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Abstract— In this paper we consider the application of the
Ising model from statistical mechanics to model interactions
among interfering stations in a wireless network with a line

topology. Each station employs a medium access control (MAC

protocol such that it decides to transmit or not depending on
the states of its nearest neighbors and itself in the previaitime
slot. We use the Ising model to demonstrate how the interaains
between neighboring stations affect the one-hop throughpuof
the network and to optimize the underlying MAC protocol.

Both the cases of single-packet and multipacket reception

are considered. For single-packet reception, the throughyt
achieved by an optimized protocol is shown to bé5.8% better
than that achieved by slotted ALOHA. In the multipacket
reception case, the MAC protocol achieves the same throughp
as TDMA, which doubles the throughput of slotted ALOHA.

I. INTRODUCTION

Martin Haenggi
Dept. of EE, Univ. of Notre Dame
Notre Dame, IN 46556, USA

For the resulting model, we consider the following two
important questions:

« \alidity of the Ising model: The network evolving ac-

cording to this type of protocol can be described by a
Markov field in space and a (first-order) Markov chain
in time. Does this Markov chain admit a stationary
distribution? If the stationary distribution exists, will
it be a Markov field? That is, does the stationary
distribution only consist of short-range interactions as
in an Ising model?

o Performance Issue: How do we define the interactions

between neighboring stations to optimize the perfor-
mance of the networle.g., the transmission probability
or the throughput?

The performance of wireless networks is limited by mutual We consider a wireless line network in which each station
interference between stations. Because the power of alsigh02dcasts packets to its two nearest neighbors. The channe
attenuates with distance, interference is largely a sho/@n be either a collision channel or a multipacket reception
range effect among ‘neighboring’ stations. Most existin&han”el [4]. Our contributions include the following:
medium access control (MAC) protocols such as ALOHA 1) We use Markov Chain of Markov Fields (MCMF)

and Carrier-Sense Multiple Access (CSMA) exploit this
phenomenon and attempt to distributedly schedule stations
so that at most one station in a local neighborhood transmits
at a given time. It has been recognized that the resulting
interactions among stations in a wireless network is sindla

that found in thdsing model [1], [2] in statistical mechanics

(see for example [3]). In this paper, we will explore this 2)

connection in depth for a wireless line network.

The Ising model was originally used to model a spin
system in stationarity, where a spin system consists of a
number of spins on a regular lattice. The spins can be in ‘up’
or ‘down’ states, and their states are affected by an externa 3)
magnetic field acting on them and the interactions between
neighboring spins. For our purposes, the spins in the system
will model the stations in a wireless network, where the ‘up’
and ‘down’ states represent whether a station is trangmitti
or idle, respectively. We will begin by considering a time-
slotted MAC protocol in which each station observes the

states of its neighboring stations in the previous time ahot
then probabilistically decides its state in the currenttisiot

based only on the observed states of its neighbors and its own
state in the previous time slot. For example, the well-known
slotted ALOHA protocol can be viewed as a special case of
this model in which a station simply transmits in each slot

with a fixed probability, regardless of its observation.

[5], [6] to show that under mild conditions (reversible
and synchronous, defined in Section 1V) this type of
MAC protocol leads to a stationary state such that only
short-range interactions exist in the stationary state,
which implies the validity of using the Ising model
to represent a wireless network.

We analytically derive the throughput and transmission
probability of a wireless network using techniques
in statistical mechanics, explicitly demonstrating the
effect of interactions between neighboring stations on
these performance measures.

