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Abstract— In this paper we consider the application of the
Ising model from statistical mechanics to model interactions
among interfering stations in a wireless network with a line
topology. Each station employs a medium access control (MAC)
protocol such that it decides to transmit or not depending on
the states of its nearest neighbors and itself in the previous time
slot. We use the Ising model to demonstrate how the interactions
between neighboring stations affect the one-hop throughput of
the network and to optimize the underlying MAC protocol.
Both the cases of single-packet and multipacket reception
are considered. For single-packet reception, the throughput
achieved by an optimized protocol is shown to be15.8% better
than that achieved by slotted ALOHA. In the multipacket
reception case, the MAC protocol achieves the same throughput
as TDMA, which doubles the throughput of slotted ALOHA.

I. I NTRODUCTION

The performance of wireless networks is limited by mutual
interference between stations. Because the power of a signal
attenuates with distance, interference is largely a short-
range effect among ‘neighboring’ stations. Most existing
medium access control (MAC) protocols such as ALOHA
and Carrier-Sense Multiple Access (CSMA) exploit this
phenomenon and attempt to distributedly schedule stations
so that at most one station in a local neighborhood transmits
at a given time. It has been recognized that the resulting
interactions among stations in a wireless network is similar to
that found in theIsing model [1], [2] in statistical mechanics
(see for example [3]). In this paper, we will explore this
connection in depth for a wireless line network.

The Ising model was originally used to model a spin
system in stationarity, where a spin system consists of a
number of spins on a regular lattice. The spins can be in ‘up’
or ‘down’ states, and their states are affected by an external
magnetic field acting on them and the interactions between
neighboring spins. For our purposes, the spins in the system
will model the stations in a wireless network, where the ‘up’
and ‘down’ states represent whether a station is transmitting
or idle, respectively. We will begin by considering a time-
slotted MAC protocol in which each station observes the
states of its neighboring stations in the previous time slotand
then probabilistically decides its state in the current time slot
based only on the observed states of its neighbors and its own
state in the previous time slot. For example, the well-known
slotted ALOHA protocol can be viewed as a special case of
this model in which a station simply transmits in each slot
with a fixed probability, regardless of its observation.

For the resulting model, we consider the following two
important questions:

• Validity of the Ising model: The network evolving ac-
cording to this type of protocol can be described by a
Markov field in space and a (first-order) Markov chain
in time. Does this Markov chain admit a stationary
distribution? If the stationary distribution exists, will
it be a Markov field? That is, does the stationary
distribution only consist of short-range interactions as
in an Ising model?

• Performance Issue: How do we define the interactions
between neighboring stations to optimize the perfor-
mance of the network,e.g., the transmission probability
or the throughput?

We consider a wireless line network in which each station
broadcasts packets to its two nearest neighbors. The channel
can be either a collision channel or a multipacket reception
channel [4]. Our contributions include the following:

1) We use Markov Chain of Markov Fields (MCMF)
[5], [6] to show that under mild conditions (reversible
and synchronous, defined in Section IV) this type of
MAC protocol leads to a stationary state such that only
short-range interactions exist in the stationary state,
which implies the validity of using the Ising model
to represent a wireless network.

2) We analytically derive the throughput and transmission
probability of a wireless network using techniques
in statistical mechanics, explicitly demonstrating the
effect of interactions between neighboring stations on
these performance measures.

3) We show that if a station chooses its current state only
based on the states of its neighbors in the previous
time slot, then the performance is the same as slot-
ted ALOHA, regardless of whether the channel is a
collision channel or a multipacket reception channel.

4) If a station chooses its current state based on the states
of its neighborsand its own state in the previous
time slot, we show that the performance is strictly
better than slotted ALOHA: for the collision chan-
nel, there is an increase of 15.8% in the optimal
throughput and a reduction of 11.83% in transmission
probability to achieve the optimal throughput; while
for the multipacket reception channel, the throughput
can be doubled while keeping the same transmission



probability, which is the same performance as TDMA.

The rest of the paper is organized as follows. Section II
reviews related works. We describe the MAC protocol in
detail and discuss the condition for the protocol to lead to
a stationary state having short-range interactions in Sections
III, IV and V. In Section VI, we derive the transmission
probability and throughput of the wireless network using
techniques in statistical mechanics, and interpret them in
Section VII. Section VIII concludes and discusses future
works.

