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Abstract— We consider market-based mechanisms for allo-
cating transmission rates to a set of users whose rates are
constrained to lie in a polymatroid capacity region. We study
two simple mechanisms, both of which are generalizations of
Kelly’s well known allocation mechanism to this setting. We
characterize the equilibrium properties of these mechanisms
for “price anticipating” users.

I. INTRODUCTION

Recently, there has been much interest in economic-based
models for allocating resources in communication networks.
In such models, a network is viewed as a seller of resources
(e.g. the capacity of each link); the users of the network
are consumers of these resources. An allocation mechanism
is then used to establish a market in which users can
purchase the available resources. Much of this work has
been motivated by Kelly’s model for rate allocation in a
wireline-network [1]. This model provides a relatively simple
mechanism for allocating end-to-end rates to each user in
a network; where the allocated end-to-end rates must be
a feasible multi-commodity flow vector in the network. In
Kelly’s mechanism, each user submits a bid for rate and
receives a rate allocation given by their bid divided by a
“congestion price.” The main result in [1], is that when users
do not account for their effect on the congestion price, there
exists a set of bids and congestion prices which are consistent
with each other and under which the resulting allocation is
efficient (i.e. it maximizes the total utility of the users). Johari
and Tsitsiklis studied the effect of price anticipating users on
the Kelly mechanism, i.e. users who anticipate their effect
on prices [3]. Such users can be viewed as playing a game
in which their pay-off is their received utility minus their
bids. In [3] it is shown that with price anticipating users,
the aggregate utility achieved at a Nash Equilibrium (NE) of
this game may no longer be efficient. However, for a single-
link, the efficiency loss is bounded to be at most 25% of the
maximum utility.

In [1], [3], the rates allocated on each link in the network
were simply constrained so that their sum was no greater
than the link’s capacity. In other words, each link can be
viewed as having a capacity region that is an N -dimensional
simplex, where N is the number of users. This is a reasonable
model for wireline networks. A motivation for this paper is
to consider such resource allocation schemes for wireless
networks. In such networks, depending on the physical layer
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technology used, the resulting capacity regions may no
longer be well modeled as a simplex. Specifically, we are
interested in the problem of allocating rates to a set of N
users, when the rates are constrained to lie in a capacity
region C, which is a closed, bounded subset of RN+ . Here,
we focus on the case where this region is a polymatroid.
This is motivated by the Cover-Wyner capacity region for
a Gaussian multiple access channel [4]. However, we note
that our analysis only relies on the polymatroid structure of
this region and so applies to any resource allocation problem
with a polymatroid constraint set.1

Given a polymatroid capacity region, we study general-
izations of the Kelly mechanism and the resulting efficiency
losses for price anticipating users. Compared to a sim-
plex, polymatroid capacity regions have two new interesting
characteristics. First, there is some rate that each user can
utilize without effecting the rates allocated to any other.
We refer to this as a user’s “free capacity.” Our results
suggest that good resource allocation mechanisms should
take into account the existence of this free capacity. Second,
a polymatroid is characterized by a number of constraints
that is exponential in the number of users. Hence, having
each user bid for each constraint separately is not a scalable
solution. Therefore, we focus on mechanisms in which each
user submits a single one-dimensional bid. Specifically, we
present two mechanisms, both of which are equivalent to
Kelly’s mechanism when the capacity region is a simplex.
In this first mechanism, a NE may not exist for a network
of 3 or more users; for the second mechanism, a NE will
always exist, but the efficiency loss can approach 100%.

In other related work, in [3], Johari and Tsitsiklis extend
their analysis to a network with multiple links. For the
network case they no-longer consider Kelly’s mechanism,
but instead a mechanism in which the network implements a
separate Kelly-type mechanism for each link in the network.
For this mechanism the 25% efficiency loss bound still holds.
This could be applied to the polymatroid case, but would
require an exponential number of bids. In [5], Hajek and
Yang also consider a multiple-link model, with the difference
that each user submits a single bid, and the network imple-
ments a single Kelly-type mechanism to allocate the users’
end-to-end rates. In this case, with more than one link, the
efficiency loss may be 100%, and, moreover, a NE can fail
to even exist. The mechanism they consider is essentially
the same as our first mechanism; our results provide another
example in which this mechanism may not have a NE. In

1Such a setting is referred to as a “submodular resource allocation market”
in [8].



[6], [7], a class of network resource allocation mechanisms
are presented in which each user submits a one-dimensional
bid, but then is charged a price that is similar to a the
payment in a Vickery-Clark-Groves (VCG) auction. Under
the resulting mechanism there exists Nash equilibria with
zero efficiency loss. Such a mechanism can also be applied
in the polymatroid case studied here, but place significantly
more computational burden on the agents.

