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Abstract

We consider scheduling data traffic for the downlink of a wireless network. A
draining problem is formulated where the goal is to transmit a given set of packets.
Each packet is assigned a utility that depends on the delay incurred. We propose
a simple gradient-based scheduling rule which attempts to maximize the average
utility per packet. A deterministic analysis of this rule is given by considering
an asymptotic fluid limit where the number of packets becomes large while the
packet-size decreases to zero. In this limiting regime, we formulate an optimal
control problem which corresponds to finding the best scheduling policy. Using
Pontryagin’s minimum principle, we prove that in a special case, the gradient-
based algorithm is optimal. Simulations are presented to illustrate these results.

1 Introduction

Transmission scheduling is an important component of an efficient wireless data service.
Protocols which make scheduling decisions based in part on the channel quality of each
user have recently attracted much interest, see for example [2, 3, 4]. These protocols
seek to exploit variations in channel quality across the user population to improve overall
performance. Such channel-aware schedulers are part of several recent standards such as
1xEV-DO (HDR) [1].

A key issue in the design of channel-aware scheduling algorithms is balancing the
total throughput with other performance metrics of interest. For example, in many
cases, the total throughput can be maximized by scheduling only the users with the best
channel quality. However this approach can be unfair and lead to long delays for other
users. To capture such considerations, we consider a utility-based scheduling framework.
In particular, we assume that a utility function is associated with each packet. This
function indicates the benefit of receiving that packet after a specific delay. The goal of
the scheduler is to maximize the total utility summed over all packets. To accomplish
this goal, we present a simple gradient-based scheduling algorithm, which we call the
“UR scheduler” .
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and by NSF under grant CCR-9903055.



We study the performance of the UR scheduler for a draining problem, where the goal
is to transmit an initial set of packets while maximizing the total utility. To analyze this
problem, we consider a type of fluid limit. In this limit, the dynamics of the scheduling
algorithm are given by a set of deterministic differential equations. Simulations are
presented which show that the performance of the limiting system accurately predicts
that of a finite system. For the limiting system, we then show that the problem of finding
the optimal scheduling algorithm can be formulated as a continuous-time optimal control
problem. For a special case of this problem, it is shown that the gradient-based algorithm
is optimal.

2 System Model

We formulate a simple model for downlink scheduling from a single transmitter, such as
a base station in a cellular network or an access point in a wireless LAN. Our focus is
on a system where the transmitter sends to one user at a time, as in the HDR standard.
However much of the following can be easily extended to the case where multiple users
may be scheduled at a time. To simplify our discussion we consider a system with 2 classes
of packets; each class corresponds to a different feasible transmission rate.! Specifically,
for i = 1,2, the base station can transmit class ¢ packets with transmission rate R;, where
Ry > Ry. We also assume that each packet’s class is fixed over the time-scale of interest;
this assumption is reasonable in a slow fading environment and serves to highlight the
possible disparity between classes of users.?

Each packet is assumed to contain L bits including any overhead. In the draining
problem we consider, there is an initial set of packets given for each class and no new
arrivals occur. The system is to be emptied by transmitting all of the packets. For
simplicity we assume that there are N packets of each type. The total time required to
drain the system is given by

NL NL

Ty =2 2
TR TR

(1)
This is independent of the order in which packets are served and only requires that
the transmitter be non-idling, i.e. that it always transmits a packet if one is available.
However, the order in which packets are served does influence the delay incurred by the
individual packets. We assume that the delay preferences associated with each packet
are indicated by a utility function. The goal is then to schedule the packets to drain the
system and maximize the utility per packet.

We assume that each packet has an initial delay at time ¢ = 0. This reflects the
delay experienced by the packets prior to time ¢ = 0 and could include, for example,
the delay incurred in forwarding the packet by other nodes in an ad hoc network. For
k=1,...,N, we denote the initial delay of the kth packet of class i by W;,(0). If this
packet is transmitted after ¢ seconds, then the total delay incurred by the packet is given
by

L
D;r=W;k(0)+t+ o

!For the problem considered here all of the packets in a given class can be directed to one user or
several users with similar channels.
2Note in this setting issues of “opportunistic” scheduling do not arise [5].



where ¢ accounts for the aging of the packet with time and the last term is the packet’s
transmission time.