II. RELATED WORKS

A variety of tools from statistical mechanics have been
used to study the interactions between stations in wireless
networks. In [3] a similar Markov chain model was used
to model the interactions among stations employing an
idealized CSMA protocol without collision. However, in [3]
the spins represented the links between stations, while here
we use them to represent the stations themselves and consider
a more general class of MAC protocols. In [7] the totally
asymmetric simple exclusion process (TASEP) model from
statistical mechanics was used to study the throughput and
end-to-end delay of a single unidirectional data flow in a
multihop wireless line network.

Mean field theory is another technique in statistical me-
chanics that has been applied to wireless networks. For
example, [8] used mean field arguments to prove that the
decoupling assumption used in [9] for evaluating the perfor-
mance of IEEE 802.11 Distributed Coordination Function
is asymptotically exact as the number of stations in the
network grows. However, mean field arguments are not
invariably correct [2]. In this work, we use the Ising model
to address theexact interactions between neighbors rather
than approximating the interactions using mean field theory.

Another common technique from statistical mechanics is
identifying phase transitions. For example, this was used in
[10] to study the connectivity properties of large random
networks and in [11] to consider possible activations of sets
of interfering links in wireless networks on regular lattices.

III. M ARKOV CHAIN OF MARKOV FIELDS (MCMF)
MODEL FORMAC PROTOCOLS

We now describe the network model we will study. We
consider a wireless line network withN stations, denoted
by S = {1, 2, . . . , N}. Each station broadcasts packets to its
two nearest neighbors. We assume every station is saturated,
so that queueing is not considered.

The state of each station assumes values inE =
{+1,−1}, where +1 and −1 represent the station trans-
mitting or staying idle, respectively. LetΩ = ES denote
the configuration space,i.e., the state space of the entire
network. LetXi(t) ∈ E be the state of stationi at time t,
and X(t) = {Xi(t)}i∈S ∈ Ω be the configuration, or the
state of the network, at timet. We are interested in MAC
protocols for whichX = {X(t)}t∈N is a Markov Chain of
Markov Field (MCMF) [6], i.e., a process for which

• X(1),X(2), . . . is a Markov chain onΩ, and

• for every t, X1(t), . . . , XN (t) is a Markov field onΩ
conditioned onX(t − 1).

Under such a MAC protocol, each station can choose its
current state based on the previous states of all stations inthe
network. For example, letx = {xi}i∈S andy = {yi}i∈S be
the previous and current configurations respectively. Station
i observes the previous states of stationsi − 1, i, i + 1 and
chooses its current state according to

pi(yi|x) ∝ exp(hiyi+Ji,i−1xi−1yi+Ji,ixiyi+Ji,i+1xi+1yi).
(1)

The termhiyi in (1) is theinstantaneous interaction potential
and is in general denoted byφi(y). It controls how aggres-
sive stationi attempts transmissions,independent of every-
thing else. In this example, a positivehi favors transmission
and a negativehi suppresses transmission. The terms having
the form of Ji,jxjyi in (1) are theconditional interaction
potentials and are in general denoted byφi,j(y,x). They
control how stationi chooses its current state based on the
observed state of stationj in the previous time slot. In this
example, stationi tends to choose the same state as station
j in the previous time slot ifJi,j is positive, and does the
opposite ifJi,j is negative. The potentialsφi andφi,j can be
defined arbitrarily, as long as the following two conditions
are satisfied: (i) φi(y) = φi(yi) only depends onyi, and
(ii) φi,j(y,x) = φi,j(yi, xj) only depends onyi andxj . In
general, define theconditional energy U(y|x) as

U(y|x) =
∑

i∈S

(

φi(yi) +
∑

j∈S

φi,j(yi, xj)

)

, (2)

the transition probability of the Markov chain,P (y|x) =
Pr{X(t) = y|X(t − 1) = x}, is then given by

P (y|x) =
exp U(y|x)
∑

z∈Ω

exp U(z|x)
. (3)

The transition probability in this form has the nice property
of being synchronous (defined in the following section).
Also, it is easy to control the relative strength of the
potentials. For example, if the previous state of a station is
twice as important as the previous states of its neighbors,
we can represent this by defining the potentials so that
|φi,i(yi, xi)| = 2|φi,i−1(yi, xi−1)| = 2|φi,i+1(yi, xi+1)|.

In a wireless network, it is possible that stationi cannot
observe the state of stationj in the previous time slot due to
their physical separation. To model this, for alli, let Vi be
the set of neighbors of stationi and letφi,j = 0 if j /∈ Vi.
In other words, the summation overj ∈ S in (2) should be
replaced by a summation overj ∈ Vi.

IV. M ARKOV STATIONARY BEHAVIOR OF MCMF

Next we investigate when the Markov chain defined in the
previous section has a stationary distribution with the Markov
property. In [6] it is shown that a sufficient condition for this
to occur is that the Markov chain is time-reversible and the
transition probability is synchronous. We consider these two
properties in the following.



