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Abstract—Sharing spectrum has emerged as a promising way
to meet the exploding demand for wireless data services. In
this paper, we consider a scenario in which spectrum is shared
between a primary and multiple secondary service providers, all
of which are competing for a common pool of customers. We
adopt a similar model to one used in earlier work to study
competition with unlicensed spectrum, in which users select
service providers based on the sum of a congestion cost and
the price announce by the service provider. Competition with
unlicensed spectrum was shown to potentially decrease social
welfare. In contrast, with shared spectrum, we show here that
social welfare is always non-decreasing, although the welfare
of the primary provider can decrease. Various models of user
demand and congestion costs are considered.

I. INTRODUCTION

One of the biggest current challenges in wireless networks
is to meet the skyrocketing demand for wireless data services.
Due in part to the high cost of clearing spectrum bands,
sharing has been put forth as a promising approach for making
more spectrum available to meet this demand. Indeed, in the
U.S., promoting greater sharing is a central recommendation
of the 2012 report from the President’s Council of Advisors on
Science and Technology (PCAST) [1] and has been the subject
of several presidential memoranda [2], [3]. Sharing has already
been adopted in the TV white spaces [4] and is current being
considered for federal spectrum such as the 3.5 GHz band [5].
Sharing has also been suggested for other commercial bands
including those used to offer cellular services, e.g. [6], [7].
Sharing of such commercial bands is the focus of this paper.

There has much research on spectrum sharing in recent
years, in particular on the “primary-secondary” approach to
sharing in which a primary licensed holder has priority access
to the spectrum while other secondary devices are allowed to
share the spectrum provided that they do not degrade the pri-
mary’s service. This includes work on using spectrum sensing
(e.g. [8]) or market-based approaches (e.g. [9]) to ensure the
primary has acceptable performance. As in [7], we consider
such primary-secondary sharing for a model where the primary
is a commercial cellular provider. Other service providers may
offer service in the same band as secondary users, where all
providers (primary and secondary) compete for a common
pool of customers. As in the TV white-spaces, we assume that
secondary access is “open”, meaning that any firm can offer
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such secondary service.1 Such a policy lowers barriers to enter
the market, since secondary providers do not need to acquire
any spectrum license, and thus has the potential of increasing
competition and improving overall welfare. However, since
secondary access is not limited, there is also a risk that the
spectrum becomes overly congested, leading to a “tragedy of
the commons.” We present an analytical model to study such
trade-offs.

Our approach is based on the framework in [11], [12],
which considered similar questions for a model of competition
among service providers with both licensed and unlicensed
spectrum. This was in turn used models for price competition
with congestible resources developed in the operations and
economics literature (e.g., [13], [14]). In this framework, ser-
vice providers compete for customers by announcing service
prices. Customers in turn select providers based on a delivered
price, which consists of the announced service price plus a
congestion cost, where the congestion cost reflects the quality
of service obtained from a provider. In [11], licensed spec-
trum was not shared while unlicensed spectrum was shared
“equally” among all providers, i.e., no provider was a primary
user. A main result in [11] was to show that adding unlicensed
spectrum to an existing allocation of licensed spectrum among
incumbent service providers may lead to a decrease in overall
social welfare. The reason for this was that when faced with
competition from the unlicensed band, licensed providers have
an incentive to increase their prices to drive traffic to the
unlicensed band and increase its congestion, thus decreasing
overall welfare.

Here, instead of a separate unlicensed band, we consider
secondary providers that can operate in the same band as
the primary using some form of sharing technology. We
abstract this by modeling the congestion cost costs in the band
differently for primary and secondary firms. Namely, a primary
firm’s congestion only depends on the number of customers
it serves, while a secondary firm’s congestion depends on the
total customer mass served in the band by all firms. For such
a model we characterize the equilibria of the resulting price
setting game among the service providers and study the impact
of sharing on the overall social welfare, the consumer welfare,
and the service provider’s profits. Interestingly, unlike the
model in [11], here, sharing never decreases overall welfare,

1This can be contrasted with licensed secondary access approaches, in
which only holders of secondary licenses can access the spectrum, e.g., [10].



but it can decrease the profits of the primary service provider.
In addition to primary-secondary sharing, this type of model

is also applicable in other settings. For example, it may apply
to sharing done as in the lower two tiers of the three-tier
hierarchy proposed in the PCAST report [1], where at the
highest tier priority is given to federal systems; the second
tier corresponds to licensed secondary use, and the third tier
is open access. Also the form of sharing between primary
and secondary users could involve sharing “raw spectrum” or
could also involve some form of infrastructure sharing as in
[15], though in such cases the primary could likely exert more
control over secondary users than we consider here.

The rest of the paper is organized as follows. Our models
for price competition are described in Section II. We then
present an analysis of the resulting welfare with and without
sharing for various models of demand and congestion costs in
Sections III - V. Finally, we conclude in Section VI.