We show that if a station chooses its current state only
based on the states of its neighbors in the previous
time slot, then the performance is the same as slot-
ted ALOHA, regardless of whether the channel is a
collision channel or a multipacket reception channel.
If a station chooses its current state based on the states
of its neighborsand its own state in the previous
time slot, we show that the performance is strictly
better than slotted ALOHA: for the collision chan-
nel, there is an increase of 15.8% in the optimal
throughput and a reduction of 11.83% in transmission
probability to achieve the optimal throughput; while
for the multipacket reception channel, the throughput
can be doubled while keeping the same transmission



probability, which is the same performance as TDMA. « for everyt, X;(t),...,Xn(t) is a Markov field onQ

The rest of the paper is organized as follows. Section Il conditioned onX (¢ — 1).
reviews related works. We describe the MAC protocol in Under such a MAC protocol, each station can choose its
detail and discuss the condition for the protocol to lead tourrent state based on the previous states of all statiaih&in
a stationary state having short-range interactions ini@ext network. For example, let = {x;};cs andy = {y; }ics be
lll, IV and V. In Section VI, we derive the transmissionthe previous and current configurations respectively.i@tat
probability and throughput of the wireless network using observes the previous states of stations1,:,7 + 1 and
techniques in statistical mechanics, and interpret them thooses its current state according to

Section VII. Section VIII concludes and discusses future
works. Di(yi|x) o< exp(hiyitJii—1%i—1Yi+Ji iCiYi+Ji it1Tit1Yi)-

(1)
Il. RELATED WORKS The termh;y; in (1) is theinstantaneousinteraction potential
A variety of tools from statistical mechanics have bee@nd is in general denoted fay (y). It controls how aggres-
used to study the interactions between stations in wireleSY€ Station: attempts transmissionsdependent of every-
networks. In [3] a similar Markov chain model was usedhind élse. In this example, a positivé; favors transmission
to model the interactions among stations employing afnd @ negativé; suppresses transmission. The terms having
idealized CSMA protocol without collision. However, in [3] the form of J; jz;y; in (1) are theconditional interaction
the spins represented the links between stations, while hefotentials and are in general denoted by ;(y,x). They
we use them to represent the stations themselves and consfefrol how statiory chooses its current state based on the
a more general class of MAC protocols. In [7] the tota"yobserved stat_e of statighin the previous time slot. In thls_
asymmetric simple exclusion process (TASEP) model frof@X@mple, station tends to choose the same state as station
statistical mechanics was used to study the throughput a#dn the previous time slot ifJ; ; is positive, and does the
end-to-end delay of a single unidirectional data flow in £PPOSsite if.J; ; is negative. The potentials, and¢; ; can be
multinop wireless line network. defmed_ a_rbltrgrlly, as long as the following two conditions
Mean field theory is another technique in statistical me2re satisfied:if ¢i(y) = ¢i(y:) only depends ory;, and
chanics that has been applied to wireless networks. FOP 9i.j(¥:x) = ¢i;(yi, z;) only depends o, andz;. In
example, [8] used mean field arguments to prove that tfi$neral, define theonditional energy U(y|x) as

decoupling assumption used in [9] for evaluating the perfor
mance of IEEE 802.11 Distributed Coordination Function Ulyp) =D (i) +>_diswizy) |, ()
is asymptotically exact as the number of stations in the ics jes

_netwprk grows. However,_ mean field arguments are NQfe transition probability of the Markov chaitP(y|x) =
invariably correct [2]. In this work, we use the Ising modelp,.(x (+) = y|X(t — 1) = x}, is then given by

to address thexact interactions between neighbors rather

than approximating the interactions using mean field theory P(ylx) = M_ ©)
Another common technique from statistical mechanics is Z exp U(z|x)
identifying phase transitions. For example, this was used i z2€Q

[10] to study the connectivity properties of large randonThe transition probability in this form has the nice propert

networks and in [11] to consider possible activations o sebf heing synchronous (defined in the following section).

of interfering links in wireless networks on regular la#ic  Also, it is easy to control the relative strength of the

I1l. M ARKOV CHAIN OF MARKOV FIELDS (MCMF) po_tentlals_. For example, if the previous state qf a staton i
twice as important as the previous states of its neighbors,

MODEL FORMAC PROTOCOLS : . .
We now describe the network model we will stud Wewe can represent this by defining the potentials so that
Yo W8 05 i (yi, )| = 20,51 (yi, 1) = 2005,041 (v, 2ir1).

consider a wireless line network with’ stations, denoted |5 \vireless network, it is possible that statibizannot

by §={1,2,.. o N}. Each station broadcasts_pac_kets 10 Y hserve the state of statignin the previous time slot due to
two nearest nglgh_bors. We assume every station is saturatggh;, physical separation. To model this, for alliet V; be
so that queueing is not considered. the set of neighbors of statianand letg; ; = 0 if j ¢ V;.