The transition probabilityP (y|x) is said to be syn-
chronous if for all x and y there are{pi(yi|x)}i∈S such
that

P (y|x) =
∏

i∈S

pi(yi|x), pi(yi|x) > 0, and
∑

u∈E

pi(u|x) = 1.

The transition probability is synchronous if, givenx as
the state of the network in the previous time slot, each
station chooses its current state independently and at the
same time with distributions{pi(·|x)}i∈S over E. For the
model defined in Section III, the transition probability is
synchronous because

P (y|x) =
expU(y|x)
∑

z∈Ω

exp U(z|x)

=

exp
∑

i∈S

(

φi(yi) +
∑

j∈S

φi,j(yi, xj)

)

∑

z∈Ω

exp
∑

i∈S

(

φi(zi) +
∑

j∈S

φi,j(zi, xj)

)

=

∏

i∈S

exp

(

φi(yi) +
∑

j∈S

φi,j(yi, xj)

)

∏

i∈S

∑

zi∈E

exp

(

φi(zi) +
∑

j∈S

φi,j(zi, xj)

)

=
∏

i∈S

pi(yi|x),

where

pi(yi|x) =

exp

(

φi(yi) +
∑

j∈S

φi,j(yi, xj)

)

∑

zi∈E

exp

(

φi(zi) +
∑

j∈S

φi,j(zi, xj)

) (4)

is a valid probability distribution because bothφi(yi) and
φi,j(yi, xj) depend ony throughyi only. Note that (4) is
the probability that stationi chooses stateyi in the protocol
described in Section III.

From [5], [6], the Markov chain is time-reversible if
φi,j(yi, xj) = φj,i(xj , yi) for all i, j, yi, xj . This means that
the effect of stationj in the previous time slot on stationi
in the current time slot is the same as the effect of stationi
in the previous time slot on stationj in the current time slot.
Therefore, by [6] the MAC protocol described in Section
III admits a stationary distribution with Markov property if
φi,j(yi, xj) = φj,i(xj , yi) for all i, j, yi, xj .

As noted in [12], the stationary distribution is in general
difficult to compute, and introducing reversibility is mainly
for mathematical convenience. Hence, we will assume the
reversibility condition holds in the rest of the paper.

V. M ARKOV PROPERTY OFMCMF IN RELATION TO

INTERACTION POTENTIALS

In this section we discuss how the Markov property of
the stationary distribution of a MCMFX is related to its

interaction potentialsφi andφi,j .
Let −1 ∈ Ω be the configuration in which all stations

are in state−1. We use this as areference state. Let Xi

be the random variable representing the state of stationi in
stationarity. Since the Markov chain is time-reversible, the
stationary distributionπ(y) = Pr{Xi = yi, ∀i ∈ S} for any
configurationy ∈ Ω satisfies the detailed balance condition:

π(y)P (−1|y) = π(−1)P (y|−1).

Therefore, from (3),

π(y) = π(−1)
P (y|−1)

P (−1|y)

= π(−1)
exp U(y|−1)
∑

z∈Ω

exp U(z|−1)

∑

z∈Ω

expU(z|y)

exp U(−1|y)

∝ exp
(

U(y|−1) − U(−1|y)
)

∑

z∈Ω

exp U(z|y). (5)

Sinceφi,j(yi, xj) = φj,i(xj , yi) for all i, j, yi, xj , by switch-
ing the order of summation and then interchangingi with j,
we get

∑

i∈S

∑

j∈S

φi,j(yi,−1) −
∑

i∈S

∑

j∈S

φi,j(−1, yj)

=
∑

i∈S

∑

j∈S

φj,i(−1, yi) −
∑

i∈S

∑

j∈S

φi,j(−1, yj)

=
∑

j∈S

∑

i∈S

φj,i(−1, yi) −
∑

i∈S

∑

j∈S

φi,j(−1, yj)

=
∑

i∈S

∑

j∈S

φi,j(−1, yj) −
∑

i∈S

∑

j∈S

φi,j(−1, yj)

= 0,

we have from (2)

exp
(

U(y|−1) − U(−1|y)
)

= exp

(

∑

i∈S

φi(yi) −
∑

i∈S

φi(−1)

+
∑

i∈S

∑

j∈S

φi,j(yi,−1) −
∑

i∈S

∑

j∈S

φi,j(−1, yj)

)

∝ exp
∑

i∈S

φi(yi). (6)