The utility associated with each class i packet served is given by U;(D; ), where U;(-)
is assumed to be non-increasing. The utility per packet generated by a given schedule is

N

Z [Ur(D1 ) + Us(Day)] .

1
Uang = 2N
Notice that this depends on the initial delays for the packets in each class.

For a given initial delay distribution, a schedule of packet transmissions is defined to
be optimal if it maximizes Uy,,. Consider the special case where U;(z) = —z for i = 1, 2,
and thus maximizing U,,, corresponds to minimizing the average delay per packet. In
this case, the optimal schedule is to transmit all packets of class 1 before any packets in
class 2; within each class, the order in which packets are transmitted does not effect Ug,,.
This can be shown using a simple interchange argument. Next suppose that the utility
U;(+) is strictly concave for each 7. Then it can be shown that the optimal schedule must
have the property that packets within each class are transmitted in a longest delay first
order, i.e. if W;(0) > W, ;(0) then packet k will be transmitted before packet k. Even
with this characterization, there are still more than O(2") possible schedules.

Instead of finding the optimal schedule, we consider a simple gradient-based schedul-
ing policy. This policy attempts to schedule a packet from the class which results in
the largest first order change in the total utility rate. For ¢ = 1,2, let D; denote the
longest delay of the remaining class ¢ packets at a given scheduling time. If the scheduler
transmits a packet in class 1, followed by a packet in class 2, the derived utility can be
written as

AUy = Uy(Dy + 52) + Ua(Dy + 5 + 7))

Approximating U;(x) by a first order Taylor series around D; we have
AU = Uy (Dy) + U.l(D1)RL1 + Us(Ds) + U2(D2) (RL1 + R%) .
Likewise, transmitting in the reverse order yields
AUy, ~ Uy(Dy) + Uy (D)) (RL + RA) + Us(Dy) + Up(Ds) .

Based on these expressions, we define the “UR scheduling policy” to be a policy which
selects a packet from class ¢ if AU;; > AU;; for j # 4. This scheduling rule can be
written compactly as follows:

UR scheduling rule: schedule user i* such that
i* = argmax |U;(D;)|R;,
where ties can be broken arbitrarily.
In the special case of linear utilities we have:

Proposition 1 If U;(x) = —f;x for i = 1,2 and ; > 0, then the UR scheduling rule
mazximizes the utility per packet.

Several other scheduling policies proposed in the literature can be viewed as special
cases of this policy, corresponding to particular choices of utilities. For example, if
U;(D) = —3;D? for all i, then the UR scheduler is equivalent to the Modified Largest
Weighted Delay First rule proposed in [2].



3 Fluid Limit

To analyze the performance of a scheduling policy for the draining problem, we consider
a type of fluid limit for the system. In this section, we describe this limit for an arbi-
trary scheduling rule; in the next section, we consider the limiting behavior of the UR
scheduling rule.

We scale up the number of packets and decrease the packet size, while keeping a fixed
load (in bits). Formally, we consider a sequence of systems indexed by N =1,2,...; in
the Nth system there are initially /N packets of each type with packet length L normalized
so that NL = 1.> With this scaling, T in (1) is given by R% + R% for all N. As noted
previously, the performance of a scheduler depends on the initial packet delays. For
each class i, we assume that {WW;;(0)}22, is a sequence of i.i.d. random variables, with
complementary distribution function Fj(w) = Pr(W, x(0) < w). The first N components
of this sequence are the initial delays in the Nth system.

Let NV (t) denote the number of type i packets remaining at time ¢ in the N'th system
(for a given scheduling policy). Let

be the fraction of the initial type i packets remaining at time t. Likewise, let 77 (¢)
denote the amount of time in [0,¢) during which the transmitter serves packets from
class i. Between times ¢ and ¢ + dt, the change in f}¥(¢) can be bounded as

_(TiN(t + 0t) — TiN(t))% < fiN(t + 0t) — fiN(t) < _(TiN(t + 0t) — TiN(t))% + 1‘

Not - ot - Nét 2)

For a finite IV, the preceding quantities depend on the initial delay and hence are random.
For the scheduling policies of interest, we assume that as N — oo, 7" (t) converges almost
surely to a deterministic limit 7;(¢).