II. COMPETITION MODEL

As in [11], we consider a wireless service market in which
a set of service providers (SPs) compete for a common pool
of customers by setting prices for their services. We focus on
a model in which there is one incumbent SP. Without sharing,
this firm acts as a monopolist. With sharing, the SP will be
the primary spectrum user and there will also be a set of N >
1 secondary SPs, denoted by F1, F2, ..., FN , who share the
primary’s spectrum subject to not degrading the performance
seen by its customers. Each SP announces a price for service,
which we denote by p and pSi , for the primary SP and the ith
secondary SP, respectively. The SPs then serve all customers
that accept their price. Thus if x customers accept price p, the
SP’s profit is simply xp.

The service that SP’s offer is also characterized by a
congestion cost, g(x), which models various congestion effects
such as increased interference or queueing delays that arise as
a SP serves more customers in a given area. In the case of
the primary SP, the congestion cost seen by its customers is
given by g(x1), where x1 denotes the mass of customers it is
serving. Customers of each secondary SP F1, F2..., FN will
encounter a congestion cost of gS(X), where

X = x1 +

N∑
k=1

xSk

is the overall mass of customers being served in the band, with
xSk being the number of customers served by secondary SP
Fk. This models the fact that the primary SP does not “see”
any degradation from the secondaries, while the secondary
firms do experience degradation due to the primary as well as
each other. In general, we assume that g(x) is an increasing,
convex function as shown in Figure 1, though for much of
our analysis, for simplicity, we focus on the case where this
is a linear function, i.e., g(x) = x

C , where C represents the
bandwidth or capacity of the spectrum band. For the secondary
users we consider two different types of congestion costs:
a model of perfect sharing, in which gS(x) = g(x) and a

model of degraded sharing, where gS(x) = g(x/α) where
0 < α < 1 is the degradation factor. Note as α approaches 1,
the degraded model approaches the model with perfect sharing.
For α < 1, secondary firms see greater congestion for the same
customer mass. This can model a case where the secondary
users experience additional congestion due for example to time
spent sensing the medium to avoid interfering with the primary
or being required to use a lower power level than the primary.

We assume a single mass of infinitesimal customers, and we
normalize the total customer mass to be 1. Customers select
SPs based on the overall delivered price for each SP’s service,
which consists of the sum of the SP’s announced price and
the congestion cost of their service. Specifically, the delivered
price of the primary SP is p+g(x1), while the delivered price
of Fi is pSi + gS(X). Each customer in the market selects
the service provider who has the lowest delivered price. If
more than one service provider has the same delivered price,
a customer chooses one of the low price SPs uniformly at
random.

Customer demand is modeled by an inverse demand func-
tion P (q), which will be a non-increasing function that indi-
cates the delivered price at which q customers are willing to
pay for service. As shown in Fig. 1, this will in general be a
concave function. However, we again focus on two special
cases. First, in Section III, we assume that customers are
homogeneous in their demand, i.e., all customers are willing
to pay up to the same same delivered price, in which case
P (q) has a “box” shape. Then in Section IV, we consider a
simple case of heterogeneous demand, where P (q) = 1−q for
q between 0 and 1. The case of a general concave decreasing
demand is briefly considered in V.

We view the competition among the primary firm, the
secondary firms, as well as the customers as a pricing game
where firms set prices, (p,pS), simultaneously. Customers
then choose one of the firms offering the lowest delivered
price. Thus, given a set of prices, (p,pS), the customers re-
ceiving service must satisfy the following Wardrop equilibrium
conditions [16]:

p+ g(x1) ≤ P (X), (with equality if x1 > 0)

pSi + gS(X) = P (X), for i ∈ N with xi > 0,

pSi + gS(X) ≥ P (X), ∀i ∈ N.

These conditions specify that the delivered price of all
providers serving customers are equal and no greater than
P (X).

We define a (pure strategy) Nash equilibrium of the overall
pricing game to be a set of prices (p,pS) and demands
(x1,x

S), which satisfy these Wardrop equilibrium conditions
and also have the property that no SP can increase its profit
by unilaterally changing its price.

Given such an equilibrium, the firm profit, fc is defined by
the sum of the profits made by all SPs. The welfare of the
xth consumer served is the difference between that consumers
value for the service given by P (x) and the delivered price it
pays for service; consumers that are not served receive zero
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Fig. 1. Illustration of pricing game with primary and secondary firms with
shared spectrum

welfare. The total consumer welfare, Sc, is the integral of
this over all consumers. The social welfare, S, of the entire
economy is the sum of the firm profit and the consumer
welfare, i.e.,

S = Sc + fc.

Next we give some preliminary discussions about such a
game both without and with spectrum sharing.

A. Without Spectrum Sharing

Without spectrum sharing, the primary firm is a monopolist
in the market. As there is no competition with other firms, it
sets the price to maximize its own profit, i.e. it solves:

max px

subject to p+ g(x) = P (x),

0 ≤ x ≤ 1.

Under our assumptions, this will be a convex problem with a
unique solution.

B. With Spectrum Sharing

With spectrum sharing, the primary firm now faces com-
petition from the secondary firms, these secondary firms all
see greater congestion and so must offer lower prices. Indeed,
provided there are at least 2 secondary firms, the following
lemma shows that this price must be zero.2

Lemma 2.1: In competition with shared spectrum and at
least 2 secondary SPs, all secondary SPs will charge zero price
to customers, i.e., pSi = 0 for all i.