Also, from (2),
∑

z∈Ω

exp U(z|y)

=
∑

z∈Ω

exp
∑

i∈S

(

φi(zi) +
∑

j∈S

φi,j(zi, yj)

)

=
∏

i∈S

∑

zi∈E

exp

(

φi(zi) +
∑

j∈S

φi,j(zi, yj)

)

= exp
∑

i∈S

ln
∑

zi∈E

exp

(

φi(zi) +
∑

j∈S

φi,j(zi, yj)

)

. (7)



Combining (5)-(7), we obtain

π(y) ∝ exp
∑

i∈S

Φi(y), (8)

where

Φi(y) = φi(yi) + ln
∑

zi∈E

exp

(

φi(zi) +
∑

j∈S

φi,j(zi, yj)

)

.

(9)
For short-range interactions, (9) can be reduced to

Φi(y) = φi(yi) + ln
∑

zi∈E

exp

(

φi(zi) +
∑

j∈Vi

φi,j(zi, yj)

)

.

(10)
Define

Wi = {j ∈ S \ {i} : ∃k ∈ S such thati, j ∈ Vk,

or j ∈ Vi if φi 6= 0,

or i ∈ Vj if φj 6= 0},

meaning thatj ∈ Wi if for some k ∈ S, Φk(y) depends
on bothyi and yj . If there is ak such that bothi and j
are neighbors ofk, then bothyi andyj appear inΦk(y). If
φi 6= 0, thenΦi(y) already depends onyi, therefore ifj ∈
Vi, both yi and yj appear inΦi(y). Then in stationarity, if
j ∈ Wi, Xj andXi will be coupled. Therefore, the stationary
distribution ofXi conditioned on{Xj}j∈S\{i} only depends
on {Xj}j∈Wi

.
The setVi \ {i} represents the stations (except stationi)

having temporal dependence with stationi, while the setWi

represents the stations having dependence with stationi in
stationarity. It is noted thatVi \ {i} and Wi are not the
same in general. The condition thatVi \ {i} ⊂ Wi does
not necessarily hold. This is illustrated by the following two
examples:

1) AssumeVi = {i − 1, i, i + 1} for all i ∈ S. Thenyi

appears inΦi−1(y), Φi(y), Φi+1(y). Therefore,Wi =
{i − 2, i − 1, i + 1, i + 2} 6= Vi \ {i} and Vi \ {i} ⊂
Wi. The stationary distribution ofXi conditioned
on {Xj}j∈S\{i} depends onXi−1, Xi+1, and also
Xi−2, Xi+2.

2) AssumeVi = {i − 1, i + 1} for all i ∈ S. In
addition, supposeφi = 0 for all i ∈ S. Then yi

only appears inΦi−1(y) and Φi+1(y). In this case,
Wi = {i − 2, i + 2} 6= Vi \ {i} and Vi \ {i} 6⊂
Wi. Therefore, in stationarity, the distribution ofXi

conditioned on{Xj}j∈S\{i} depends onXi−2, Xi+2,
but not Xi−1, Xi+1. In this case, the system effectively
decouples into two independent sub-systems in station-
arity, one consisting of all odd numbered stations and
the other consisting of all even numbered stations.

In general, the interaction range in stationarity doubles the
interaction range defined by the protocol.

VI. PERFORMANCEANALYSIS USING STATISTICAL

MECHANICS

Next we turn to analyzing the steady-state performance
of a MAC protocol defined according to (1). For ease of
exhibition we restrict ourselves to the following two cases:

1) hi = h for all i, Vi = {i−1, i, i+1} for all i, Ji,i−1 =
Ji,i+1 = J andJi,i = J ′ for all i,

2) hi = h for all i, Vi = {i− 1, i + 1} for all i, Ji,i−1 =
Ji,i+1 = J for all i.

In Case 1, the state of a station depends on the previous states
of its nearest neighbors and its own previous state, while in
Case 2, the state of a station depends on the previous states
of its nearest neighbors only. Note that Case 2 is a subset of
Case 1 withJ ′ = 0. Hence, in the following we will only
describe Case 1 unless otherwise stated.

The stationary distribution defined by these potentials is

π(y) =
1

Z
exp

∑

i∈S

Φi(y), (11)

where from (10)

Φi(y) = hyi + ln cosh[h + J(yi−1 + yi+1) + J ′yi], (12)

and
Z =

∑

y∈Ω

exp
∑

i∈S

Φi(y). (13)

Therefore, we can consider the stationary distribution as an
Ising model [1] with Hamiltonian

H(y) = −
∑

i∈S

Φi(y)

andpartition function

Z =
∑

y∈Ω

e−H(y).