The stateh of each jtauon assumesh valuesEin = | oiher words, the summation ovgre S in (2) should be
{+1,~1}, where +1 and —1 represent the station trans-re;1acad by a summation ovére V.

mitting or staying idle, respectively. L&k = E° denote
the configuration spacd,e., the state space of the entire V. MARKOV STATIONARY BEHAVIOR OF MCMF
network. LetX;(¢) € E be the state of stationat timet, Next we investigate when the Markov chain defined in the
and X(t) = {X;(t)}ies € © be the configuration, or the previous section has a stationary distribution with the kdar
state of the network, at timeé We are interested in MAC property. In [6] it is shown that a sufficient condition foiigh
protocols for whichX = {X(#)}:en is @aMarkov Chain of  to occur is that the Markov chain is time-reversible and the
Markov Field (MCMF) [6], i.e., a process for which transition probability is synchronous. We consider these t
e X(1),X(2),... is a Markov chain ornf2, and properties in the following.



The transition probabilityP(y|x) is said to besyn- interaction potentialg, and¢; ;.
chronous if for all x andy there are{p;(y;|x)}ics such Let —1 € Q be the configuration in which all stations
that are in state—1. We use this as aeference state. Let X;
be the random variable representing the state of statian
P(ylx) = Hpi(inX), pi(yilx) > 0, and Z pi(upx) =1. stationarity. Since the Mafkov chaig is time-reversibleg t
stationary distributionr(y) = Pr{X; = y;,Vi € S} for any
ﬁonfigurationy € () satisfies the detailed balance condition:

€S ueE
The transition probability is synchronous if, given as
the state of the network in the previous time slot, eac
station chooses its current state independently and at the m(y)P(—1ly) = n(—1)P(y|-1).
same time with distributiongp;(-|x)}.cs over E. For the
model defined in Section Ill, the transition probability iSTherefore, from (3),

synchronous because (y) = (— )P(Y|—1)
Plylx) = exp U(y[x) P(-1ly) 5 )
ex Z|x expU(z
z;Q Ptk - expU(y|—-1) zeo pe

N expU(z]-1) expU(-1]y)
eXPZ(@(%‘)+Z¢i,j(yiaﬂfj)> z;sz '

i€S jes x eXp(U(y|—1) - U(—lly)) Z exp U(zly). (5)

ZGXPZ<¢i(Zi) + Z¢i=j(zi7xj)> zeQ

2€Q ies jes Since@_j (%, SCj) = ¢j,i (xj, yz) for all i, j, Yis Ty by switch-

ing the order of summation and then interchangingth 7,
H exp <¢i(yi) + Z bij (Yi wj))

we get
__ies < jes ) ZZ@J—(%,—U—ZZ@J(—L%)

H Z exp le(zz) + Z(b% (ZZ,:Z?) i€S jES i€S jES
icS zieb = =D > bui=Ly) =D > dii(=Ly))

