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Abstract: In this paper, efficient power allocation strategies for ARQ protocols operating in wireless envi-
ronments are studied. Power is optimally adapted by the transmitter based on channel state information (CSI)
obtained through feedback, while guaranteeing quality-of-service (QOS) constraints such as average throughput
or average delay. The power policies adopted for basic ARQ protocols, such as Stop-and-Wait or Go-Back-N, is
characterized and a comparison of their relative performances is studied. Numerical results are presented for a
Gaussian channel.

1 Introduction

With the advent of wireless networks, ubiquitous access to information is gradually becoming a reality. A key
concern in wireless technologies is to conserve power, for example to extend battery life in hand-held devices.
Also, in some sensor networks, the communicating nodes may be discarded once their power is drained. Power
then becomes critical to the lifetime of such networks, and the need to conserve it cannot be overemphasized.
However conservation of power cannot come at the cost of providing an unacceptable QOS to the user. Moreover
wireless links, generally have large error rates as compared to wireline channels. Therefore, it is sensible to
perform a link-level error control, in addition to any end-to-end error control that may be provided by the
higher layers. In this work, we study power efficiency in the context of link-level ARQ protocols for wireless
networks. Our emphasis is on standard ARQ approaches - we do not address hybrid ARQ approaches, such as
code combing or incremental redundancy.
We study the performance of various ARQ protocols when physical layer parameters, such as transmission
power can be adapted based in part on the available CSI. Here, CSI could be the exact or average fade level
or any other meaningful description of the physical layer. This results in a stronger coupling between the
physical layer and data link layer, than found in traditional wireless networks. There is a growing awareness
that such coupling between layers can be beneficial in wireless settings [1],[2]. For these ARQ protocols, we
investigate the trade-offs between the transmitted power and various QOS parameters, like average throughput
and delay. Several other approaches have been examined along these lines. In [3],[4] and [5] power allocation
schemes in ARQ protocols that minimize average power expended as well guarantee reliable communications are
investigated. On the other hand, [6] studies the effect of varying packet sizes on the performance of the ARQ
protocol. In our work, the optimal power policies chosen by various ARQ protocols is given and a comparison
of the relative performance between the protocols is presented.
The rest of the paper is organized as follows. Section 2 describes the channel model studied in this work. The
power allocation problem is formulated for ARQ protocols such as Stop-and-Wait or Go-back-N, constrained by
average throughput requirements. Section 3 outlines some results for time-invariant channels. Also presented
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Figure 1: ARQ error control with CSI feedback to the transmitter

is a simple comparison between Stop-and-Wait and Go-Back-N protocols. In Section 4, similar results are
shown for Gaussian channels in which a fixed modulation scheme is employed. Also studied is the case where
communication is delay-constrained. Section 5 summarizes the contributions made.

2 System Model

We assume that each packet is sent over a narrow-band, block-fading channel with additive noise [9]. To simplify
our discussion, we assume the block length is equal to the packet transmission time. We consider a discrete-time
model, where each time unit corresponds to the block length. After every time step, the transmitter receives
new CSI, independent of whether a transmission attempt was made or not. The CSI takes on values from a finite
set Θ = {θ1, θ2, · · · , θM}. Figure 1 shows packet transmission during the nth block. The channel is assumed to
have a fixed propagation delay, I. The transmitter obtains feedback from the receiver on the packet delivery
status. In addition to this, the CSI during that block θ(n) is also provided in the feedback. If the transmitted
packet was in error, it is retransmitted according to the ARQ protocol employed. Now, the received signal
Y (n)(t) and the transmitted signal X(n)(t) can be related as,

Y (n)(t) =
√

H(n)X(n)(t) + Z(n)(t), (1)

where Z(n)(t) is the additive noise process and H(n) models the channel fading. The fading levels are functions
of the CSI obtained. For the Gaussian channel discussed in Sec. 4, CSI is assumed to provide the exact channel
realization, (i.e), θ(n) = H(n); this model can be extended to other cases where the CSI parameterizes the
distribution of the channel realization [10].
The transmission rate is fixed at R bits per second, and the transmission power is adapted for each packet. Let
Pi denote the power allocated when the CSI has value θi. The probability a packet arrives in error depends on
the transmitted power Pi and the available CSI, θi. We express this via a function ρ(Pi, θi). This function is
assumed to be decreasing and convex in Pi; a specific example is given in Sec. 4.
We consider a case where the sequence of CSI values are modelled as a stationary, ergodic Markov chain.
Let pθ(·) denote the steady-state probability distribution of {θn}. The steady-state average probability of a
successful transmission is given by

q =
M∑
i=1

(1 − ρ(Pi, θi)) pθ(θi). (2)