II. MODEL AND BACKGROUND

We consider allocating transmission rates to a set of N
users whose rates x = {xi}Ni=1 are constrained to lie in a
capacity region C ⊂ RN+ , which is closed and bounded. Each
user receives a (quasi-linear) utility equal to ui(xi) when
allocated rate xi, where ui : R+ → R+ is concave, and
strictly increasing. For this problem, an efficient allocation
is defined to be one that solves:

max
x∈C

∑
i∈N

ui(xi).

To begin, consider the case where C is a single commu-
nication link with capacity C, i.e.

C =
{
x ∈ RN+ : x(N) ≤ C

}
, (1)

where we use the notation x(N) :=
∑
i∈N xi. We review the

mechanism in [1], [3] for allocating rates in this region. In
this mechanism, each user i ∈ N submits a one dimensional
bid bi; the network then allocates that user a capacity xi
given by xi =

bi
πC

. Here, πC is the congestion price given
by2

πC =
b(N)

C
. (2)

As noted above, in [1] each user bids assuming the conges-
tion price is fixed, while in [3] the users take into account
their effect on the price in (2). In the later case, the N users
are playing a game in which the strategy of each user is their
choice of bid, bi and their pay-off is given by3

Ui(bi;b−i) = ui(xi(bi;b−i))− bi.

Johari and Tsitsiklis show that under full information, this
game has a unique NE which is within 3/4 of the efficient
allocation.

Here, we consider the case where instead of a single link,
C is given by the following polymatroid capacity region,

C(f) :=
{
x ∈ RN+ : x(S) ≤ f(S),∀S ⊆ N

}
,

where f : 2N → R+ is a given polymatroid function, i.e. it
is submodular, monotone and f(∅) = 0. Furthermore, we
assume that f : is strictly submodular, meaning that

f(S) + f(T ) > f(S ∪ T ) + f(S ∩ T ),

for all S, T ⊆ N that are intersecting.4 This is motivated
by the Cover-Wyner capacity region for a Gaussian multiple

2In the case where all users bid zero, it is assumed that each receives
xi = 0.

3Here b−i indicates the vector of bids for all users except i.
4Two sets S and T are intersecting if S \ T , T \ S and S ∩ T are all

non-empty.

access channel, in which f(S) = log(1 +
∑
j∈S hjPj),

hj is user j’s channel gain, and Pj is the user’s average
transmission power.5 Given this region, we will consider sev-
eral “Kelly-type” mechanisms for allocating the transmission
rates. In each case the proposed mechanism is equivalent to
the Kelly’s, when C is given by (1).

III. MECHANISM I

The first mechanism we consider is the straightforward
application of Kelly’s algorithm to the polymatroid case.
Namely, each agent i submits a bid bi, which is also that
user’s payment. Given b1, . . . , bN ; the resulting allocation x
is given by solving the following optimization problem:

max
x∈C(f)

∑
i∈N

bi log(xi). (P1)

Though this problem has an exponential number of con-
straints, it can be solved in polynomial time. In particular, a
polynomial time, combinatorial algorithm for this problem
is given in [8]. We state a version of this algorithm in
Algorithm 1.6

In [8], it is shown that each time step 2) of the algorithm
is executed, there is a unique minimal set. After at most N
iterations, the algorithm converges to the optimal solution to
(P1). The variables p∗k found by the algorithm correspond to
the sum of the Lagrange multipliers for the active constraints
in (P1).

Algorithm 1 Algorithm for solving Problem P1
1) Initialize: S0 = N , k = 1
2) Let

p∗k = min
S⊂Sk−1

b(Sk−1 \ S)
f(Sk−1)− f(S)

and let Sk be the minimal set achieving this maximum.
3) For i ∈ Sk−1 \ Sk, set xi = bi/p

∗
k.

4) If Sk = ∅ Stop; Else k = k + 1, Goto 2.

For the polymatroid C(f), the dominate face refers to those
values of x ∈ C(f) such that x(N) = f(N). We say a point
is in the interior of the dominate face if no other constraints
are binding. It is straightforward to see the following:

Lemma 1: Any solution to Problem P1, must lie on the
dominate face of the polymatroid, C(f).

We define the corresponding single-link model of a ca-
pacity region C(f) to be a model in which the user’s rates
are constrained as in (1) with C = f(N). If C(f) is
replaced with its equivalent single link model, then the above
mechanism becomes equivalent to that studied in [3]. We
refer to the unique NE in that setting as the JT equilibrium.

Lemma 2: If a NE rate allocation for Mechanism I lies in
the interior of the dominate face of C(f), then that rate allo-
cation must also be the JT equilibrium of the corresponding
single-link model.

5Here, we have normalized the noise power and bandwidth to be 1.
6This is somewhat different from how the algorithm is presented in [8];

but results in the same algorithm.