To calculate any steady-state performance measure, we
have to first evaluate the partition function. To do this, we
can use thetransfer matrix approach in statistical mechanics
[1]. Define the transfer matrixV as in (15). The rows
from top to bottom and the columns from left to right
correspond to states(+1, +1), (+1,−1), (−1, +1), and
(−1,−1) respectively. The entries inV then represent the
transition from the ‘row state’(yi−1, yi) to the ‘column state’
(yi, yi+1). If we assume a periodic boundary condition,i.e.,
the ends of the network are joined such that the stations at
both ends are neighbors (the stations form a Markov field),
then

Z = traceVN = λN
1 + λN

2 + λN
3 + λN

4 ,

where λ1, λ2, λ3, λ4 are the eigenvalues ofV. The only
eigenvalue that we need in the following calculations isλ1,
where we assume it to be the eigenvalue having the maxi-
mum magnitude, which is always real, positive and unique
by the Perron-Frobenius Theorem [13]. This eigenvalueλ1

admits analytical solution as the largest (in amplitude) root
of the fourth-order characteristic polynomial of the transfer
matrix. The solution is straightforward but omitted here due
to the large length of the expression. It can be shown that in
the special case ofJ ′ = 0,

λ1 =
1

2

(

e2J cosh 2h + e−2J + 2
√

1 + e4J sinh2 h coshh
)

.

(14)



V =









eh cosh(h + 2J + J ′) eh cosh(h + J ′) 0 0
0 0 e−h cosh(h + 2J − J ′) e−h cosh(h − J ′)

eh cosh(h + J ′) eh cosh(h − 2J + J ′) 0 0
0 0 e−h cosh(h − J ′) e−h cosh(h − 2J − J ′)









(15)

We are interested in the following performance measures
of a wireless network: transmission probability and through-
put. The network istranslation invariant in both cases,
meaning that the expectations of anyXi are the same, and the
correlations among any set ofXi’s only depend on them via
the differences between their positions in the network. This
is because the corresponding potentials are invariant under
translations. The transmission probabilityp is the expected
number of transmission attempts of a station in a time slot,
i.e.,

p = E

[

1

2
(1 + Xi)

]

=
1

2
(1 + E[Xi]). (16)

We define the throughputρ as the expected number of
packets received successfully by a station from its neighbors
in a time slot. We assume each transmission can only reach
its nearest neighbors. The expression for the throughput
depends on whether the underlying channel is a collision
channel or a multipacket reception channel. For the collision
channel, if the interference range and the transmission range
are the same, then a station can receive a packet when it is
idle and only one of its neighbors is transmitting. Hence,

ρcc = E

[

1

8
(1 − Xi−1)(1 − Xi)(1 + Xi+1)

+
1

8
(1 + Xi−1)(1 − Xi)(1 − Xi+1)

]

=
1

4
(1 − E[Xi] − E[Xi−1Xi+1] + E[Xi−1XiXi+1]). (17)

For the multipacket reception channel, we assume that each
station can receive two packets at the same time, then as
long as a station is idle, the number of packets it receives is
equal to the number of neighbors transmitting, which means
there is no interference. Then,

ρmpr = E

[

1

4
(1 + Xi−1)(1 − Xi) +

1

4
(1 − Xi)(1 + Xi+1)

]

=
1

2
(1 − E[XiXi+1]). (18)

Therefore we have to calculateE[Xi], E[XiXi+1],
E[Xi−1Xi+1] andE[Xi−1XiXi+1].

To calculateE[Xi] for example, we can make the follow-
ing modifications [14]: addαyi to Φi(y) defined in (12),
define the corresponding transfer matrixVα, compute its
largest eigenvalueλα,1, then

E[Xi] =
∂ lnλα,1

∂α

∣

∣

∣

∣

α=0

.

The other expectations can be computed similarly. The main
difficulty in this approach is that the expression forλα,1 can
be complicated. Here, we introduce a method to compute
these expectations using

1) χα(λ), the characteristic polynomial ofVα,
2) χ(λ), the characteristic polynomial ofV, and
3) λ1, the largest eigenvalue ofV.

This provides a simpler way to calculate
∂ lnλα,1

∂α

∣

∣

∣

∣

α=0

, since

χα(λ) is easier to compute thanλα,1. Also, if we want to
compute the expectation of another quantity, we only have to
compute a newχα(λ) accordingly and reuse the other two.
This method is based on the following proposition.