Similarly, the average power P̄ expended is found to be,

P̄ =
M∑
i=1

Pipθ(θi). (3)

2.1 Problem formulation

For most common ARQ protocols, the needed success probability q can be determined given a required average
throughput of R′. For instance, consider a Go-Back-N protocol with large enough window size Wsat so that the
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transmitter never idles if packets are available [8] , (i.e),

Wsat =
IR

F
+ 1, (4)

where F is the frame size including all overhead. In this case, the needed success probability is given by

q =
WsatR

′
DR
F + (Wsat − 1)R′ . (5)

where, D is the number of data bits in each packet. Given such a relation, the power allocation problem can
be formulated as,

min P̄ =
M∑
i=1

Pipθ(θi),

s.t
M∑
i=1

(1 − ρ(Pi, θi))pθ(θi) = Kx(R′), (6)

Pi ≥ 0, ∀i,

where Kx(R′) is a function that depends on the ARQ protocol employed. For instance, Kgb−n(R′) = q is given
as in (5) for a Go-Back-N protocol. For a Stop-and-wait protocol [8],

Ksw(R′) =
R′(F + IR)

DR
. (7)

For a Selective Repeat protocol with large enough window size,

KSR(R′) =
FR′

DR
.

Let Px(R′) denote the solution to (6) as a function of the required throughput R′, for a given protocol. The
function, Px(R′) then describes the trade-off between power and throughput for that protocol. We note that
the minimum energy per bit solution investigated in [4] can be interpreted as a particular value of Px(R′). The
optimal power policy adopted in (6) depends on the channel model and the error function studied. These in
turn are chosen to describe specific applications and/or communication environments.

3 Time-invariant channels

3.1 Stationary Power Allocations

In this section we consider some preliminary results for the case where the CSI is a constant, θc, for all blocks.
In formulating the power allocation problem in (6), we assume that the power assignment is only a function
of current CSI value. In particular, this allocation does not depend on the transmission attempt. Next we
show that there is no benefit to be gained if the allocation did vary with each retransmission attempt. This
analysis is carried out for the case of a Stop-and-Wait protocol, but can easily be extended for other cases as
well. Consider a two-level power allocation scheme with P1 being the power used while transmitting the frame
for the first time and P2, the power used for every retransmission. Let ρc(Pi) be the packet error probability as
a function of the transmission power Pi, for all i = 1, 2. The average number of transmissions can be written as

N = 1 · [1 − ρc(P1)] + ρc(P1)
∞∑

n=2

nρc(P2)n−2[1 − ρc(P2)]

= 1 +
ρc(P1)

1 − ρc(P2)
.

(8)

3



If the total power expended is denoted by Pt, the average power P̄ is given by,

P̄ =
E(Pt)

N
=

P1

N
+

P2(N − 1)
N

. (9)

Notice that for a fixed throughput, N is a constant and in order to minimize P̄ , we require that constraint
(9) be satisfied. From the first order optimality conditions we have,

ρ′c(P
∗
1 ) = ρ′c(P

∗
2 ). (10)

Assuming the frame error function is concave and monotonic increasing, (10) holds if and only if, P ∗
1 = P ∗

2 .
Therefore, equal power allocation proves optimal in this case. This can be further extended to a N -level power
allocation scheme by an induction argument.

Lemma 1. Let Pi be the transmission power used for the ith transmission, i=1,2,· · · , then all Pi’s need to be
equal, in order that the average power is minimized.

Intuitively, this result is to be expected, as the problem can be viewed as an average-cost Markov decision
problem. Since the number of states are finite, it is known that a stationary policy is optimal.

3.2 Comparison of Stop-and-Wait and Go-back-N

In this section, we study the relative performance of the optimal power policies chosen for Stop-and-Wait and
Go-Back-N to achieve a given throughput R′, namely Psw(R′) and Pgb−n(R′). However, Go-Back-N would
employ on an average Pgb−n(R′) to transmit each of the Wsat packets in it’s current window. On the other
hand, Stop-and-Wait utilizes Psw(R′) to transmit a single packet in the same time period. To ensure a fair
comparison, we look at the energy expended over a window, i.e, Psw(R′) and WsatPgb−n(R′) respectively.