This follows by noting the the first order variations in
each user’s best response around a point in the interior of
the dominate face are the same in both settings. Note that
the converse may not be true, i.e. if the JT equilibrium is in
the interior of the dominate face of C(f), it may not be a
NE.7

A. Free capacity

With the above algorithm, one issue is how to deal with
the case when a user bids zero.8 A natural approach in this
setting would be to set that user’s allocation to zero. How-
ever, this can lead to a user’s pay-off being discontinuous at
zero. To see this note that for any solution to (P1) when all
bids are non-zero, from Lemma 1, each user i will receive at
least xi,min = f(N)−f(N \ i). As the next example shows,
this discontinuity can lead to no NE existing for the above
mechanism.

Consider a system with N = 2 agents, where f(1) =
f(2) = 1 and f(1, 2) = C (C ∈ [1, 2)). Given a set of bids,
let µ12 be the price (Lagrange multiplier) for the sum rate
constraint, and let µi be the price for the individual constraint
of user i.

Claim 1: Given bids b1 and b2, the resulting rates x1, x2
and prices given by the above mechanism satisfy the follow-
ing:

1.) If C−1 ≤ b1/b2 ≤ 1/(C−1), then µ12 = C/(b1+b2),
µ1 = µ2 = 0, and xi = (Cbi)/(bi + b−i).

2.) If b1/b2 < C−1, then µ12 = b1/(C−1), µ2 = b2−µ12,
µ1 = 0, x1 = C − 1, x2 = 1.

3.) If b1/b2 > 1/(C − 1), then µ12 = b2/(C − 1), µ1 =
b1 − µ12, µ2 = 0, x2 = C − 1, x1 = 1.

To see this, one can check that in each case complementary
slackness and feasibility are satisfied.

Using this characterization, we show that a NE may not
exist. First from lemmas 1 and 2, any NE must be on the
dominate face of the polymatroid. If the NE is on the interior
of the dominate face it must be the JT equilibrium, in which
case the bids will satisfy case 1 in the preceding claim.
Assume the JT equilibrium does not lie in the polymatroid.
From Lemma 2, any NE must then result in a rate allocation
at a corner point of C(f). Without loss of generality, consider
the corner point where x1 = C − 1 and x2 = 1. From case
2 in the claim, we see that no matter what user 2 is bidding,
if user 1 decreases his bid, his pay-off will increase. Hence,
this can not be a NE. It follows that a NE does not exist in
this case.

The above example can be fixed by allocating each user
xi,min for “free” and having them bid only on the excess
capacity. Specifically, for each S ⊆ N , let

g(S) = f(S)−
∑
i∈S

xi,min.

7This is due to the fact discussed below that under Mechanism I, a user’s
pay-off may not be quasiconcave.

8We note that similar issues arise in the multiple link model studied in
[3], [5] when all the bids for a given link are zero.

We can then view the users as bidding for rate xi in the
polyhedron9

C(g) =
{
xi ∈ RN+ : x(S) ≤ g(S), ∀S ⊂ N

}
.

Furthermore, it can be seen that g(S) is also (strictly) sub-
modular and increasing, so that C(g) is again a polymatroid.
However, in this polymatroid, clearly

g(N)− g(N \ i) = 0,

i.e., there is no longer any “free capacity” available to some
user.

When using C(g), we note that Algorithm 1, Lemma 1
and Lemma 2 still apply. Also, note that in the special case
when N = 2, C(g) will simply be a simplex. It follows that
for N = 2 users, a unique NE exists and the efficiency loss
is at most 25%.

B. No pure strategy NE

Next, we give an example to show that for N > 2 users
there may not exist a pure strategy NE for this mechanism,
even when each user receives xi,min for free.

Consider a N = 3 agent network, where agent 1 has
utility u1(x1) = 10x1, and agents 2 and 3 have utilities
ui(xi) = xi. Assume we allocate each user xi,min for free
and then they bid for the remaining rate in C(g). Finally,
assume that the JT equilibrium for the the corresponding
single-link problem does not lie in C(g). It follows from
Lemma 2 that if a NE exists it must not lie in the interior
of the dominate face but on the boundary.

Consider a boundary rate allocation that satisfies x1 =
g(1) and x2 + x3 = g(N) − g(1). We will show that such
rate allocation can not be a NE. First consider agent 1, to
receive the desired allocation this agent must not be assigned
a rate in the first iteration of Algorithm 1, i.e. 1 ∈ S1. For
this to be true, it must be that

b2 + b3
g(N)− g(1)

≤ b1 + b2 + b3
g(N)

.

However, clearly, as long as this condition holds, agent 1 has
incentive to lower his bid. Thus for this to be a NE, agent
1’s bid must be such that the above expression becomes an
equality, i.e.

b2 + b3
g(N)− g(1)

=
b1 + b2 + b3

g(N)
. (3)

Next consider agent 2’s bid (the same argument applies
to agent 3). Given that (3) holds, then if this agent reduces
her bid, it must be that only agents 2 and 3 will be assigned
rates in the first iteration of algorithm 1. At a NE, this must
result in a negative change in the agent’s pay-off. Taking the
derivative of the pay-off in this direction, we have

g(N)− g(1)
b2 + b3

(
1− b2

b2 + b3

)
− 1 ≥ 0. (4)

9Note that now a users utility will be ui(xi,min + xi).