A similar results was derived in [11] for SPs offering service
using unlicensed spectrum and this result can be derived
similarly. First note that all secondary SPs must charge the
same price in any equilibrium since all of their customers
experience the same congestion, gS(X). If not, then any SP

2Here we are not modeling any fixed costs for offering service. If such costs
were included, then the price would be equal to the fixed cost of service.

charging a price higher than some other SP would serve no
customers and thus make no profit. Further, if this common
price is greater than zero, then each secondary SP has an
incentive to decrease its price as this will enable it to serve
the total mass of customers being served by all secondary
SPs at the common non-zero price. Hence, the only possible
equilibrium is for all secondary SPs to set a price of pSi = 0.

It follows from this lemma and the Wardrop equilibrium
conditions that with secondary firms in the market, the number
of customers served in the entire market must be given by the
value x∗ such that

gS(x
∗) = P (x∗). (1)

This is the intersection of gS(x) and P (x) as shown in
Figure 1. The resulting delivered price in the market is then
fixed at P (x∗).

III. WELFARE ANALYSIS WITH LINEAR CONGESTION AND
HOMOGENEOUS DEMAND

In this section we analyze models with linear congestion
costs, g(x) = x/C and homogeneous customer demands given
by

P (x) =

{
1, 0 ≤ x ≤ 1

0, otherwise.

Here, we have set the price that customers are willing to pay
to be 1; similar results hold for other values. For this setting,
we analyze the social welfare, S, consumer welfare, Sc, and
firm profit, fc both with and without sharing. The main result
from our analysis is summarized in the following theorem:

Theorem 3.1: When C > 1, with perfect spectrum sharing,
social welfare and consumer welfare are always greater than
without sharing while firm profit shrinks. When 0 < C ≤ 1,
social welfare, consumer welfare and firm profit are the same
with and without sharing.

The proof of this theorem follows from the analysis in
the following two sections. Subsequently we will show an
analogous result for the case of degraded sharing.

A. Without Spectrum Sharing

Without sharing spectrum, the primary SP’s profit maxi-
mization problem in this case is:

max px

subject to p+ x/C = 1,

0 ≤ x ≤ 1.

To solve this optimization, we first obtain from the equality
constraint that p = P (x) − x/C. Using this, the objective
function can be re-written as P (x)x − x2/C, which we can
then optimize subject to x > 0, the results of this are
summarized in the following lemma.

Lemma 3.2: For a model with with linear congestion, ho-
mogeneous demand and no-sharing, the equilibrium outcome
is as follows:
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Fig. 2. Sharing and non-sharing case when 0 ≤ C ≤ 1 with linear congestion
and homogeneous inverse-demand

i) When 0 ≤ C ≤ 2, the primary serves a mass of x1 =
C/2 customers at a price of p = 1/2, resulting in S =
fc = C/4 and Sc = 0.

i) When C > 2, the primary serves the entire customer mass
at a price of p = 1−1/C, resulting in S = fc = 1−1/C
and Sc = 0.

As stated in this lemma, the outcome in this scenario can
be naturally divided into two cases depending on the spectrum
bandwidth C. When C is small (0 < C ≤ 2), the monopoly
firm will not serve all of the customers because the congestion
cost is too high. For C < 1, as shown in Figure 2, it could not
serve these customers even if it announced a price of zero; for
1 ≤ C ≤ 2, as in Figure 3, it could serve all the customers with
a small enough price, but this would not maximize its profit.
The optimal price in this regime is 1/2 and as C increases, the
SP gains more profit by the increase in number of customers.
However, when C > 2 is large enough as in Figure 3, the
monopoly SP will serve the entire market and so will increase
its profits as C increases by increasing its price. In either
case, the delivered price will be equal to 1, the maximum the
customers are willing to pay and so consumer welfare will be
zero and social welfare will be equal to the profit of the SP.
An example of how these quantities vary with C is shown by
the dashed curves in Figure 5.

B. Perfect Spectrum Sharing

Next, we turn to the case of perfect sharing, i.e., gS(x) =
g(x). In this case, as noted after Lemma 2.1, the delivered
price is uniquely determined by the congestion and inverse
demand functions. This gives the primary firm less freedom to
choose its price. For example in Figure 4, these curves intersect
at point E, which means the primary firm can only charge a
price up to the value A. To optimize its profit, the primary
tries to maximize the area of the rectangle A − B − C − D
in this figure, where the height of this rectangle is the price p
and the width is the number of customers it serves.
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Fig. 3. Non-sharing case when C > 1 with linear congestion and
homogeneous inverse-demand
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Fig. 4. Perfect sharing case when C > 1 with linear congestion and
homogeneous inverse-demand

When 0 ≤ C ≤ 1, the primary’s optimization problem
becomes

max px

subject to p+ x/C = 1,

0 ≤ x ≤ 1.

In this case, shairng does not further constrain the delivered
price and so the optimization is the same as in the monopoly
case discussed above.

When C > 1, the delivered price is constrained and so the
primary’s problem becomes

max px

subject to p+ x/C = 1/C,

0 ≤ x ≤ 1.

