
i∈K

∑
j∈N

xijwif

(
Pieij
n∗i
∧ si

)
subject to:

∑
j∈N

xij = n∗i ,∀i ∈ K,∑
i∈K

xij = 1,∀j ∈ N ,

(SOA2-CUM)

where n∗ = (n∗i , i ∈ K) is the integer tone allocation obtained in the CNA step. Since
we solved Problem (SOA2-CNA-t) using the average of the best n∗, then concavity of
f(·) ensures that any feasible tone allocation for Problem (SOA2-CUM) will satisfy
the maximum rate constraint.

Problem SOA2-CUM is an integer Assignment Problem whose optimal solution
can be found by using the Hungarian Algorithm [30].16 To use the Hungarian algo-
rithm here, we need to perform “virtual user splitting” as explained next. For user i,

let rij = wif
(
Pieij
n∗
i
∧ sij

)
, and let

ri = [ri1, ri2, · · · , riN ]

be user i’s achievable rates over all possible tones. We can then form a K × N

matrix R =
[
rT1 , r

T
2 , · · · , rTM

]T
. Next, we split each user i into n∗i virtual users by

adding n∗i − 1 copies of the row vector ri to the matrix R. This expands R into a
N × N square matrix. Solving Problem SOA2-CUM is then equivalent to finding a
permutation matrix C∗ = [cij]N×N such that

C∗ = arg min
C∈C
−C ·R := arg min

C∈C
−

N∑
i=1

N∑
j=1

cijrij. (31)

Here C is the set of permutation matrices, i.e., for any C ∈ C, we have cij ∈ {0, 1},∑
i cij = 1 and

∑
j cij = 1 for all i and j. This problem can be solved by the standard

16A similar idea has been used to solve various single cell downlink OFDMA resource allocation
problems (e.g., [18]) as well as to find user coalitions for Nash Bargaining in an uplink OFDMA
system in [32].
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Hungarian algorithm which has a computational complexity of O (N3), where N is the
total number of tones. The detailed algorithm can be found in [30]. After obtaining
C∗, we can calculate the corresponding tone allocation x∗. For example, if c∗kj = 1
and virtual user k corresponds to the actual user i, then we know x∗ij = 1, i.e., tone
j is allocated only to user i.

4.3 Power Allocation (PA) phase

We can follow the tone allocation (CA) phase in either SOA1 and SOA2 with a power
allocation phase in which power is optimally allocated among the tones assigned to
the users in each partition.17 After this optimization it is possible that some tone
is allocated zero power due to its poor tone gain. Alternatively, one can simply use
a uniform power allocation as was assumed in the CA phase. For certain single cell
downlink scenarios, such a uniform allocation has been shown to be nearly optimal
in [12,28].

Since the tone allocation is given, optimizing the power allocation for each group
is equivalent to the problem considered in Section 3.6 and can be addressed in a sim-
ilar way, i.e. by considering the dual formulation and numerically searching for the
optimal dual variables. We note that in the uplink scenario without any maximum
rate constraint, we need to solve one such problem for each user and for each prob-
lem only a single dual variable needs to be introduced (corresponding to the user’s
power constraint). Hence, the optimal dual value can be found through a simple line
search, with a constant worst-case complexity given a fixed search precision as in our
discussion of (29).

4.4 Complexity and performance of Suboptimal Algorithms
for the Uplink Scenario

In this section we discuss the complexity and performance of the suboptimal algo-
rithms in an uplink scenario without any maximum rate constraints 18. The worst
case computational complexities of the variations of SOA1 and SOA2 for this setting
are summarized in Table 1.

Next we briefly discuss the performance of this algorithms with a realistic OFDMA
simulator assuming parameters and assumptions commonly found in the IEEE 802.16
standards [10]. These results are for a single cell with 40 users. All users are infinitely
back-logged and assigned a throughput-based utility as in (3) with parameter ci = 1

17In this section, we again consider the case where {Km} forms a partition of the users and allow
for maximum rate constraints.

18It can be argued that this will also be the worst-case setting for the general problem assuming
partitions and no rate constraints.
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Table 1: Worst Case Computational Complexity of Suboptimal Algorithms

Suboptimal Algorithm Worst Case Complexity

4A & 5A O (NK +N logN)
subChannel Allocation (CA) 4A & 5B O (NK +N logN)

4B & 5A O (KN logN)
SOA1 4B & 5B O (KN logN)

Power Allocation (PA) O (KN)
Total (CA + PA) O (KN logN)

subChannel Allocation (CA) CNA O (KN logN +K logK)
CUM O (N3)

SOA2 Power Allocation (PA) O (KN)
Total (CA+PA) O (N3 +KN logN +K logK)

and α = 0.5. Each user i has a total transmission power constraint Pi = 2W. We
calculate the achievable rate of user i on tone j as

rij = Bxij log

(
1 +

pijeij
xij

)
,

where B is the tone bandwidth and eij is generated according to a product of a fixed
location-based term and a frequency-selective fast fading term. A detailed description
of the simulation set-up can be found in [25] with further results. Scheduling decisions
are made every 20 OFDM symbols, which corresponds to one fading block.