As N — oo, L — 0; therefore, from (2) it follows that fi;(t) = limy_,0 f¥(f) exists

and satisfies
filt +dt) — fi(t) _ —(7i(t +0t) — 7i(t)) R;

ot ot
Next, letting 6t — 0, we have

fz(t) = —o;(t) R,

where «;(t) = 7;(t). We note that both f;(t) and 7;(¢) are monotonic functions of ¢ and
hence the preceding derivatives exist except possibly on a set of measure zero [7].

In the limit, the base station can transmit arbitrarily many packets in any time
interval [t,t 4 0t), but only a finite fraction of the initial packets, given by

/ —fi(t) dt = / a; () R; dt.
[t,t+ot) [t,t+ot)

The quantity a;(t) can be interpreted as the fraction of the base station’s resources spent
on class i packets at time ¢. If o;(¢) = 1, then only class i packets are served. In general,
«;(t) can take on any value in [0, 1] and must satisfy ). «;(t) <1 for each time ¢. For a
non-idling system, this inequality is met with equality for all ¢ < 7.

3There is no loss in generality in assuming that the product NL is normalized to 1.



As an example of the preceding scaling, consider a round robin scheduler that alter-
nates between scheduling a type 1 packet and a type 2 packet. In this case, for the Nth

system we have
t L t L
1 —<7‘N(t)<(7+1>—.
L L =" = |z 2
(R_1+R_z )Rl T Ry

Hence, as N — oo, 7{" (t) converges to 7;(t) given by

Ryt

"= R Ry

R R

so that a1 (t) = 7% and a(t) = RIJ:&. o ' o
Next, we turn to the packet delays in the limiting system. For a given realization of
{W;£(0)}52,, let FN(w) denote the empirical (complementary) distribution of the initial

delays for type ¢ packets in the Nth system, i.e.

~ H{kE SN Wi(0) < wi
- ¥ :

F¥ (w)
where |X| denotes the cardinality of the set X. As N — oo, the Glivenko-Cantelli
theorem [6] implies that almost surely, F}¥ (w) — F;(w) uniformly in w.

Let DY (t) denote the maximum delay of the type 7 packets in the Nth system at
time . We assume that under all scheduling policies of interest, packets of a given class
are served in the order of longest delay first. In this case,

D (t) = G (f;" (1)) + 1, (3)

where GN(f) = max{w : FN(w) < f}. The first term in (3) corresponds to the maximum
initial delay of the remaining packets; the second term corresponds to the aging of the
packets with time. It follows that in the limiting system, almost surely we have

Di(t) = Gi(fi(t)) + 1,

where D;(t) denotes the maximum initial delay of the remaining packets in the limiting
system and G;(f) = max{w : Fj(w) < f}.

Note that in a finite system, the functions G¥(f) and DY () are random quantities
that depend on the initial delay distribution. However, in the limiting system, these
quantities are deterministic.

In the following, to simplify our analysis we focus on the special case where the initial
delays are uniform on [0, 1] (for both classes), i.e.,

w 0<w<l,
Fi(w>:{1 w>1

In this case
Di(t) = fi(t) +1, (4)

and therefore ‘
D;(t)

—Ozi(t)Ri + 1,



with D;(0) = 1.
In the Nth system, if a packet of class i is served at time ¢, then it receives a utility
U;(DY (t) + %). The average utility per packet can be written as

N

Uny = Z %Ul(D{V(t) +—)+ Z LUz(ng(lt) +—)

As N — oo we have UY — U,,,, where

avg

Uy = % /0 " [ RUL (D1 (1)) + s (£) RaUs (D (8))] dt.

4 Limiting Behavior of UR Scheduler

In this section we consider the limiting performance of the UR scheduler with two classes
of packets. We also make the following simplifying assumptions: (1) The initial delay for
each class has a uniform delay distribution; and (2) Both classes have the same utility
function U(D).

In the limiting system, it is straightforward to see that the UR rule sets

o (t) = 1 if [U(Dy(t)|Ry > |U(Dy(t))| Ry and fi(t) > 0,
"0 if [U(Dy(t))|Ry < |U(Dy(t))|Ry or f1(t) =0

and ao(t) = 1 — «q(t). This specifies the scheduling rule except at some time ¢ where
fi(t) > 0 and U(Dy(t))Ry = U(Dy(t))Ry. In that case, to determine the behavior of
the UR rule, we make the additional assumption that U/(D) is concave and ay(t) is right
continuous. With these assumptions, the limiting version of the UR scheduling rule is
given by the following lemma.