The following result summarizes the solution to these
optimization problems:



0 2 4 6 8 10
0

0.5

1

C

So
ci

al
 W

el
fa

re

 

 

With Sharing
W/O Sharing

0 2 4 6 8 10
0

0.5

1

C

Fi
rm

 P
ro

fit

0 2 4 6 8 10
0

0.5

1

C

C
on

su
m

er
 W

el
fa

re

Fig. 5. Comparison of perfect sharing and non-sharing cases on welfare with
linear congestion and homogeneous inverse-demand

Lemma 3.3: With perfect sharing, linear congestion costs
and homogeneous demand, the equilibrium outcomes are
characterized as follows:

i) When 0 ≤ C ≤ 1, the primary serves a mass of x1 =
C/2 customers at a price of p = 1/2, resulting in S =
fc = C/4 and Sc = 0;

ii) When C > 1, the primary serves a mass of x1 = 1/2
at a price of p = 1/(2C), resulting in fc = 1/(4C),
Sc = 1− 1

C and S = 1− 3
4C .

As seen from Figure 5, social welfare with perfect sharing
always increases when C increases. For 0 < C ≤ 1, social
welfare increases linearly with C and is the same as in the
non-sharing case. When C > 1, social welfare with sharing
is always greater than in the monopoly case. Thus when
the primary firm’s bandwidth is large enough relative to the
demand (bigger than 1 in this case), sharing spectrum will
always benefit in terms of overall social welfare. Also, when
C > 1, consumer welfare with sharing becomes positive.
This is a dramatic change from the non-sharing case where
consumer welfare stays zero no matter how large C is. With
sharing, competition limits the price a primary can charge thus
preventing the SPs from extracting all of the welfare. With
sharing, as C increases, not only does congestion become less,
but the cap on the delivered price also becomes smaller, both
leading to increases in consumer welfare. As we can see, the
cost of this increased social welfare and consumer welfare
comes from the profit of primary firm. With the growth of
C, the profit of firm first increases but once C exceeds 1,
it decreases due to the ceiling on the delivered price in the
market.

C. Degraded Spectrum Sharing

Now we turn to the case where sharing is degraded, i.e.,
gS(x) = x

αC , where the degradation factor α satisfies 0 <
α < 1. Under this assumption, for a given α, with sharing, the
delivered price is now fixed by the intersection of gS(x) and
P (x), unless α is too small so that the congestion cost seen
by any secondary user exceeds the user’s willingness to pay,
in which case the secondary SPs will have no customers. The
next lemma summarizes the dependence of the equilibrium
outcome on both α and C.

Lemma 3.4: With degraded spectrum sharing, linear con-
gestion and homogeneous demand, the equilibrium outcome’s
dependence on α is as follows:

i) When 0 < α ≤ min{1/2, 1/C}, no sharing occurs;
ii) When min{1/2, 1/C} < α ≤ min{1/C, 1}, S = fc =

C/4 and Sc = 0.
iii) When 1/C < α < 1,

S = 1 +
1

4α2C
− 1

αC
,

fc =
1

4α2C
,

Sc = 1− 1

αC
.

Proof: We will prove this by considering each of the three
cases given in the theorem seperately.

Case i): 0 < α ≤ min{1/2, 1/C}. Let xM be the optimal
customer mass served by the primary without sharing. From
Lemma 3.2 we have that xM = min{C/2, 1}. For α in this
range it follows that gS(xM ) ≥ 1, which means that if the
primary continues serving the same number of customers as
it did without sharing, then the congestion of any secondary
SP will exceed any user’s willingness to pay. Thus, with
degraded sharing, the primary can continue serving the same
mass of customers at the same price, and no sharing will occur.

Case ii): min{1/2, 1/C} < α ≤ min{1/C, 1}. Note that
this range is non-empty only when 1 ≤ C < 2, in which
case it becomes 1/2 ≤ α < 1/C. For 1 ≤ C < 2, from
Lemma 3.2, the primary will not serve the entire market
without sharing, but only serves a mass of xM = C/2
customers. For α in the given range, it also follows that
gS(xM ) < 1 and gS(1) = 1

αC > 1, which means that if
the primary continues serving xM = C/2 customers, the
secondary bands will attract new customers, but will become
so congested that it will not constrain the primaries delivered
price and all new secondary users will receive zero welfare
(see Figures 6 and 7). So although more users appear in the
network, the primary firm can still act like a monopolist and
the welfare and firm profit are the same as in the no sharing
case. Note that in this case even if C > 1 as in Figure 7,
the entire market is not served; this differs from the model
with perfect sharing in which when C > 1 all users are served.

Case iii): 1/C < α < 1. In this case, gS(1) < 1 and so
sharing constrains the total delivered price to be no more than
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Fig. 7. An example of case (ii for degraded sharing the linear congestion
and homogeneous inverse demand where C > 1. Even in this case the total
customer mass served is less than 1.

gS(1) (see Figure 8). This in turn constrains the price the
primary can charge and so the primary is now faced with the
following optimization problem:

max px

subject to p+ x/C = 1/αC,

0 ≤ x ≤ 1.