Likewise, if this agent increases his bid slightly, then all three
agents will be assigned rates in the first iteration. Thus we
have that

g(N)

b1 + b2 + b3

(
1− b2

b1 + b2 + b3

)
− 1 ≤ 0. (5)

Combining (3), (4), and (5), it follows that for such a NE
to exist it must be that(

1− b2
b2 + b3

)
≥
(
1− b2

b1 + b2 + b3

)
which is not true for any b1 > 0.

A similar argument can be applied to rule out the other
possible boundary allocations. Thus a pure strategy NE does
not exist.

For this mechanism, it can be shown that each user’s
best response is not quasiconcave. In particular, the non-
quasiconcavity arises at those points at which the sets chosen
in Algorithm 1 change. We also note that the payoffs are
continuous (as long as we assign users their free capacity)
and so a mixed-strategy NE will exist.

IV. MECHANISM II

We next consider a different allocation mechanism defined
as follows: Each agent i submits a bid bi and receives an
allocation xi given by xi = bit for all i where

t = min
S⊆N

g(S)

b(S)
. (6)

Denote this critical value of t by t∗. Note with this mecha-
nism, we are not longer guaranteed that an allocation is on
the dominate face of C(g).

Now t∗ is the solution to the following LP:

max{t : tb(S) ≤ g(S) ∀S ⊆ N}. (P2)

This can be solved in polynomial time via the ellipsoid algo-
rithm. Given a choice of t we can find a violated inequality
by solving minS⊆N g(S) − tb(S) which is minimizing a
submodular function.

In Algorithm 2, we give an alternative algorithm for
solving P2 that does not rely on the ellipsoid algorithm.
First, we make a few preliminary observations. Let ht(S) :=
g(S) − tb(S). For a given t, let Vt := {S : ht(S) ≤ 0}, so
that

t∗ = min{t : Vt 6= ∅}.

Lemma 3: For all S, if S /∈ Vs, then for all t ≤ s, S /∈ Vt.
This follows directly from noting that for all S, ht(S) is

a non-increasing, linear function of t.
Lemma 4: For all S ⊂ T , if hs(S) ≤ hs(T ), then

ht(S) ≤ ht(T ) for all t ≤ s.
This follows directly from the fact that g(S) < g(T ).
Lemma 5: For any t, if S and T are two sets in Vt, and

S ∪ T /∈ Vt, then ht(S ∩ T ) < min{ht(S), ht(T )}.
Proof: As noted above, ht(S) is submodular. Therefore,

ht(S) + ht(T )− ht(S ∪ T ) ≥ ht(S ∩ T ).

By assumption, ht(S) ≤ 0, ht(T ) ≤ 0 and ht(S ∪ T ) > 0.
Thus, it must be that

ht(S ∩ T ) < ht(S) + ht(T ) ≤ min{ht(S), ht(T )}.

Algorithm 2 Algorithm for solving Problem P2
1) Initialize: S0 = N , k = 1
2) Let tk = g(Sk−1)

b(Sk−1)
.

3) Find dk = minS⊆N htk(S). Let Sk be the maximal set
on which the minimum is obtained.

4) If dk = 0 stop, solution is tk; Else k = k+1, Goto 2.

As noted above, step 3.) of Algorithm 2 is minimizing a
submodular function and so can be done in polynomial time.

Claim 2: This algorithm will iterate at most N times and
will find the optimal solution to the above LP.
Proof: First note that from Lemma 3, d1 ≤ 0 and if d1 = 0
then t1 is the optimal solution.

Next note that since ht(S) is non-increasing in t, then
t1 ≥ t2 · · · , i.e. at each step we generate a smaller value
of t. There are only a finite number of candidate t’s (one
corresponding to each set S ⊆ N ). At each choice of ti,
Si−1 ∈ Vti . From this it follows that the algorithm converges
to the optimal solution in finite time.

It remains to show that the algorithm only requires N
iterations. To show this, we will show that the sets S1, S2, . . .
are in fact laminar.10 Suppose this is not true, i.e. at the ith
iteration of Algorithm 2 the set Si+1 is not contained in Si.
Note that by assumption

hti(Si) < hti(Si ∪ Si+1),

otherwise Si would not be chosen at the ith step. From
Lemma 4, it follows that

0 = hti+1
(Si) < hti+1

(Si ∪ Si+1).

By definition

hti+1(Si+1) ≤ hti+1(Si) = 0.

It follows that for t = ti+1, Si and Si+1 satisfy Lemma 5,
and so

hti+1(Si+1 ∩ Si) < hti+1(Si+1),

which contradicts the choice of Si+1.