_ Hpi(yi|x)7 i€S jES €S jES
ics =3 =Ly =YD =1y

where jES €S 1€S jES
= ¢ (—1,y;) — ¢ij(—1,95)
exp <¢i(.%‘) +) 605, xj)) ;Jezs ’ ’ ;Jezs ’ ’

jes =0,

Z exp

zi€E

pi(yilx) = (4)
<¢i(zi) + Z i (Zi,xj)> we have from (2)
jes exp(U(y|-1) — U(-1ly))

is a valid probability distribution because both(y;) and
¢i.j(yi, z;) depend ony throughy,; only. Note that (4) is = exp <Z bi(ys) — Z¢i(_1)
the probability that statiom chooses statg; in the protocol ies ies
described in Section Il
From [5], [6], the Markov chain is time-reversible if +Zz¢i7j(yi,_1) —Zqui,j(—l,yl,-))
®i.5 (i, xj) = ¢;.:(xj,y;) for all 4, j, y;, ;. This means that i€s jes i€S jes
the effect of statiory in the previous time slot on statian x expz i (v2). (6)
in the current time slot is the same as the effect of station pyay '

in the previous time slot on statighin the current time slot.

Therefore, by [6] the MAC protocol described in Sectior 50> from (2),

[l admits a stationary distribution with Markov property i Z exp U(zly)
¢17J(ylaxj) = ¢JZ(IJ7yZ) for all Za]ay’tvxj ze)
As noted in [12], the stationary distribution is in general
difficult to compute, and introducing reversibility is mbjin = exp) <¢i(zi) +Y iz, yj)>
for mathematical convenience. Hence, we will assume the z2€Q = jes
reversibility condition holds in the rest of the paper.
V. MARKOV PROPERTY OFMCMF IN RELATION TO - E?z; xp <¢i(zi) + ;@J(Zi’yj))

INTERACTION POTENTIALS

In this section we discuss how the Markov property of = epoln Z exp <¢i(2i) + Z(bi’j(zi’yj))' 7
the stationary distribution of a MCMK is related to its i€S  2,eE jes



Combining (5)-(7), we obtain 1) hy=hforalli, V; ={i—1,i,i+1} forall i, J; ;1 =

Ji,i+1 = J and Ji,i = J' for all 7,
) “eXqu”(Y)’ @ o) hforalli, V= {i—1,i+1} forall i, Juy
ies J; i1 = J for all s.
where ’ . .
In Case 1, the state of a station depends on the previous state
(V) = b (1 (s C(su) ) of its nearest neighbors and its own previous state, while in
2uly) = dilys) +1n Z;E P <¢l(zz) - 7625 P14z 5) Case 2, the state of a station depends on the previous states
(9) of its nearest neighbors only. Note that Case 2 is a subset of
For short-range interactions, (9) can be reduced to Case 1 withJ’ = 0. Hence, in the following we will only
describe Case 1 unless otherwise stated.
Oi(y) = ¢i(yi) +1In > exp <¢i(zi) + > iz s) |- The stationary distribution defined by these potentials is
z,€E JjeEV; 1
_ (10) m(y) = 7 exp > u(y), (11)
Define ics
W; ={j € S\ {i}: 3k € S such thati, j € Vj, where from (10)

orjeVif ¢; #£0,
ori e V;if ¢; #0}, J
an
meaning thatj € W; if for somek € S, ®,(y) depends o _
on bothy, andy;. If there is ak such that bothi and j Z= Z eXpZ(Dl(y)' (13)

are neighbors of, then bothy, andy; appear in®;(y). If
#; # 0, then®,;(y) already depends om;, therefore ifj € Therefore, we can consider the stationary distributionras a

Vi, bothy; andy; appear in®;(y). Then in stationarity, if 1sing model [1] with Hamiltonian
j € W;, X; andX; will be coupled. Therefore, the stationary _ .
distribution of X; conditioned on{X; } ;c s\ 1;3 only depends H(y) = Z ®i(y)

®;(y) = hy; + Incosh[h + J(yi—1 + yit1) + J'yi], (12)

yEQ €S

on {X;}jew:- e
The setV; \ {i} represents the stations (except statipn and partition function
having temporal dependence with statigrvhile the sefV; 7 —H(y)
represents the stations having dependence with station - Z ¢ '
stationarity. It is noted thai¥; \ {i} and W; are not the yea
same in general. The condition thatV; \ {i} C W, does To calculate any steady-state performance measure, we
not necessarily hold. This is illustrated by the following two have to first evaluate the partition function. To do this, we
examples: can use theéransfer matrix approach in statistical mechanics
1) AssumeV; = {i —1,i,i+ 1} for all i € S. Theny; [1]. Define the transfer matriv. as in (15). The rows
appears inb;_1(y), ®;(y), ®;11(y). Therefore; = from top to bottom and the columns from left to right