Lemma 2. While allocating power optimally to a Stop-and-Wait and a Go-back-N protocol operating over a
channel with a single CSI state θ, there exists R′ such that

Psw(R′) < WsatPgb−n(R′), ∀ R′ <
DR

F
.

Proof: The Power allocation problem for the two protocols can be formulated as

Stop-and-Wait Go-Back-N
min Psw(R′), min WsatPgb−n(R′),
s.t 1 − ρ(Psw(R′), θ) = Ksw(R′), s.t 1 − ρ(Pgb−n(R′), θ) = Kgb−n(R′),
Psw(R′) ≥ 0. Pgb−n(R′) ≥ 0.

In order that Stop-and-wait is power efficient than Go-back-N, it must be that ,

ρ−1(1 − Ksw(R′)) < Wsatρ
−1(1 − Kgb−n(R′)). (11)

Since ρ−1 is convex we have

ρ−1(λ(1 − Kgb−n(R′)) + (1 − λ)(0)) < λρ−1(1 − Kgb−n(R′)) + (1 − λ)ρ−1(0) (12)

From (11) and (12), it is sufficient to show that

ρ−1(1 − Ksw(R′)) < ρ−1(W (1 − Kgb−n(R′)))

Since ρ−1(·) is monotone increasing, from (5) and (7)

Psw(R′) < WPgb−n(R′), ∀ R′ <
DR

F
, (13)
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as desired. �
Thus, for certain cases with a low enough power requirement, Stop-and-Wait will have a higher throughput than
Go-Back-N. This can be contrasted with a wire-line network, in which Go-Back-N will always have a higher
throughput. The reason for this is that Go-Back-N sends all packets in the current window, before sliding back.
When the power is low and error rates are high, successive packets are thrown out, leading to a loss of energy.
We note that as in a wireline network, a Selective Repeat protocol will always have a higher throughput than
either Go-Back-N or Stop-and-Wait.

4 Gaussian channels

Now consider a model based on the error probability for Gaussian channels with fixed modulation and coding
scheme. The CSI is assumed to provide the exact channel realization.When the channel realization during a
particular block is h and the transmission SNR is ν, consider an error function given as

ρ(ν, h) = k1e
−k2hν , ∀ ν ≥ ν̄, (14)

where k1 and k2 are constants that depend on the type of modulation scheme employed. We assume that
the minimum received SNR in each state is a constant. This in turn corresponds to a minimal SNR value ν̄i

that the transmitter can use in the state i. To use SNR values below ν̄i we allow the transmitter to randomly
timeshare, i.e, when the transmission SNR falls below the threshold ν̄i, transmission is suspended with a certain
probability, or else, the power level is fixed at ν̄i. If νi be the transmission power employed when the CSI is hi,
then the error probability is given as

ρ(νi, hi) =

{
1 − νi

ν̄i
(1 − ρ(ν̄i, hi)), if νi < ν̄i,

k1e
−k2hiνi , if νi ≥ ν̄i.

(15)

4.1 Throughput Analysis

Consider a channel with two equally likely and independent states and gains h1 > h2. The power allocation
problem in (6) can be formulated in terms of the transmission SNRs (equivalently powers) in each state. The
optimal power policy is characterized below as a function of the average throughput requirement R′.

Low Power scenario

Proposition 1. When Kx(R′) < 1−ρ(ν̄1,h1)
2 , the powers allotted in the two channel states are

ν1 =
2Kx(R′)ν̄1

1 − ρ(ν̄1, h1)
; ν2 = 0. (16)

Proof : For the optimal allocation, the success probability in h1 should clearly be larger than in h2. Hence
for Kx(R′) in the above range we have from νi ≤ ν̄i for i = 1, 2. Therefore from (15),

ρ(νi, hi) = 1 − νi

ν̄i
(1 − k1e

−k2hiν̄i), ∀ i = 1, 2. (17)

If power is to be split in both channel states, then the first order optimality conditions are violated. Therefore,
the strategy is to suspend transmission in the worse state. �

Proposition 2. When 1−ρ(ν̄1,h1)
2 < Kx(R′) <

(
1
2 − 1−ρ(ν̄2,h2)

2k2h1ν̄2

)
, the powers allotted become

ν1 =
1

k2h1
ln

(
k1

1 − 2Kx(R′)

)
; ν2 = 0. (18)
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Proof : For Kx(R′) > 1−ρ(ν̄1,h1)
2 , if power is allotted only in state one, then we have ν1 > ν̄1 and

ρ(ν1, h1) = k1e
−k2ν1h1 ; ρ(ν2, h2) = 1

This results in the power allocation form given in (18). This allocation can be shown to be optimal provided
Kx(R′) <

(
1
2 − 1−ρ(ν̄2,h2)

2k2h1ν̄2

)
High Power scenario

Proposition 3. When
(

1
2 − 1−ρ(ν̄2,h2)

2k2h1ν̄2

)
< Kx(R′) <

(
2−ρ(ν̄2,h2)

2 − 1−ρ(ν̄2,h2)
2k2h1ν̄2

)
, the powers allotted become

ν1 =
1

k2h1
ln

(
k1k2h1ν̄2

1 − ρ(ν̄2, h2)

)
. (19)

ν2 =
2Kx(R′) − 1 + 1−ρ(ν̄2,h2)

k2h1ν̄2

1 − ρ(ν̄2, h2)
ν̄2. (20)

Proof : The Kuhn-Tucker conditions yields

k1k2h1e
−k2h1ν1 =

1
ν̄2

(1 − ρ(ν̄2, h2)).

k1e
−k2ν1h1 + 1 − ν2

ν̄2
(1 − ρ(ν̄2, h2) = 2 − 2Kx(R′).

Therefore, the solution forms in (20) and (21) holds. �

Proposition 4. When
(

2−ρ(ν̄2,h2)
2 − 1−ρ(ν̄2,h2)

2k2h1ν̄2

)
< Kx(R′) < 1 − ρ(ν̄2,h2)

2

(
1 + h2

h1

)
, the powers allotted are

ν1 =
1

k2h1
ln

(
k1

2 − 2Kx(R′) − ρ(ν̄2, h2)

)
. (21)

ν2 = ν̄2. (22)

Proof : The solution form follows from the equality constraint in (6). �

Proposition 5. When Kx(R′) > 1 − ρ(ν̄2,h2)
2

(
1 + h2

h1

)
, the optimal solution is

ν1 =
1

k2h1
ln

(
k1(1 + h1

h2
)

2 − 2Kx(R′)

)
(23)

ν2 =
1

k2h2
ln

(
k1(1 + h2

h1
)

2 − 2Kx(R′)

)
(24)

Proof : This follows from the first order conditions. �

Numerical results:
The Stop-and-wait protocol described in the previous sections, is assumed to operate over a 500 Khz channel.
Transmission takes place at 0.25 bits per channel use and a M-PAM constellation is employed. Figure 2 shows
the power policies adopted in moderately and severely fluctuating channels. The plot is shown on a logarithmic
scale. The dips observed in the curve correspond to the throughput requirements where transmission power
needs to be split in both the channel states. Till about 50 percent peak efficiency, transmission is suspended in
the bad channel state. As throughput requirements increase, the performance of the severely fluctuating channel
worsens. The savings obtained from this scheme seems appreciable as compared with an equal-power-splitting
approach.
As before we compare the energy consumptions of the Go-Back-N and Stop-and-Wait protocols, i.e, Psw(R′)

and WPgb−n(R′) respectively. Note that power is allotted only in a single channel state under Proposition 1
and Proposition 2. Therefore Lemma 2 holds in both cases. This result can be formalized as follows.
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Figure 2: Fading Comparisons over Gaussian channel

Proposition 6. While allocating power optimally to a Stop-and-Wait and a Go-back-N protocol operating over
a channel with an i.i.d fading channel, there exists R′ such that,

PSW (R′) < WPgb−n(R′), ∀ Kx(R′) < min (
1
2
− 1 − ρ(ν̄2, h2)

2k2h1ν̄2
,
DR

F
).