V. CONCAVITY OF PAYOFFS

We define a set S ⊆ N that achieves the minimum in (6)
to be a minimizer.

Lemma 6: Strict submodularity of g implies that the set
of minimizers will be laminar and there will be a unique
minimal minimizer.

10A family of sets is said to be laminar if no two sets in the family are
intersecting, i.e. the sets are nested.



Proof: First we show that there cannot be two disjoint
minimizers, S1 and S2 say. Suppose not. Then

g(S1 ∪ S2) ≥ x(S1) + x(S2)

= t∗b(S1) + t∗b(S2)

= g(S1) + g(S2)

> g(S1 ∪ S2),

a contradiction.
Next we show that there cannot be two different in-

tersecting minimizers, S and T . Suppose not. From strict
submodularity if S and T are intersecting, then

g(S)− t∗b(S) + g(T )− t∗b(T )
> g(S ∪ T )− t∗b(S ∪ T ) + g(S ∩ T )− t∗b(S ∩ T ).

Hence,

max{g(S)− t∗b(S), g(T )− t∗b(T )}
> min{g(S ∪ T )− t∗b(S ∪ T ), g(S ∩ T )− t∗b(S ∩ T )},

contradicting the choice of either S or T .

Recall, the payoff to agent i is Ui(bi;b−i) = ui(bit
∗)−bi.

Lemma 7: For all i, ui(bit∗)− bi is concave in bi.
Proof: Since ui is concave and increasing it is enough to
show that bit∗ is concave in bi.

Let S be the minimal minimizer associated with t∗.
Suppose first that i 6∈ S. Then agent i’s allocation is big(S)

b(S) .

The slope of this expression is g(S)
b(S) , and this remains the

slope as bi decreases. This is because for all T 3 i, g(T )
b(T )

increases as bi decreases which means that S remains the
minimal minimizer.

Next, suppose bi increases. Then S need not remain the
minimal set. Increase bi to the first point where there is
another set, T 3 i such that

g(S)

b(S)
=
g(T )

b(T )
= t∗.

Agent i’s allocation will now be big(T )
b(T ) . The slope of this

object is

g(T )

b(T )

[
1− bi

b(T )

]
<
g(T )

b(T )
=
g(S)

b(S)
.

So the slope is decreasing as bi increases.
Now suppose we started with i ∈ S. If we increase bi,

S remains a minimal minimizer. The slope of agent i’s
allocation will be

g(S)

b(S)

[
1− bi

b(S)

]
.

If we decrease bi, the set S will no longer be a minimizer.
Some other set T containing i would become the minimal
minimizer. In fact, T will be the maximal minimizer (before
the change in bi). To see why, let T be any other minimizer.
By Lemma 6, S ⊂ T .

As bi decreases, the quantity g(S)
b(S) increases at the rate

− g(S)
b(S)2 . The quantity g(T )

b(T ) increases at the rate − g(T )
b(T )2 . Since

S ⊂ T :
− g(T )

b(T )2
< − g(S)

b(S)2
.

Notice that the term on the left is minimized when T is
chosen to be a maximal minimizer.

Since T becomes the minimal minimizer, the slope of
agent i’s allocation becomes g(T )

b(T ) [1 −
bi
b(T ) ]. Since S ⊂ T

and b(S)
g(S) =

g(T )
b(T ) , we have

g(S)

b(S)

[
1− bi

b(S)

]
>
g(T )

b(T )

[
1− bi

b(T )

]
.

So, the slope of the allocation again decreases as bi
increases.

Proposition 1: For Mechanism II, a pure strategy NE
always exists.

This follows immediately from the preceding lemma and
the classical existence theorem of Glicksberg.
Remark: In this section, we never used the fact in C(g)
there is no free capacity. Indeed, this result also applies if
we applied use the original region C(f). However, it can be
shown that assigning users their free capacity can reduce the
number of NE that exist.

VI. IMPLICATIONS OF NE WHEN THERE IS A UNIQUE
MINIMIZER

Consider a given pure strategy NE under which there is a
unique minimizer, S1, say. Consider an agent k and suppose
first that k ∈ S0 = N \ S1 and bk 6= 0. Then xk = bkt

∗.
Further t∗ does not depend on bk. Agent k’s pay-off is

uk(bkt
∗)− bk.

Since k ∈ S0, i.e., k is not in any minimizer, we can wiggle
bk a little bit without changing the set of minimizers or
the value of t∗. Hence the slope of agent k’s utility will
be t∗u′k(bkt

∗) − 1. At equilibrium, the slope must be zero.
Hence at equilibrium

t∗u′k(bkt
∗)− 1 = 0 ∀k ∈ {j ∈ S0 : bj 6= 0}.

If bk = 0 the most we can say is that

t∗u′k(0)− 1 ≤ 0 ∀k ∈ {j ∈ S0 : bj = 0}.