{i—2,i—1,i+1,i+2}# V;\ {i} andV; \ {i} ¢ correspond to state$+1,+1), (+1,—1), (—1,+1), and
W;. The stationary distribution ofX; conditioned (—1,—1) respectively. The entries iV then represent the
on {X;}jes\{;3 depends onX;_ i, X, i, and also transition from the ‘row state(y;_1, y;) to the ‘column state’
Xi_o, Xipo. (yi,yi+1). If we assume a periodic boundary conditioe,,

2) AssumeV; = {i — 1,i + 1} for all i € S. In the ends of the network are joined such that the stations at
addition, supposep; = 0 for all i € S. Theny; both ends are neighbors (the stations form a Markov field),
only appears in®;_;(y) and ®;.(y). In this case, then
W, = {i—2,i+2} # V;\ {i} and V; \ {i} ¢ Z =trace VN =AY + A\ + A\ + )7,

W;. Therefore, in stationarity, the distribution df;

conditioned on{ X } jcs\ (s} depends onX; o, X; o,

but not X; 1, X;.1. In this case, the system effectively

decouples into two independent sub-systems in statio

arity, one consisting of all odd numbered stations an

the other consisting of all even numbered stations.
In general, the interaction range in stationarity doubles t
interaction range defined by the protocol.

where A1, A2, A\3, Ay are the eigenvalues oV. The only
eigenvalue that we need in the following calculations\is
Hv_here we assume it to be the eigenvalue having the maxi-
um magnitude, which is always real, positive and unique
y the Perron-Frobenius Theorem [13]. This eigenvalye
admits analytical solution as the largest (in amplitudejtro
of the fourth-order characteristic polynomial of the trams
matrix. The solution is straightforward but omitted hereedu
VI. PERFORMANCEANALYSIS USING STATISTICAL to the large length of the expression. It can be shown that in
MECHANICS the special case of’ = 0,
Next we turn to analyzing the steady-state performance
of a MAC protocol defined according to (1). For ease of\1 = 5(62" cosh2h + €27 + 2v/1 + €4/ sinh? h cosh h).
exhibition we restrict ourselves to the following two cases (14)



el cosh(h +2J + J') el cosh(h + J') 0 0

V — 0 0 e P cosh(h +2J — J') e P cosh(h — J') (15)
- el cosh(h + J') el cosh(h — 2J + J') 0 0
0 0 e " cosh(h — J) e M cosh(h —2J — J')
We are interested in the following performance measures 1) x.(}), the characteristic polynomial &7,
of a wireless network: transmission probability and thitoug  2) x()\), the characteristic polynomial &f, and
put. The network istrandation invariant in both cases, 3) A, the largest eigenvalue of.
meaning that the expectations of akiy are the same, and the __ . . . dln A1 .
This provides a simpler way to calculate——— , since

correlations among any set &f;’s only depend on them via oo |0

the differences between their positions in the networksThiy,()\) is easier to compute thak, ;. Also, if we want to

is because the corresponding potentials are invariantrundmmpute the expectation of another quantity, we only have to
translations. The transmission probabiljyis the expected compute a new, () accordingly and reuse the other two.
number of transmission attempts of a station in a time slot,his method is based on the following proposition.

i.e, Proposition 1: Let V, be a square matrix parametrized

b= EF(l n Xi):| _ 1(1 +E[X))). (16) by a variablea, x.() be the characteristic polynomial of
2 2 V, and ) be the eigenvalue oV, with multiplicity one.