Lemma 1 Assume U(D) is concave and o;(t) is right continuous. If U(Dy(t))Ry =

U(Ds(t))Ry for some t such that fi(t) > 0, then as N — oo, the UR rule gives

o (1) = UL R~ U(Da(t) Ry + U(Dy(t)) RS
e U(D: (1)) R2 + U(Dy(t)) B3

and as(t) = 1 — ay(t).
Proof: Let W (t) = U(Dy(t)) Ry — U(Dy(t))R,. Taking the derivative gives
W(t) = U(Di(t))Ri(—ai(t) Ry + 1) — U(Da(t)) Re(—a2(t) Ry + 1).
Setting W (¢) = 0 and using o (t) + ax(t) = 1 gives the preceding o, (¢). With this choice,
W (t*t) = 0 and the corresponding «;(t) is right continuous. Notice that

NP
dan() = "V (Dr(E)RE — U(Do(0) B3 > 0.

Hence, if é;(t) > ay(t) > 0, then W (t) > 0; this implies that W (¢t) > 0 and hence
a1(tT) = 0. This violates the right continuity of a4 (¢). Likewise, if ay(t) < ay(t) < 1,
then aq(t7) = 1, which also violates the right continuity assumption. H

The following two results characterize the behavior of the UR scheduler over time.
We omit the proofs due to space considerations.
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Proposition 2 If U(D) is concave and «;(t) is right continuous, then there exists Ty
and Ty with 0 < Ty <715 < Ty such that the UR gives:

1. ay(t) =1 for allt € [0,T1),
2. ay(t) is given by lemma 2 for all t € [T1,T5),
3. aq(t) =0 for all t € [Ty, Ty],

and ay(t) =1 — ay(t) for all t.

Corollary 1 Let T be the smallest t > 0 such that

Ul+(1-R)t)R =U(1+1t)R,.

In Prop. 1, if T > 1/Ry, then T} = Ty = 1/ Ry, otherwise, Ty > T} = T.

4.1 Numerical Example

Here we consider the specific utility function U(D) = —1D?. In this case, o (f) in Lemma
2 is given by
R, — Ry + R}
t) = ———5—.
)= "5 7

Notice that the right-hand side of this expression does not depend on t. Hence, in
this case the split of transmitter resources between the two classes is fixed over the
interval [T7,T5). If Ry = 4 and Ry = 3, then frLemma 3 and Prop. 1, it follows that
the scheduler first serves class 1 packets up to time 7} = % = 1/15. Then the
scheduler drains the two classes simultaneously with oy = 2/5 and ay = 3/5. At time
T, = %&% = 21/40, the scheduler finishes serving all the class 1 packets and
starts to serve class 2 solely until 7y = 7/12 when all packets are drained. This is
illustrated in Fig. 1, which shows the fraction of class 1 and class 2 packets served up to
time ¢. The solid lines correspond to the asymptotic results, where the slope of each line
at time t is «;(t)R;. The dashed lines are from a sample run with N = 25 packets.

To study how well the asymptotic results predict the performance of a finite system,

we simulated the UR scheduler for different numbers of packets, N. The simulation
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results are shown in Fig. 2, where the z-axis denotes N and each point corresponds to a
sample run. As expected, the variance of the utility decreases, and the utilities approach
the fluid limit as /N increases.

Next we compare the UR rule with a policy which gives strict priority to packets in
class 1, and within each class still transmits packets in the order of longest delay first.
We refer to this as the “Max R” rule. Fig. 3 shows the aggregated utility vs. time under
both the Max R and UR policies. The UR rule generates greater utility over all packets
than the Max R rule. Initially the Max R scheduler gives higher utility since it serves
only the class 1 packets at the highest rate. The Max R utility then drops below the UR
utility once the longer delays experienced by class 2 packets dominate.

Fig. 4 shows the asymptotic delay p.d.f. for both the Max R and UR rules. These
results show that the delay for the UR scheduler has a significantly smaller variance than
for the Max R scheduler. This may be a desirable feature when considering fairness.