Referring to Figure 9, this corresponds to maximizing the area
of the square A−B −C −D that lies below the line A−G
and above g(x). The solution to this is for the primary SP to
charge a price of p = 1/2α as to maximize its profit and serve
x1 = 1/2αC of the overall users. The entire market is served
and all consumers receive a welfare of 1− 1

αC . The primary
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Fig. 8. An example of case (iii) for degraded sharing with linear congestion
and homogeneous inverse-demand.

firms profit is given by

px1 =
1

4α2C
.

Adding these gives the indicated total welfare.
Comparing Lemma 3.4 to Lemma 3.2, we have the follow-

ing analog to Theorem 3.1.
Theorem 3.5: When C > 1/α, with degraded spectrum

sharing, social welfare and consumer welfare are always
greater than without sharing while firm profit shrinks. When
0 < C <≤ 1/α, social welfare, consumer welfare, and firm
profit are the same with and without sharing.

This shows that the benefits of sharing depend on the prod-
uct of the degradation factor α and the available bandwidth
C, the large C is the smaller the degradation factor that can
be allowed and still see an increase in welfare. A plot of how
social welfare, firm profit, and consumer welfare depend on
α for various fixed values of C is shown in Figure 10. Note
change in the degradation factor or C has a relative small
effect on firm profit, while changing C has a larger effect
on consumer welfare. When C is small, α has no effect on
consumer welfare which is zero. For C in (1, 2], α needs to be
large enough to increase consumer welfare. When C is large
enough, it dominates αC as well as the delivered price, in
which case, social welfare and consumer welfare will always
grow with α while firm profits shrinks.

IV. WELFARE ANALYSIS WITH LINEAR CONGESTION AND
HETEROGENEOUS DEMAND

Next, we consider a model in which there is heterogeneous
demand, i.e., different customers are willing to pay different
amounts for service. We model this by making using a linear
inverse demand function given by P (x) = 1− x as shown in
Figure 11. 3 Thus the only way the entire market can be served

3The analysis can be easily generalize to any linear demand of the form
P (x) = a− bx, where a and b are positive constants.
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Fig. 9. Degraded sharing for C > 2, 1/2 < α ≤ 1 with linear congestion
and homogeneous inverse-demand.
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Fig. 10. The effect of α on social welfare(top), firm profit(middle) and
consumer welfare(bottom).

is if the delivered price goes was zero, and as the delivered
price increases to one, there are fewer and fewer customers
willing to pay for service. For simplicity, we still assume linear
congestion g(x) = x/C. As in the previous section, we again
analyze the social welfare, consumer welfare and firm profit
both with and without sharing. The main result of this analysis
is summarized in the following theorem:

Theorem 4.1: With perfect sharing, linear congestion and
linear inverse demand, social welfare and consumer welfare
are always greater than without sharing while firm profits
shrink.
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Fig. 11. Non-sharing with linear congestion and linear inverse-demand

Compared to the case of homogeneous demand, now both
social and consumer welfare always increase (regardless of C).
As in the case of homogeneous demand, we will prove this in
the following two sections by characterizing the equilibrium
both with and without sharing. We will then generalize this
for imperfect sharing.

A. Without Spectrum Sharing

Again, without sharing the primary firm is a monopolist and
simply sets the price to maximize its profit. With linear inverse
demand, the corresponding optimization is given by:

max px

subject to p+ x/C = 1− x,
0 ≤ x ≤ 1.

Graphically, as shown in Figure 11, this corresponds to
maximizing the area off the rectangle A−B −C −D which
is contained within the triangle F − E − G formed by the
inverse demand and the congestion cost. By again, solving for
p in terms of x, this can be written as an optimization over
the single variable x, whose solution is given by:

x1 =
C

2(C + 1)
, and p = 1/2. (2)

The firms profit fc is then given by the product x1p and
referring to Figure 11, the consumer welfare,Sc is given by
the area of the triangle A−F −D. Summing these gives the
total welfare. The result of these calculations is summarized
in the following lemma.

Lemma 4.2: For a model with linear congestion, linear het-
erogeneous demand, and no spectrum sharing, the equilibrium
outcome is for the primary to set the price and number of



customers served as in (2) resulting in:

S =
C + 3/2C2

4(C + 1)2
,

fc =
C

4(C + 1)
,

Sc =
C2

8(C + 1)2
.

Note that the number of customers served in (2) is a strictly
increasing function of C, and as C becomes arbitrarily large it
converges to 1/2. In other words, for any finite C, the primary
will always serve less than half of the market. Also note here
that the price charged is always 1/2, regardless of the value
of C, while with homogeneous demand, the price increases
with C for C large enough.

B. Perfect Spectrum Sharing

With perfect spectrum sharing, as discussed earlier, the
number of customers served in any equilibrium is given by
the value x∗ satisfying (1), which in this case corresponds to

x∗ =
C

C + 1
.

Comparing to (2), it can be seen that x∗ is exactly double the
number of customers served by the primary without sharing.
This corresponds to an upper bound on the delivered price of

P (x∗) =
1

C + 1
.

Given this bound the optimization faced by the primary firm
is now:

max px

subject to p+ x/C = 1/(C + 1),

0 ≤ x ≤ 1.

The following lemma summarizes the results of this optimiza-
tion.