We define the throughpup as the expected number of If V. is differentiable atx = 0, then

packgts received successfully by a statipn from its neighbo Ixa(N)

in a time slot. We assume each transmission can only reach PY oo | B

its nearest neighbors. The expression for the throughput D Aol = - k’k‘”’“’o, (19)

depends on whether the underlying channel is a collision G PN o IBXo()\)

channel or a multipacket reception channel. For the cofiisi ToA A=Xo,1

channel, if the interference range and the transmissiog\eranwhere)\(y | is the eigenvalue oW, such that it is differen-
are the same, then a station can receive a packet when itjis e ato — 0 and Lim A

. ) . . re 1= A0,1-
idle and only one of its neighbors is transmitting. Hence, ¢

a—0
Proof: If V,, is differentiable aix = 0, theny,(\) =
pec=E 1(1 ~ Xl = X) (1 + Xip1) det(V,, — M) is differentiable with respect ta at o = 0,
o " ! o and the existence ok, ; with the stated properties when
1 « is in the vicinity of 0 is guaranteed by [15]. Then (19)
+§(1 +Xio1)(1 - X3)(1 - Xit1) follows upon differentiating(, (Aa.1) = 0 with respect ton
1 ata = 0. [ ]
= 7 (1= EX] = B[Xi—1 Xi1] + E[X;-1XiXi11]).(17)  The transfer matrixV,, defined before Proposition 1 is
For the multipacket reception channel, we assume that e QW?rint'ab;ef V\{lthprespet_:tt tmlat O‘d\:. 0, V n (15)I can f
station can receive two packets at the same time, thena% qhen aI . (i. In Froposttion 2 an é |sban e|bgenr:/a ge 0
long as a station is idle, the number of packets it receives | Vt\;'t _mu_tllﬁ icity onehas Tenngne a .ovel yt T er;gn-
equal to the number of neighbors transmitting, which mearFsro enius (_ac.)rem,.t erefore roposmon. applies. Also,
there is no interference. Then Aq,1 In Proposition 1 is the eigenvalue ¥, with the largest
' magnitude, as a consequence of the Perron-Frobenius The-
E 1(1 +Xii)(1 = X))+ 1(1 — X)) +Xi+1)] orem. Therefore, we can calculate the expectations simply

Prmpr = . o . i, .
e 4 using Proposition 1. In Case 2, thig ; in Proposition 1 is
1 i by (14)
= —(1 -E[X;Xi1]). 1g8) 9wven by (14).
2( [ +1) (18) Following this approach, we get the following for Case 2:
Therefore we have to calculat&[X;], E[X;X;:1], 97 \/ﬁ
E[X;_1 Xip1] andE[X,_ 1 X; X;i1]. b= e’ sinh h + 41+ e*/ sinh h’ (20)
To calculateE[ X;] for example, we can make the follow- 2v/1 + e/ sinh? h
ing modifications [14]: addvy; to ®;(y) defined in (12), e~ "\ cosh(h — 2J) — sinh? 2.
i i i Pcc = ) (21)
define the corresponding transfer matik,, compute its N2 (1 + 47 sinh? h)
largest eigenvalug,, 1, then 11
= ) 22
E[X;] = OInAq prer 2(1 + 47 sinh? h) (22)
da|a—g Contour plots of transmission probability and throughput

The other expectations can be computed similarly. The maagainsth and.J for the collision channel and the multipacket
difficulty in this approach is that the expression for; can reception channel for Case 2 are shown in Figs. 1(a), 1(b)
be complicated. Here, we introduce a method to computnd 1(c) respectively. For Case 1, the expressions are too
these expectations using complicated and are omitted for clarity. Figs. 2, 3(a) and
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Fig. 1. Performance for Case 2: (a) transmission probgbili) throughput in the collision channel, and (c) througihm the multipacket reception
channel.