Proposition 1: Let Vα be a square matrix parametrized
by a variableα, χα(λ) be the characteristic polynomial of
Vα andλ0,1 be the eigenvalue ofV0 with multiplicity one.
If Vα is differentiable atα = 0, then

∂ lnλα,1

∂α

∣

∣

∣

∣

α=0

= −

∂χα(λ)

∂α

∣

∣

∣

∣

λ=λ0,1,α=0

λ0,1
∂χ0(λ)

∂λ

∣

∣

∣

∣

λ=λ0,1

, (19)

whereλα,1 is the eigenvalue ofVα such that it is differen-
tiable atα = 0 and lim

α→0
λα,1 = λ0,1.

Proof: If Vα is differentiable atα = 0, thenχα(λ) =
det(Vα − λI) is differentiable with respect toα at α = 0,
and the existence ofλα,1 with the stated properties when
α is in the vicinity of 0 is guaranteed by [15]. Then (19)
follows upon differentiatingχα(λα,1) = 0 with respect toα
at α = 0.

The transfer matrixVα defined before Proposition 1 is
differentiable with respect toα at α = 0, V in (15) can
be taken asV0 in Proposition 1 andλ1 is an eigenvalue of
V with multiplicity one as mentioned above by the Perron-
Frobenius Theorem, therefore Proposition 1 applies. Also,
λα,1 in Proposition 1 is the eigenvalue ofVα with the largest
magnitude, as a consequence of the Perron-Frobenius The-
orem. Therefore, we can calculate the expectations simply
using Proposition 1. In Case 2, theλ0,1 in Proposition 1 is
given by (14).

Following this approach, we get the following for Case 2:

p =
e2J sinhh +

√

1 + e4J sinh2 h

2
√

1 + e4J sinh2 h
, (20)

ρcc =
e−hλ1 cosh(h − 2J) − sinh2 2J

2λ2
1(1 + e4J sinh2 h)

, (21)

ρmpr =
1

2(1 + e4J sinh2 h)
. (22)

Contour plots of transmission probability and throughput
againsth andJ for the collision channel and the multipacket
reception channel for Case 2 are shown in Figs. 1(a), 1(b)
and 1(c) respectively. For Case 1, the expressions are too
complicated and are omitted for clarity. Figs. 2, 3(a) and
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Fig. 1. Performance for Case 2: (a) transmission probability, (b) throughput in the collision channel, and (c) throughput in the multipacket reception
channel.
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3(b) are some plots of the throughput in the collision channel
and the multipacket reception channel showing the maximum
throughput. Figs. 3(c) and 3(d) show the transmission prob-
ability corresponding to the throughput shown in Fig. 3(b).

VII. A NALYSIS OF THE RESULTS

We divide this section into four parts. We discuss the
collision channel first and then the multipacket reception
channel. For both channels, we first discuss the more general
Case 1 in Section VI and then Case 2.

A. Collision Channel for Case 1

We first discuss the effects ofh, J and J ′ on the trans-
mission probability. First supposeJ > 0. If J > 0, when
a station transmitted in the previous time slot, its neighbors
will have a higher probability to transmit in the current time
slot; and if a station was idle in the previous time slot, its
neighbors will have a higher probability to be idle in the
current time slot. Therefore, whenh > 0, every station
has a high tendency to transmit,J > 0 will result in all
stations attempting transmissions with high probability.On
the contrary, whenh < 0, every station has a high tendency
to be idle,J > 0 will keep the stations in remaining silence
with high probability. Hence, the transmission probability
is close to 1 whenJ > 0, h > 0 and close to 0 when
J > 0, h < 0. The transmission probability changes abruptly
as h moves across 0 while keepingJ > 0 fixed, and the
change is more rapid for largerJ . If J ′ > 0, each station
tends to remain in the same state, which reinforces the effect
of h on the transmission probability; while ifJ ′ < 0, each

station tends to switch between different states, counteracting
the effect ofh on the transmission probability. Therefore, the
effect ofJ ′ on the transmission probability is to control how
abrupt the change of the transmission probability is whenh
moves across 0.

Suppose nowJ < 0. When h > 0, each station has a
high tendency to transmit, but asJ < 0, a station will tend
to remain idle as its neighbors transmitted in the previous
time slot. These two factors counteract each other, resulting
in each station attempting transmissions with approximately
half probability. Therefore, no matter whetherJ ′ is positive
or negative, each station remains transmitting with half
probability on average. Similar statements can be made for
the case ofJ < 0, h < 0.