5 Optimal Control Formulation

In this section, we characterize an asymptotically optimal scheduling policy by optimizing
a;(t) for t € [0,T}]. Formally this problem can be written as

., hin /0 [~ ()R, U (D1 (1)) — aa(t) RU(Ds(2))] dt (5)
subject to:  Dj(t) = —a;(t)R; + 1, i = 1,2, (6)
D;(0) =1and D;(Ty) =Tf, i =1,2 (7)

ai(t) + ag(t) =1, (8)

a;(t) >0, i=1,2. 9)

This is a continuous-time optimal control problem [8], where the state is D(t) = (D1 (t), D2(t))
and a(t) = (a1 (t), aa(t)) is the control variable. Here (6) represents the system dynamics,
and (7) gives initial and final boundary conditions for the state.

If all the packets of class 7 are emptied at time ¢ < T}, then for all ¢ > t, we have that
a;(t) = 0 and D;(t) = t. To see that this must hold in the preceding formulation, note
that since f;(f) =0, (4) implies



Thus, if D;(Ty) = T}, then a;(t) = 0 for all ¢ > £.
The solution to this problem can be characterized using the Pontryagin minimum
principle [8]. We first define the Hamiltonian for this problem, which is given by

H(D(t), a(t), p(t))
= —on(t) Ry (U(D1(1)) + pi(t)) — aa(t) Rz (U(Da2(1)) + pa(t) + pr(t) + p2(t)

where p(t) = (p1(t),p2(t)) is the costate or Lagrange multiplier. Let a*(¢) be an op-
timal control and D*(¢) the corresponding optimal state trajectory. According to the
Pontryagin minimum principle, there exists a p*(¢) such that

p*(t) = —VpH(D*(t),a"(t),p"(t)) (10)
and
H(D*(t),a"(t), p"(t)) < H(D*(), ae(t), p*(?)) (11)

for all admissible controls ().
For this problem, (10) yields,

pi(t) = ai()RU(Di(1)), i = 1,2,
Let A;(t) = R; (U(D;(t)) + pi(t)) for i = 1,2. Then the Hamiltonian can be written as
H(D(t), eu(t), p(t)) = = Ar(t)on () — Az(t)aa(t) + pi(t) + pa(t)
which is linear in «o;(t). Hence to satisfy (11), it follows that

o) = {1 if A, (£) > As(t)

. (12)
0 if A () < As(t)

and as(t) =1 — ay(t). In the case that A;(t) = Ay(t), the problem is said to be singular
at time ¢. This means that (11) alone does not specify the optimal control. A singular
interval is defined to be an interval [t, 5] such that the problem is singular for all ¢ in
this interval; this corresponds to A;(t) — A(t) = 0 for all t € [t,t5]. The next lemma
characterizes the optimal solution during any singular interval.

Lemma 2 During any singular interval, the optimal control satisfies the condition given
in Lemma 2.

Proof: Notice that
Ai(t) = RU(D;(t))Ds(t) + Ripi(t)
= RU(Di(t)(—c;(t)Ri + 1) + Ri(ai(t) R:U (D;(t)))
= RU(D;(t)),

which does not depend on «;(t). _ ‘
Furthermore, for all ¢ € [t1, t5], it must be that A;(t) = Ax(t). Therefore,

This corresponds to the choice of () in Lemma 2. B
This lemma implies that during any singular interval, the optimal scheduling policy
behaves like the UR rule.

With the additional assumption U(z) = —(3x?, we have the following:



Proposition 3 For U(D) = —3D? with 3 > 0, the UR rule is optimal.

We omit the proof of this due to space considerations. The basic idea is to use the
optimality conditions in (12) to show the system must behave as in Prop. 1. This implies
that the UR rule is optimal.

6 Conclusions

We have presented an analysis of a simple utility-based scheduling rule, the UR rule.
Although our analysis assumes only two classes of packets and a uniform initial delay
distribution, the scheduling rule is easily generalized to other situations. For the draining
problem considered, this scheduling rule is optimal. Current work involves understanding
optimal scheduling rules under more general assumptions. In related work we have also
investigated the delay perfomance of this type of scheduling policy in a system with
time-varying channels [9].
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