Thr oughput station tends to switch between different states, couctieg

the effect ofh on the transmission probability. Therefore, the
effect of J' on the transmission probability is to control how
abrupt the change of the transmission probability is when
moves across 0.
Suppose nowJ < 0. Whenh > 0, each station has a
high tendency to transmit, but as< 0, a station will tend
to remain idle as its neighbors transmitted in the previous
time slot. These two factors counteract each other, regulti
in each station attempting transmissions with approxiipate
half probability. Therefore, no matter whethét is positive
3(b) are some plots of the throughput in the collision channe@r negative, each station remains transmitting with half
and the multipacket reception channel showing the maximuptobability on average. Similar statements can be made for
throughput. Figs. 3(c) and 3(d) show the transmission prolthe case of/ < 0,k < 0.
ability corresponding to the throughput shown in Fig. 3(b). Next we discuss how the throughput varies with J
and J'. When J > 0, either all stations are aggressive
in transmissions { > 0) or all stations tend to remain
We divide this section into four parts. We discuss thédle (. < 0). In both cases, the throughput is very low
collision channel first and then the multipacket receptiofue to excessive collision or underutilization of the wexs
channel. For both channels, we first discuss the more gene¢annel. Also, in order to have a high throughptiand J’
Case 1 in Section VI and then Case 2. should have opposite signs so that the previous state of a
station has opposite effects on the current state of itself and
A. Collision Channel for Case 1 its neighbors. Therefore wher/ > 0, the throughput can be

We first discuss the effects df, J and J’ on the trans- high only if A 5 0 and.J" <0.
mission probability. First supposé > 0. If J > 0, when When J < 0, if a station was transmitting, its neighbors
a station transmitted in the previous time slot, its neigbboWi" tend to be idle in the current time slot; and if a station
will have a higher probability to transmit in the current &m was idle, its neighbors will tend to attempt transmissians i
slot; and if a station was idle in the previous time slot, itéhe current time slot. Thereforéhe two nearest neighbors
neighbors will have a higher probability to be idle in theof a station always tend to choose the same action. This
current time slot. Therefore, wheh > 0, every station means that either there is collision or nothing is transditt
has a high tendency to transmif, > 0 will result in all in a slot with high probability. Hence, the throughput iscals
stations attempting transmissions with high probabily  very low. However, this argument only applies whén< 0.
the contrary, wher < 0, every station has a high tendencyWhenJ’ > 0, the optimal throughput can be achieved.
to be idle,J > 0 will keep the stations in remaining silence The optimal throughput does not correspond to a single
with high probability. Hence, the transmission probailit (h, J, J') tuple: the throughput is at maximum whefi is
is close to 1 whenJ > 0,h > 0 and close to 0 when sufficiently large, bothh and J are sufficiently negative
J > 0,h < 0. The transmission probability changes abruptlwith » Z 2J. The optimal throughput i$).3431 and the
as h moves across 0 while keeping > 0 fixed, and the corresponding transmission probability s2939. This is
change is more rapid for largef. If J’ > 0, each station illustrated in Fig. 2. The optimal values &f J and.J’ can
tends to remain in the same state, which reinforces theteffdme explained by (12). Sincké < 0, the first term of (12)
of h on the transmission probability; while if’ < 0, each suppresses transmission to reduce excessive collisianms. F

Fig. 2. Throughput at/’ = 4 in the collision channel (Case 1).

VII. ANALYSIS OF THERESULTS



Transmni ssion Probability Transmi ssi Probability

€Y (b) © (d)

Fig. 3. Performance for Case 1 in the multipacket receptizemnel: (a) throughput &t = 0, (a) throughput ath| = 1, (c) transmission probability at
h =1, and (d) transmission probability at= —1.

the second term, we divide into three cases: J, the corresponding is
e yi_1 = —y;+1: There is already one neighbor transmit- eh 1
ting, it is better for a station to remain idle, otherwise it eh £ eh 3

cannot receive from its neighbor. In this cadey;—1 +  This is also the optimal throughput for slotted ALOHA in the
yi+1) =0 andh+ J(yi-1 +yiy1) + J'y has alarger collision channel: Supposeis the transmission probability
magnitude wheny; = —1, which helps in suppressing of a station, the throughput is thep(1 — p)2. The optimal
transmission. throughput can be found by optimizing over all and the

e Y1 = Yi+r1 = +1: Both neighbors are transmitting, .. 8 . 1
therefore it is better for a station to remain idle, since()ptImal throughput is;_ with the corresponding as .