Next we discuss how the throughput varies withh, J
and J ′. When J > 0, either all stations are aggressive
in transmissions (h > 0) or all stations tend to remain
idle (h < 0). In both cases, the throughput is very low
due to excessive collision or underutilization of the wireless
channel. Also, in order to have a high throughput,J and J ′

should have opposite signs so that the previous state of a
station has opposite effects on the current state of itself and
its neighbors. Therefore whenJ > 0, the throughput can be
high only if h / 0 andJ ′ < 0.

When J < 0, if a station was transmitting, its neighbors
will tend to be idle in the current time slot; and if a station
was idle, its neighbors will tend to attempt transmissions in
the current time slot. Therefore,the two nearest neighbors
of a station always tend to choose the same action. This
means that either there is collision or nothing is transmitted
in a slot with high probability. Hence, the throughput is also
very low. However, this argument only applies whenJ ′ < 0.
WhenJ ′ > 0, the optimal throughput can be achieved.

The optimal throughput does not correspond to a single
(h, J, J ′) tuple: the throughput is at maximum whenJ ′ is
sufficiently large, bothh and J are sufficiently negative
with h ' 2J . The optimal throughput is0.3431 and the
corresponding transmission probability is0.2939. This is
illustrated in Fig. 2. The optimal values ofh, J andJ ′ can
be explained by (12). Sinceh < 0, the first term of (12)
suppresses transmission to reduce excessive collisions. For
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Fig. 3. Performance for Case 1 in the multipacket reception channel: (a) throughput ath = 0, (a) throughput at|h| = 1, (c) transmission probability at
h = 1, and (d) transmission probability ath = −1.

the second term, we divide into three cases:

• yi−1 = −yi+1: There is already one neighbor transmit-
ting, it is better for a station to remain idle, otherwise it
cannot receive from its neighbor. In this case,J(yi−1 +
yi+1) = 0 andh + J(yi−1 + yi+1) + J ′yi has a larger
magnitude whenyi = −1, which helps in suppressing
transmission.

• yi−1 = yi+1 = +1: Both neighbors are transmitting,
therefore it is better for a station to remain idle, since
even if it attempts a transmission, both neighbors cannot
receive. In this case,h + J(yi−1 + yi+1) < 0 andh +
J(yi−1 + yi+1) + J ′yi has a larger magnitude when
yi = −1, which also helps in suppressing transmission.

• yi−1 = yi+1 = −1: In this caseh+J(yi−1 +yi+1) ' 0
and thereforeh + J(yi−1 + yi+1) + J ′yi has a larger
magnitude whenyi = +1, which makes transmissions
a bit more likely to occur than the other cases. As
both neighbors are idle, it is possible that they can both
receive the packet successfully.

In the collision channel, if we use TDMA, the optimal

throughput is
2

3
. To achieve that throughput, one in every

three stations must transmit,i.e., a pattern of repeating
+1,−1,−1 should be observed in the network. This shows
that the nearest neighbor interactions alone are not effective
in maintaining the repeating+1,−1,−1 pattern in the net-
work.

We can also illustrate why the interaction range doubles in
stationarity with this example. We define the throughput to
be the expected number of successful receptions at a station.
For stationi to receive a packet successfully, it must be idle
and only one of the stationsi − 1 and i + 1 is transmitting.
Since whether stationi − 1 transmits or not depends on the
states of both stationsi and i− 2, and whether stationi + 1
transmits or not depends on the states of stationsi andi+2,
whether stationi receives a packet successfully will depend
on stationsi − 2, i − 1, i + 1, i + 2.

B. Collision Channel for Case 2

If we set J ′ = 0, the optimal throughput isρcc =
8

27
,

which occurs atJ = 0, h = −
1

2
ln 2. At the optimalh and

J , the correspondingp is

eh

eh + e−h
=

1

3
.

This is also the optimal throughput for slotted ALOHA in the
collision channel: Supposep is the transmission probability
of a station, the throughput is then2p(1− p)2. The optimal
throughput can be found by optimizing over allp, and the

optimal throughput is
8

27
with the correspondingp as

1

3
.

The probability that a transmission results in a successful

reception is therefore
8/27

2 · 1/3
=

4

9
.

Comparing with the results for Case 1 in Section VII-A,
we can see that with a nonzeroJ ′, there is a15.8% improve-
ment in the optimal throughput and a11.83% reduction in
the corresponding transmission probability. The probability
that a transmission results in a successful reception with a

nonzeroJ ′ is
0.3431

2 · 0.2939
= 0.5837, which shows a31.33%

improvement over the results forJ ′ = 0.

C. Multipacket Reception Channel for Case 1

In the multipacket reception channel, there is no collision,
hence the dependence of throughput onh, J andJ ′ exhibits
different behaviors.