Note that this can be extended to more general channel models as well.
Fig. 3 shows a comparative plot between Stop-and-Wait and Go-Back-N protocols. Two packets are assumed to
fill the channel. The peak throughput obtained from the Stop-and-Wait protocol is about 52 Kbps. Stop-and-
wait is shown to be power efficient than Go-back-N till about a throughput requirement of 26 Kbps. The plot
also shows a large benefit in power over a Go-Back-N protocol that employs equal power in all channel states.

4.2 Delay Analysis

In some applications we may need to guarantee an average delay for each packet, while efficiently utilizing
power. We study the case where packets arrive from a Poisson source at an average rate λ packets per time
slot, (i.e) one time unit is (F

R + I) seconds. Here each time slot is assumed to include the packet transmission
time as well as round trip propagation delay. The packets are buffered at the transmitter and constrained to
have an average packet delay Tp. The packet losses are assumed to be i.i.d. The transmitter’s queue then can
be modelled as a M/G/1 queue with the service time distribution X given as [7],

P (X = kW + 1) = q(1 − q)k, k = 0, 1, 2 · · · .

So, X̄ = 1 +
W (1 − q)

q
, (25)

X̄2 = 1 +
(W 2 + 2W )(1 − q)

q
, (26)

where q is the average probability of a successful transmission. The average packet delay is given by the
Pollaczek-Khinchin formula as

Tp =
(

X̄ +
λX̄2

2(1 − λX̄)

)
(
F

R
+ I). (27)

7



15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

T
hr

ou
gh

pu
t (

kb
ps

)

Power (dbm)

SW
SW equal power
GBN n=2
GBN n=2 equal power

Figure 3: SW vs GBN - Gaussian channel

For Stop-and-Wait or Go-back-N operating over a Gaussian channel with two equally likely and independent
states, the power allocation problem can be written as

min ν̄ =
ν1 + ν2

2
,

s.t ρ(ν1, h1) + ρ(ν2, h2) = 2 − 2Kdel,x(λ, Tp), (28)
ν1 ≥ 0, ν2 ≥ 0.

Note that the structure of this problem is similar to (6). As in Sec. 3, we are restricting ourselves to power
allocations that depend only on the channel state ; for the delay-constrained case we note that such a restriction
is not optimal. Here Kdel,x(λ, Tp) is specific to the protocol employed and can again be interpreted as the
average probability of a successful transmission. It follows that

0 ≤ Kdel,gbN (λ, Tp) ≤ 1. (29)

For a Go-Back-N protocol employing a window size W , using (27),(28) and (29) it can be shown that

Kdel,gbN (λ, Tp) =
2W
λ + W 2 − 2W + 2WTp

2Tp

λ + (W − 1)2 − 2Tp(W − 1)
. (30)

From (31) and (32), it follows we must have

λ <
2Tp − 2W

4WTp − 2Tp − 1
. (31)

Setting W = 1, the protocol constant for Stop-and-Wait is,

Kdel,SW (λ, Tp) =
2Tpλ + 2 − λ

2Tp
. (32)

The solution form for a two state i.i.d fading channel can be obtained as in Sec. 4.1. As before, for high delay
requirements, the optimal strategy would involve suspending transmission in the bad channel. This constrains
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Figure 4: Effect of Arrival rate

the protocol constant to be less than 0.5. Therefore the arrival rate is bounded as

λ <
Tp − W

(W−1)2

2 − 1 + 3WTp − Tp

. (33)

In other words, for arrival rates larger than this, the power needs to be split in both channels for all delay
requirements.
Figure 4 gives the power policy adopted by the Stop-and-Wait protocol described in the previous sections, for
various arrival rates. This is compared with an equal power splitting approach. There seems to be considerable
benefit in employing this scheme, especially when the delay requirement is relaxed and arrival rates are low.
Power efficiency comparisons between Stop-and-Wait and Go-Back-N similar to Sec 4.1 are currently being
investigated.

5 Conclusions

This paper discussed optimal power allocation schemes for ARQ protocols operating over fading channels and
constrained by QOS requirements. The optimal power policy enhances performance as compared to a sim-
ple equal-power transmission scheme. The relative performance of the policies adopted by Stop-and-Wait and
Go-Back-N protocols was also studied. It was shown that Stop-and-Wait is power efficient over a range of
throughput requirements. This is an interesting result in the context of wireless channels, particularly because
Stop-and-Wait is always less efficient in a wireline scenario. Finally, the power policy adopted while constrained
by delay requirements was considered. Results similar to the throughput case were discussed.
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