Table 2 shows simulation results for the following four algorithms:

1. Integer-Dual: integer tone allocation (with tie breaking) based on optimal dual-
based algorithm and optimal power control. To reduce computational complex-
ity in the case of too many ties, we randomly inspect up to 128 ways of breaking
the ties with an integer allocation and select the allocation among these with
the largest weighted sum rate (before reallocating the power).

2. SOA1: tone allocation as in Section 4.1 and power control as in Section 4.3.
There are four versions of SOA1, depending on how steps 4 and 5 in Algorithm
1 are implemented; we present results for each.

3. SOA2: tone allocation as in Section 4.2 (with up to 10 iterations) and power
control as in Section 4.3.
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Table 2: Example Uplink resource allocation performance

Algorithms Utility Log U Rate Scheduled Users

Integer-Dual 53922 514.0 21.56 37.5
4A & 5A 52494 510.7 22.86 34.6

SOA 1 4A & 5B 51697 509.2 20.22 28.1
4B & 5A 54165 513.3 22.25 35.0
4B & 5B 53156 511.4 21.43 28.6

SOA 2 54316 513.6 22.33 35.1
Base Line 21406 -1960.5 16.13 2.66

4. Base-line: each tone j is allocated to the user i with the highest eij, without
considering the weights wi’s and the power constraints. Each user’s power is
then allocated as in Section 4.3.

In this table it can be seen that SOA1 (with 4B & 5A) and SOA2 achieve the
best performance in terms of total utility. Their performance is even better than the
Integer-Dual approach, which was obtained based on the optimal value of the relaxed
problem. This is likely because only 128 ways to break ties are considered which
is typically not sufficient. Since the Integer-Dual algorithm achieves an optimality
ratio of 0.9412, this suggests that SOA1 and SOA2 achieve very close to optimal
performance as well. The base-line algorithm always has poor performance.

Here, and in other uplink simulation reported in [25], all of the SOAs have good
performance with SOA1 (with 4B & 5A) and SOA2 consistently achieving the best
performance in terms of total utility. From Table 1, we note that these have slightly
higher complexity than some of the other SOAs. Hence if lower complexity is desired,
this can be provided with only a slight loss in performance. We also note that in
each case the SOAs and the integer-dual algorithm schedule a large number of users
on average in each time-slot. A potential cost from this is that it may increase the
needed signaling overhead. One way to reduce this cost is to add a penalty term to
our objective which increases with the number of users scheduled.

5 Conclusions and Open Problems

In this chapter, we have considered a general model of gradient-based scheduling and
resource allocation for OFDMA systems. This model includes single cell downlink,
uplink, and multi-cell downlink with frequency sharing, and incorporates various
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practical constraints such as per carrier SNR constraints, self-noise due to imper-
fect channel estimates or phase noise, and minimum and maximum per user rate
constraints. Essentially the problem can be reduced to solving a weighted rate maxi-
mization problem in each time-slot. We address this problem with a Lagrangian dual
relaxation method. By exploiting the structure of the OFDMA rate region, we can
express the dual function in terms of a small subset of dual variables. The optimal
values of these variables can be found through standard numerical search methods.
An interesting observation is that recovering the optimal primal solutions given opti-
mal dual variables is rather straightforward in most cases, since the optimal channel
allocations often turn out to be integer “automatically”. In the case when this is
not true, we need to calculate the channel allocation by either allowing time-sharing
or picking a good integer solution, and optimize the power allocation accordingly.
Based on the intuition derived from the optimal algorithms, we demonstrate that it
is possible to design a class of heuristic algorithms that are low in complexity but
perform very well in simulation studies.

All algorithms presented in this chapter are centralized. This is not an issue for the
single cell downlink case or even for a multi-sectored site, where the resource allocation
decisions are made by the base station. In the uplink and multi-cell downlink cases,
however, a distributed algorithm is more desirable since the decisions are made by
the multiple network entities (either multiple mobile users or multiple base stations).
Some preliminary results towards a fully distributed algorithm have been reported
in [40,41] and more work is needed along this line. Another open issue regarding the
multi-cell downlink case is to consider models which allow dynamic frequency re-use.
A challenge in such settings is that the resulting optimization problem may not longer
be convex even when the integer constraints are relaxed.

The algorithms presented here require assume that the scheduler has accurate
channel quality information (though some inaccuracy may be accounted for via the
self-noise terms). In OFDMA systems with many users and tones, the resulting
feedback overhead can become significant. This overhead can be partially reduced
by proper subchannelization methods (e.g., [28]) or by not reporting the channel
quality on every subchannel as in [21]. However, there is little understanding of the
interplay between these or other limited feedback schemes and the resulting scheduling
performance. This is another area in which additional work is warranted.
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