Lemma 4.3: With perfect sharing, linear congestion costs,
and linear inverse demand, the equilibrium outcome is for the
primary to set the price and number of customers served as

x1 =
C

2(C + 1)
, and p =

1

2(C + 1)
(3)

resulting in:

S =
3C2

4(C + 1)2
,

fc =
C2

4(C + 1)2
,

Sc =
C2

2(C + 1)2
.

Comparing (3) with (2) it can seen that the primary serves
the same number of customers both with and without sharing,
but at a lower price with sharing. This leads to a decrease
in firm profit and an increase in customer welfare. Namely,
referring to Figure 12, firm profit will decrease by the area
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Fig. 12. Perfect sharing with linear congestion and linear inverse-demand

A − D − I − H and the welfare of the customers it serves
will increase by the same amount. Customer welfare will
also increase due to the new customers being served by the
secondary SPs, which is given by the the area of the triangle
D − I − G in Figure 12. Comparing the areas of these
regions with the customer welfare without sharing (given by
the triangle A−D − F ), we have the following lemma:

Lemma 4.4: With perfect spectrum sharing, linear conges-
tion and linear demand, consumer welfare is four times that
without sharing.

It follows from the above discussion that overall welfare
must increase with sharing as stated in Theorem 4.1.

C. Degraded Spectrum Sharing

We next consider degraded sharing with linear inverse de-
mands. Again, this means that gS(x) = x/αC, for 0 < α < 1.
As in the case of homogeneous demand, this changes the limit
on the delivered price introduced by sharing (see Figure 13).
The resulting equilibrium is summarized in the following
lemma.

Lemma 4.5: With degraded spectrum sharing, linear con-
gestion, and linear inverse demand, the equilibrium outcome’s
dependence on α is as follows:

i) When 0 < α ≤ 1
2+C , no sharing occurs and the primary

serves the same customers at the same price as in the
non-sharing case.

ii) When 1
2+C ≤ α ≤ 1

2 , again no customers are served by
secondary providers, but the primary serves x∗ customers,
resulting in

S =
αC(1− α) + 1

2α
2C2

(αC + 1)2
,

fc =
αC(1− α)
(αC + 1)2

,

Sc =
α2C2

2(αC + 1)2
.



iii) When 1
2 < α ≤ 1, the primary serves more customers

than without sharing and the secondary SPs also serve
some customers, resulting in

S =
C + 2α2C2

4(αC + 1)2
,

fc =
C

4(αC + 1)2
,

Sc =
α2C2

2(αC + 1)2
.

Proof: The first case, where no sharing occurs, again
corresponds to the case where gS(x1) > P (x1), where x1
is the number of customers served by the primary without
sharing as in (2). In the second and third cases, the primary
SP must also account for the new constraint on the delivered
price given by

p+
x

C
=

1

αC + 1
.

For α > 1/2, this constraint will be tight and the constraint
given by the inverse demand (p+ x

C = 1−x) will not be tight,
resulting in the primary serving a customer mass of

x1 =
C

2(αC + 1)
. (4)

This corresponds to case (iii) in the lemma and using this the
indicated quantities can then be calculated.

In case (ii) both the new constraint on the delivered price
and the constraint due to the inverse demand are tight, in which
case the primary serves x∗ customers at a price of

p =
1− α
αC + 1

,

from which again the indicated quantities can be calculated.

Note that in case (iii) from (4), it can be seen that the
primary serves more customers with degraded sharing than
without sharing and the number of customers served increases
as sharing becomes more degraded. However once α becomes
smaller than 1

2 , the constraint given by the inverse demand
becomes tight and the number of customers served then
decreases with α. In both cases, since the delivered price is
smaller than without sharing, customer welfare must increase
and firm profit must decrease. If the primary continued serving
the same amount of customers as without sharing, xM , then
in either case (ii) or (iii), as in the case of perfect sharing,
the total welfare must increase. Since in these cases, the
primary always serves more than xM customers, it follows
that the customer welfare will be the same as if it continued
serving xM customers (i.e., it will always be the area of
the triangle F − A − H in Figure 13). Further, since the
primary is maximizing its profit, it must be that its profit
in the equilibrium is greater than if it continued to serving
xM customers and so again total welfare must increase. An
example of the social welfare, consumer welfare and firm
profit as a function of C under different scenerios is shown in
Figure 14.
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Fig. 13. Degraded sharing with linear congestion and linear inverse-demand
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Fig. 14. Impact of C and α on welfares with linear congestion and linear
inverse-demand

V. GENERAL CONGESTION AND GENERAL DEMAND

In this section we make a few comments about the more
general scenario, where the congestion is any increasing,
convex, differentiable function g(x) and the inverse demand
function P (x) is decreasing, concave and differentiable. Ad-
ditionally, we assume that g(x) decreases point-wise as band-
width increases. Under these assumptions, the pricing problem
faced by the primary will always be a convex problem with a
unique solution. The following theorem shows that in such a
general setting again the corresponding equilibrium consumer
welfare and social welfare are non-decreasing as the bandwidth



is increases.4

Theorem 5.1: With perfect sharing, social welfare and con-
sumer welfare are non-decreasing functions of bandwidth.