Now consider an agent k that is in the unique minimizer,
S1. Then xk = bkt

∗ but t∗ may depend on bk. Agent k’s
utility is uk(bkt∗)−bk. If agent k decreases bk this can only
increase the value of g(T )

b(T ) for any T that contains k and
potentially changes the value of t∗. If the increase is small
enough, the set S1 will continue to be the unique minimize
and the slope is[

g(S1)

b+ b(S1 \ k)

](
1− b

b+ b(S1 \ k)

)
× u′

(
b[

g(S1)

b+ b(S1 \ k)
]

)
− 1.



Now we examine what happens when agent k increases
her bid. This reduces the value of g(T )

b(T ) for any T that
contains k. This changes the value of t∗. It also changes the
set of minimizers. In fact S1 remains as the only minimizer.
Here is why. Any set T that contains k but is not in S1 is
not a minimizer. So before the change g(S1)

b(S1) <
g(T )
b(T ) and this

inequality holds for a small change in bk. If T ⊂ S1 then
g(T )
b(T ) decreases at the rate g(T )

b(T )2 while g(S1)
b(S1) decreases at the

rate g(S1)
b(S1)2 . Since T ⊂ S1 it follows that g(T )

b(T )2 <
g(S1)
b(S1)2 .

Since S1 remains a minimizer, the slope of agent k’s utility
will be[

g(S1)

b+ b(S1 \ k)

](
1− b

b+ b(S1 \ k)

)
× u′

(
b[

g(S1)

b+ b(S1 \ k)
]

)
− 1.

At equilibrium, agent k ∈ S1 must be playing a best
response. Hence[

g(S1)

bk + b(S1 \ k)

](
1− bk

bk + b(S1 \ k)

)
× u′

(
bk[

g(S1)

bk + b(S1 \ k)
]

)
− 1 = 0.

We note that this is the same as the necessary and sufficient
conditions needed for a NE in [3] when all users have a total
capacity of g(S1). In other words, when their is a unique
minimizer S1, the NE rates of the users in S1 are the same
as what their rates would be if they were simply competing
for a single link with capacity g(S1). The efficient allocation
for these users in C(g) can be no greater than their efficient
allocation for a single link with capacity g(S1). Thus, it
follows from [3] that the allocation of these users will be
within 3/4 of their efficient allocation. Note this does not
say anything about the total allocation, because we have not
accounted for the users in S0. Finally, we note that as in [3],
it can be shown that |S1| ≥ 2, i.e. at least two users must
be in this set.

VII. IMPLICATIONS OF NE WITH NO UNIQUE MINIMIZER

Let S1 ⊂ S2 · · · ⊂ Sm be the set of minimizers and let S0

be the set of agents not in any minimizer (i.e. S0 = N \Sm).
Consider first an agent k ∈ S0 such that bk 6= 0. Then
xk = bkt

∗. Further t∗ does not depend on bk. Agent k’s
pay-off is

uk(bkt
∗)− bk.

Since k ∈ S0, i.e., k is not in any minimizer, we can wiggle
bk a little bit without changing the set of minimizers or
the value of t∗. Hence the slope of agent k’s utility will
be t∗u′k(bkt

∗) − 1. At equilibrium, the slope must be zero.
Hence at equilibrium

t∗u′k(bkt
∗)− 1 = 0, ∀k ∈ {j ∈ S0 : bj 6= 0}.

If bk = 0 the most we can say is that

t∗u′k(0)− 1 ≤ 0, ∀k ∈ {j ∈ S0 : bj = 0}.

Now consider an agent k that is in the minimal minimizer,
S1. Note that bk 6= 0. Then xk = bkt

∗ but t∗ may depend on
bk. Agent k’s pay-off is uk(bkt∗)− bk. If agent k increases
bk to b this can only decrease the value of g(T )

b(T ) for any T

that contains k. The set S1 will continue to be the minimal
minimizer and the slope is

[
g(S1)

b+ b(S1 \ k)
](1− b

b+ b(S1 \ k)
)u′(b[

g(S1)

b+ b(S1 \ k)
])− 1.

If agent k decreases her bid to b < bk, then S1 is no longer
the minimal minimizer. However, the set Sm, the maximal
minimizer, becomes the new minimal minimizer and the
slope of agent k’s payoff becomes:

[
g(Sm)

b+ b(Sm \ k)
](1− b

b+ b(Sm \ k)
)u′(b[

g(Sm)

b+ b(Sm \ k)
])−1.

Now pick an agent k ∈ Sm \ S1. Note that bk 6= 0.
Suppose first that agent k increases her bid to b > bk. Then
the smallest minimizer, Sk that contains k becomes the new
minimal minimizer. The slope of agent k’s payoff will be

[
g(Sk)

b+ b(Sk \ k)
](1− b

b+ b(Sk \ k)
)u′(b[

g(Sk)

b+ b(Sk \ k)
])−1.

If agent k decreases her bid to b < bk. Then agent k is no
longer part of any minimizer and the slope of her payoff is

t∗u′k(bt
∗)− 1.