The throughput can be arbitrarily close to1, for example,
by choosingh = 0 with J and J ′ having opposite signs
and with sufficiently large magnitudes. This is illustratedin
Fig. 3(a). SupposeJ ′ > 0. Then a station tends to stay in
the same state. Therefore, withJ < 0, its neighbors will
tend to choose the opposite state and stay in that state. On
the contrary, supposeJ ′ < 0. A station tends to switch
between both states. WithJ > 0, its neighbors in the current
time slot will tend to choose the same state as the station
did in the previous time slot, which is the opposite state
chosen by the station in the current time slot. In both cases,
the configurations of alternating+1 and −1 are the most
probable ones. The difference between these two cases is that
in the first one, a station captures the channel and transmits
continuously, while in the second one, stations share the
channel by taking turn in transmitting.

From Fig. 3(a), we observe that whenJ ′ deviates slightly
from 0, the throughput can change abruptly to either1 or
0 for sufficiently largeJ . This means asJ ′ is not zero,
the dependence of the previous and current states of the



same station across time helps in aligning stations so that
all neighboring stations are either in opposite states or inthe
same state.

When h is not zero, similar relationships between the
throughput,J andJ ′ are also observed, except that the abrupt
change in throughput occurs atJ ′ = 0 for negativeJ and
J ′ = −|h| for positiveJ , and the change is more rapid for
larger |h|. An example is shown in Fig. 3(b) for|h| = 1.

For any(h, J, J ′) tuple such that the throughput is around
one, the corresponding transmission probability is always
around a half. Therefore the probability that a transmission
results in a successful reception is around one, which can
only happen when neighboring stations are in opposite states.

In the multipacket reception channel, if we use TDMA,
the optimal throughput is1. In this case, one in every
two stations transmits,i.e., a pattern of alternating+1 and
−1 should be observed. Indeed, this pattern appears if we
chooseh, J, J ′ appropriately. This shows that the nearest
neighbor interactions can be used to maintain the alternating
+1 and −1 pattern in the network, which implies this is
a distributed way to implement TDMA in the multipacket
reception channel. Together with the results in the collision
channel, we can observe the dependence of the length of
the activity pattern and the interaction range of the MAC
protocol.

D. Multipacket Reception Channel for Case 2

Consider the case whereJ ′ = 0. SupposeJ > 0.
When h < 0, the throughput is low due to underutilization
of the wireless channel. Whenh > 0, the throughput
is also low simply because all stations are aggressive in
transmissions and therefore with low probability the stations
are in idle state for receiving packets. On the contrary,
supposeJ < 0. The throughput can be arbitrarily close

to
1

2
by choosing a sufficiently negativeJ . With suchJ ,

each station transmits with approximately half probability.
If a station is idle in the previous time slot, its neighbors
tend to transmit in the current time slot. Since the state of
a station is independent of the state of itself in the previous
time slot, in the current time slot it may be receiving or
transmitting with half probability. Then the throughput will
be about2 · Pr{a station is idle in the previous time slot} ·

Pr{a station is idle in the current time slot} = 2·
1

2
·
1

2
=

1

2
.

The optimal throughput in the multipacket reception chan-

nel is ρmpr =
1

2
, which occurs ath = 0 and J can

be any value. The correspondingp is
1

2
. This is also the

optimal throughput for slotted ALOHA in the multipacket
reception channel: Supposep is the transmission probability
of a station, the throughput is then2p(1 − p). The optimal

throughput in this case is
1

2
with the correspondingp as

1

2
.

Together with the results in Section VII-B, we can see that
to optimize the throughput, a nonzero J ′ should be used.

VIII. C ONCLUSION

In this paper, we studied a MAC protocol in which each
station chooses its current state based on the states of its
neighbors and itself in the previous time slot, and proposed
using the Ising model in statistical mechanics to obtain
the transmission probability and throughput of wireless net-
works in the collision channel and the multipacket reception
channel. Our results showed that, if each station decides to
transmit based on the observed states of its neighbors only,
the best possible performance is the same as slotted ALOHA.
However, if each station makes its decision based on the
states of its neighbors and itself in the previous time slot,then
in the collision channel the throughput can be increased while
the corresponding transmission probability can be reduced;
and for the multipacket reception channel, the throughput can
be doubled while keeping the same transmission probability,
which is the same performance as TDMA.

The results obtained here assumed the protocol is executed
for a long time such that the network is already in station-
arity. One possibility for future works is to determine the
convergence time for the protocol. We assumed symmetry
in the mutual interactions between stations to get the results.
Another direction would be to consider the case that there is
no symmetry in the interactions.
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