Proof: Consider two choices of bandwidth B < B′,
with corresponding congestion functions g(x) and g′(x) as
shown in Figure 15. Let x∗ and x∗

′
be the overall customer

mass served in the market with perfect sharing, where clearly
x∗ < x∗

′
, i.e. greater bandwidth means more customers are

served. The deliver price in these two cases will be P (x∗) and
P (x∗

′
), with P (x∗) > P (x∗

′
) since P (x) is decreasing (these

correspond the points A and H in Figure 15). From this it is
clear that the consumer welfare increases with the bandwidth,
since more customers are being served at a lower delivered
price.

To see the result for social welfare. Referring to Figure 2,
note that welfare for B and B′ is given by the area of the
regions K−A−B−C−D−N and K−H−E−F−G−M ,
respectively. To compare these two areas, we separate each of
them into two pieces using the same segment HM . It is easy
to see that the area above segment HM is exactly consumer
welfare for B′ which is larger than the corresponding area
with B. Next we turn to the portion of the regions under the
segment HM . For B this corresponds to the rectangle area
H − I − C − B, and for B′, it corresponds to the rectangle
area H − E − F − G. As rectangle H − E − F − G is the
optimal profit for the primary firm, it is the largest rectangle
within the region H−O−M and so it must have a larger area
than that of rectangle H − I − C − B. Thus the welfare for
B′ must be greater than that with B, completing the proof.

Note in this theorem we did not say anything about the profit
of the primary firm. As we have seen in the previous sections
it can decrease with increasing B, but whether this occurs for
a specific family of congestion costs appears to depend on the
details of how the costs scale with B. The next result, shows
that in general, consumer welfare and social welfare increase
with sharing while firm profits decrease.

Lemma 5.2: With shared spectrum, social welfare and con-
sumer welfare are greater than that without sharing while firm
profit is less.

Proof: For the change in social welfare and consumer
welfare with bandwidth, the proof is similar to Thereom 5.1
and is illustrated in Figure 16, while the proof that the primary
firm profit decreases follows from the same argument as given
to show this for linear inverse demands at the end of the
previous section.

Sharing can results in either the primary serving more
customers or fewer customers, the next theorem characterizes
when this occurs depending of the inverse demand P (x).

Theorem 5.3: When the firm shares spectrum with sec-
ondary firms, the customer mass x1 compared with non-
sharing case will

• increase if P (x1) + P ′(x1)x1 < P (x∗)
• decrease if P (x1) + P ′(x1)x1 > P (x∗)

4We state for perfect sharing, a similar result holds for degraded sharing
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Fig. 15. Change in congestion function with respect to bandwidth with
shared spectrum in a general setting. The red lines indicate the case with less
bandwidth, while the green lines show the case with more bandwidth.
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Fig. 16. Comparison between with and without sharing in a general setting.
Red lines indicate the monopoly case without sharing, and green lines show
the case with perfect sharing.

Proof: The difference between with and without perfect
sharing is the constraint on the delivered price. That is,

Without sharing p+ g(x1) = P (x1)

With sharing p+ g(x1) = P (x1 +
∑

xi)

To maximize firm profit, i. e., px1, we can again solve for
the price in terms of the customers served in each case, and
substitute this into the objective, giving a function of only x1.
Differentiating this with respect to x1, and setting it equal to
zero we obtain

P (x1) + P ′(x1)x1 = g(x1) + g′(x1)x1



without sharing and

P (x∗) = g(x1) + g′(x1)x1.

with sharing. We know that once congestion function and
demand functions are fixed, P (x∗) is a constant. The right-
hand side of two previous equations is identical are strictly
increasing in x1 as g(x) is increasing and convex. Hence,
comparing the left-hand side of the equations will specify
which case has the larger value of x1, completing the proof.

VI. CONCLUSIONS

We have studied a stylized model for sharing a licensed
band of spectrum among a primary and multiple secondary
service providers, all of who seek to serve a common pool
of customers. We have shown that for this model, consumer
welfare and overall social welfare never decreases with sharing
compared to without sharing, while the profit of the primary
firm never increases with sharing and may decrease. Further
we have shown that as the bandwidth of the shared band
increases, overall welfare and consumer welfare increases,
while the primaries profits may either increase of decrease.

We note that these results are quite different from that
observed in [11], where adding a separate band of shared
unlicensed spectrum to a market consisting of a single pri-
mary license holder was shown to potentially decrease social
welfare. Further, in [11] the social welfare could decrease as
the bandwidth of the unlicensed band was increased. In [11]
as in the model considered here, the addition of sharing to the
market potentially places a limit on the delivered price that
the primary can charge. However, when this sharing is in a
separate unlicensed band, the primary can increase this limit
by shifting more traffic to the unlicensed band and causing it
to be more congested. Such an action is exactly the cause of
the decrease in social welfare. Under the primary-secondary
sharing model considered in this paper, the primary can not
effect this limit on the delivered price, since it just depends
on the total traffic served by it and the secondary. This gives
the primary less flexibility and prevents social welfare from
decreasing, but also leads to a greater decrease in the primary’s
profits due to sharing. This suggests that if limited spectrum is
available for sharing, there might be advantages to allocating
the spectrum to an incumbent and sharing it under a primary-
secondary model as opposed to simply making it unlicensed,
though we leave a detailed comparison of these regimes to
future work.