Hence, at equilibrium we have the following conditions
on these slopes:

1) If k ∈ S0 and bk 6= 0 then

t∗u′k(0)− 1 ≤ 0.

2) If k ∈ S0 and bk = 0 then

t∗u′k(bkt
∗)− 1 = 0.

3) If k ∈ S1 and b < bk then[
g(Sm)

b+ b(Sm \ k)

](
1− b

b+ b(Sm \ k)

)
× u′

(
b[

g(Sm)

b+ b(Sm \ k)
]

)
− 1 ≥ 0.

4) If k ∈ S1 and b > bk then[
g(S1)

b+ b(S1 \ k)

](
1− b

b+ b(S1 \ k)

)
× u′

(
b[

g(S1)

b+ b(S1 \ k)
]

)
− 1 ≤ 0.

5) If k ∈ Sm \ S1, b < bk then

t∗u′k(bt
∗)− 1 ≥ 0.

6) If k ∈ Sm \ S1, b > bk and Sk is the smallest
minimizer to contain k then[

g(Sk)

b+ b(Sk \ k)

](
1− b

b+ b(Sk \ k)

)
× u′

(
b[

g(Sk)

b+ b(Sk \ k)
]

)
− 1 ≤ 0



We can restate these conditions as follows:
1) If k ∈ S0 and bk 6= 0 then u′k(bkt

∗) = 1/t∗.
2) If k ∈ S0 and bk = 0 then u′k(0) ≤ 1/t∗.
3) If k ∈ S1 from the left u′k(bkt

∗) ≥ (1 −
bk

b(Sm) )
−1(1/t∗) and from the right u′k(bkt

∗) ≤ (1 −
bk

b(S1) )
−1(1/t∗).

4) If k ∈ Sm \ S1, then from the left u′k(bkt
∗) ≥ 1/t∗

and from the right u′k(bkt
∗) ≤ (1− bk

b(Sk)
)−1(1/t∗).

Note that from this it follows that at a NE, the set of users
in S0 have marginal utilities which are all strictly less than
the marginal utilities of the users in Sm. Also note that in
this case, we trivially have that |Sm| ≥ 2.

VIII. PRICED OUT USERS

For either the case where there is a unique minimizer
or multiple minimizers, let S̃0 denote the subset of S0

corresponding to the users who bid bj = 0.11 These users will
receive no rate allocation except their free capacity. From the
preceding first order conditions, such users bids zero because
the price per unit rate 1/t∗ is too high; hence, we refer
to them as being “priced out”. To see how this can arise
consider the following example. First consider a network
with two users. For such users, there will be a unique NE
with a corresponding value t∗. We can then add additional
users whose marginal utility at zero satisfies u′k(0) ≤ 1/t∗.
If the original users do not change their bids and the new
users all bid zero, it can be seen that this will still be a NE.
We can add as many of these users as we want, and so we
can drive the total efficiency loss to be arbitrarily close to
100%. We note that the resulting rate allocation is not on the
dominate face of C(g), i.e. there is some available capacity
which is not being used. This is similar to the problem which
lead us to allocate each users their free capacity. The issue
here is that the unused capacity is due to a group of users
bidding zero, instead of just a single user. One could consider
allocating this capacity among the users in the group for free,
but then this can result in a NE no longer existing.

IX. 3 PLAYER CASE

In this section, we consider the efficiency loss in a network
with N = 3 users. To simplify our arguments, we assume
that each agent k has a linear utility uk(xk) = akxk, with
a1 ≥ a2 ≥ a3.12 Note we are still assuming that each agent
is given their free capacity, so that g(N) = g(N \ k) for all
k.

For this example, the efficient outcome is given by simply
maximizing a linear objective over the polymatroid. Hence
this is given by

a1(g(1)) + a2[g(1, 2)− g(1)] + a3[g(1, 2, 3)− g(1, 2)]
= a1g(1) + a2[g(N)− g(1)],

11Note that if users have linear utilities uk(xk) = akxk then there exists
a NE in which all users in S0 bid zero; this follows since any user in S0

bidding bj > 0 will be indifferent to changing her bid.
12As in [3], it can be shown that linear utilities are sufficient to

characterize the worst case efficiency loss.

where we have used that g(N) = g(1, 2). Note that to be
precise this is the excess utility over that which each agent
receives from his free capacity. Including this additional term
will not effect the following argument.

Next we compare the efficient outcome to an equilibrium
outcome. First, consider the case where at an equilibrium
S0 is empty. In this case, there are two possibilities for an
equilibrium: (a) N is the only minimizer; and (b) there are
two minimizers, S1 = {k},, and S2 = N for some k ∈ N .
We can rule out the possibility of {k, j} being a minimizer
since g({k, j}) = g(N); hence, the only way this could
occur is if the third user bids zero, in which case it will be
in S0. In case (a) there is a single minimizer, and therefore
as we have noted in Section VI, the efficiency loss will be
at most 1/4 of the efficient outcome.