We also considered a model with degraded sharing in which
secondary users incurred an additional overhead, leading them
to experience greater congestion. We showed that if this
degradation was too high, then even if sharing was allowed,
no secondary service providers would enter the market. This
suggests that incumbents who do not want to share may
have an incentive to place overly burdensome requirements
on secondary users, and a good policy should should seek to
minimize these overheads. Here, we only modeled degradation
due to sharing on the part of the secondary providers, another

potentially interesting future direction would be to consider
sharing which also degrades the primaries performance, due
for example to imperfect sensing on the the part of secondary
users.

Here we simply compared a scenario with and without
sharing but did not address the primary provider’s incentives
to share. Given that the primary’s profits decrease, it would
clearly not have an incentive to share unless it was required
by policy or received some compensation for doing this.
Further, since the secondary users profits are competed away,
the primary could not hope to receive any compensation
from them. However, since overall welfare does increase with
sharing, this could suggest a policy in which the government
collects a portion of the added consumer welfare (e.g. via
taxes) and compensates the primary for allowing sharing.

In the model considered here, secondary sharing was open,
which resulted in the secondary SPs not receiving any profits.
An alternative would be for secondary access to also be
licensed. If a single secondary SP was licensed, then they
would be able to sustain a positive price and profit. In this
case, the pricing game between the primary and secondary SP
becomes more complicated, another topic we leave for future
work. Also, here we did not consider the investment decisions
made by the primary or secondary firms. Such issues could be
introduced here using a similar model as in [12], where they
were considered for the case of unlicensed spectrum. Finally,
secondary SPs could serve different market segments than a
primary firm and thus not be direct competitors leading to
different models of competition that could be studied.

REFERENCES

[1] PCAST, Realizing the Full Potential of Government-Held Spectum to Spur
Economic Growth. President’s Council of Advisors on Science and
Technology, July 2012.

[2] “Presidential memorandum: Unleashing the wire- less broadband revo-
lution,” June 2010. [Online]. Available: http://www.whitehouse.gov/the-
press-office/presidential- memorandum-unleashing-wireless-broadband-
revolution

[3] “Presidential memorandum: expanding America’s leadership
in wireless innovation,” June 2013. [Online]. Available:
http://www.whitehouse.gov/the-press-office/2013/06/14/presidential-
memorandum-expanding-americas-leadership-wireless-innovatio

[4] Federal Communications Commission, “Unlicensed operation in the TV
broadcast bands ; additional spectrum for unlicensed devices below 900
MHz and in the 3 GHz band” second memorandum opinion and order,
2010.

[5] Federal Communications Commission, “Amendment of the commission’s
rules with regard to commercial operations in the 3550-3650 MHz band,”
docket no. 12- 354, Notice of Proposed Rulemaking, Dec. 2012.

[6] S. Panichpapiboon, and J.M. Peha, Providing secondary access in a
cellular network, Intl Conf. Wireless Networks, pp. 591-7, June 2003.

[7] R. Saruthirathanaworakun and J.M. Peha, “Dynamic Primary-Secondary
Spectrum Sharing with Cellular Systems,”IEEE Crowncom 2010.

[8] Cabric, D., S. Mishra, and R. Brodersen, “Implementation issues in
spectrum sensing for cognitive radios,” 2004 IEEE Asilomar Conference
on Signals, systems and computers, 2004.

[9] J. Huang, R. Berry, and M. Honig, “Auction-based spectrum sharing,”
ACM Mobile Networks and Applications, vol. 11, no. 3, pp. 405-418,
June 2006.

[10] R. Berry, M. Honig, V. Subramanian, T. Nguyen, R. Vohra, “Market
Structures for Wireless Services with Shared Spectrum,” Allerton Con-
ference, 2013.



[11] T. Nguyen, H. Zhou. R. Berry, M. Honig, and R. Vohra, “The impact of
additional unlicensed spectrum on wireless services competition,” 2012
IEEE DySPAN, pp. 146-155, May 2011.

[12] H. Zhou, R. Berry, M. Honig, R. Vohra, “Investment and Competition in
Unlicensed Spectrum”, 46th Annual Conference on Information Sciences
and Systems (CISS), 2012.

[13] D. Acemoglu, A. Ozdaglar, “Competition and Efficiency in Congested
Markets,” Mathematics of Operations Research., Feb. 2007

[14] R. Johari, G. Y. Weintraub, B. V. Roy, ”Investment and Market Structure
in Industries with Congestion,” Operations Research., Sep. 2010

[15] R. Berry, M. Honig,T. Nguyen, V. Subramanian, H. Zhou, R. Vohra,
“On the nature of Revenue-Sharing Contracts to Incentivize Spectrum-
Sharing”, IEEE INFOCOM, 2013.

[16] J. G. Wardrop, “Some theoretical aspects of road traffic research,”
Proceedings, Institute of Civil Engineers, PART II, vol. 1, pp. 325378,
1952.