We next turn to case (b). In case (b), it can shown
that k = 1 is the only possibility. This follows from the
first order conditions In Section VII. Namely, to establish
a contradiction suppose the minimizers are S1 = N and
S2 = {j} for some j 6= 1. Then for agent 1, the first order
conditions require

t∗a1 ≥ 1,

and for agent 2,

t∗
(
1− b2

b(N)

)
a2 ≥ 1.

Combining these we have(
1− b2

b(N)

)
≥ a1
a2
.

Since a1 ≥ a2, the right-hand side is clearly no less
than 1, while the left-hand side is less than 1, which is a
contradiction.

Next, we consider the efficiency of an equilibrium in case
(b). The equilibrium outcome is given by

a1t
∗b1 + a2t

∗b2 + a3t
∗b3.

Using the definition of t∗, we have a1t
∗b1 = a1g(1). so

the first user receives the same allocation as in the efficient
outcome. The following lemma shows that the remaining two
users’ utility is within 3/4 of the efficient outcome.

Lemma 8: a2t∗b2 + a3t
∗b3 ≥ (3/4)a2[g(N)− g(1)].

Proof: First note that from the first order conditions for
agents 2 and 3 we have:

(1− b2
b(N)

)a2 ≤ 1/t∗,

and
1/t∗ ≤ a3.

Combining these it follows that

(1− b2
b(N)

) ≤ a3
a2
.

Next note that, b2
b(N) =

x2

g(N) , so that

t∗b2 = x2 ≥ (1− a3
a2

)g(N).



Also, for the assumed set of minimizers, it must be that
t∗b2 + t∗b3 = g(N) − g(1). Using these and that a3 ≤ a2,
we have

a2t
∗b2 + a3t

∗b3

≥ a2(1−
a3
a2

)g(N) + a3(g(N)− g(1)− (1− a3
a2

)g(N))

= (a2 − a3)g(N) +
a23
a2
g(N)− a3g(1).

Hence, to prove the desired result it is sufficient to show that

(a2−a3)g(N)+
a23
a2
g(N)−a3g(1) ≥ (3/4)[a2(g(N)−g(1))

(7)

⇔ (
a2
4

+
a23
a2
− a3)g(N) ≥ (a3 −

3

4
a2)g(1). (8)

We consider two cases:
Case 1: a3 ≥ 3/4a2. In this case, since f(N) > f(1), a

sufficient condition for (8) to be true is that

a2
4

+
a23
a2
− a3 ≥ a3 −

3

4
a2.

Rearranging terms this is equivalent to (a2−a3)2 ≥ 0, which
is always true.

Case 2: a3 < 3/4a2. In this case the right-hand side of (8)
is negative. Hence a sufficient condition for the inequality to
hold it that the left-hand side is non-negative, i.e.

a2
4

+
a23
a2
− a3 ≥ 0,

which is equivalent to ( 12a2 − a3)
2 ≥ 0.

Combining the preceding observations, we have that for
N = 3 users, when S0 is non-empty the efficiency loss is
at most 1/4 the efficient outcome. Next consider the case
where S0 is non-empty. Since Sm must contain at least two
user it follows that the only possibility is S0 = {3} and
Sm = {1, 2}. In this case, it must be that x3 = 0 which is the
same as in the efficient outcome. Using a similar argument as
in the case when S0 is empty, it can be shown the efficiency
loss of the remaining two agents is at most 1/4. Therefore,
we have that in a three agent network the efficiency loss is
at most 1/4 of the efficient outcome.

X. N > 3 PLAYER CASE

Next consider a network with N > 3 users. In this case,
the efficiency loss can approach 100%; however, we can
bound the loss for those users in Sm. Namely we have:

Proposition 2: For a network with N users, in any equi-
librium, the total efficiency loss of the users in Sm is no more
than 1/4 the efficient outcome. For N > 3, the efficiency loss
of the uses in S0 can approach 100%.

The proof of this uses a similar argument as in the N = 3
user case above. We note the that key difference between
N = 3 and N > 3 is that for N > 3 there may be more
than one user in S0. While for N = 3 there is at most one
user. When there is just one user, this does not effect the
overall efficiency, since that user will receive zero rate in
the efficient outcome.

XI. SUMMARY

To conclude, we summarize the main results of this paper
compared to the single link model in [3].

1) In [3] there always exists a unique NE. In the polyma-
troid case, under Mechanism I a NE may not exist for
N > 2 users. Under mechanism II a NE always exists,
but it may not be unique.

2) In [3] the unique equilibrium is at least 3/4 of the effi-
cient outcome. In the polymatroid case, under mecha-
nism II, among all the bidders in Sm, their allocation
will be within 3/4 of the efficient outcome. However,
the overall efficiency loss can approach 100%.
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