even if it attempts a transmission, both neighbors canndf'® Probability that %tg?nsmifsion results in a successful
receive. In this casé} + J(y;—1 + yi+1) <0 andh +  reception is therefor%/— ==

) ) /. ; 1/3 9
J(yi-1 + yir1) + J'y; has a larger magnitude when o000 ing with the results for Case 1 in Section VII-A,

yi = —1, which al§o helps in suppressing transm>issiorwe can see that with a nonzey6, there is al5.8% improve-
* Yi-1=yis1 = —1: Inthis Casell+J(yj*1+yi+1) =0 ment in the optimal throughput and14.83% reduction in
and thereforéh + J(yi-1 + yi+1) + J'y; has a larger o corresponding transmission probability. The prolitgbil

magmtude w.heryi = +1, which makes ransmissions ya+ 5 transmission results in a successful reception with a
a bit more likely to occur than the other cases. As

. 0. .
both neighbors are idle, it is possible that they can botﬂonzeroJ’ IS 5 02939 — 02837, which shows &81.33%
receive the packet successfully. improvement over the results foi’ = 0.

In the collision channel, if we use TDMA, the optimal C. Multipacket Reception Channel for Case 1

throughput isz_ To achieve that throughput, one in every Inthe multipacket reception channel, there is no collision
three stations must transmite., a pattern of repeating Nence the dependence of throughputiow and.J” exhibits
+1,-1,—1 should be observed in the network. This showélifferent behaviors. o

that the nearest neighbor interactions alone are not afgect 1he throughput can be arbitrarily close Ipfor example,

in maintaining the repeating1, —1, —1 pattern in the net- PY choosingh = 0 with .J and J’ having opposite signs
work. and with sufficiently large magnitudes. This is illustraiad

. , : i
We can also illustrate why the interaction range doubles iﬁ'g' 3(a). Supposg’ > 0. Then a station tends to stay in

stationarity with this example. We define the throughput t e same state. Therefor(_a, with < 0, its nel_ghbors will

be the expected number of successful receptions at a statif)erpd to choose the opE)osne state ar}d stay in that state. On
For stationi to receive a packet successfully, it must be idl he contrary, supposd_ < 0. A sta_tlon tends to_ switch
and only one of the stations— 1 andi + 1 is transmitting. _etween bqth states. With > 0, its neighbors in the current_
Since whether station— 1 transmits or not depends on thel!me slot wil te_nd to_choose the same state as the station
states of both stationisand: — 2, and whether station+ 1 did in the previous t|r_ne slot, Wh'Ch. Is the opposite state
transmits or not depends on the states of staticarsdi + 2, chosen by the station in the current time slot. In both cases,

whether station receives a packet successfully will depenc}he configurations Of, alternating1 and —1 are the mos_t
on stations — 2.7 — 1.7 + 1.7 4 2. probable ones. The difference between these two caseg is tha

in the first one, a station captures the channel and transmits
continuously, while in the second one, stations share the
B. Collision Channel for Case 2 channel by taking turn in transmitting.
3 From Fig. 3(a), we observe that whéh deviates slightly
—, from 0, the throughput can change abruptly to eitheor
) 1 . 207 0 for sufficiently largeJ. This means as/’ is not zero,
which occurs at/ = 0,4 = —7 In2. At the optimalh and  the dependence of the previous and current states of the

If we setJ’ = 0, the optimal throughput i9c. =



same station across time helps in aligning stations so that VIIl. CONCLUSION

all neighboring stations are either in opposite states ¢inén In this paper, we studied a MAC protocol in which each
same state. station chooses its current state based on the states of its

When h is not zero, similar relationships between theheighbors and itself in the previous time slot, and proposed
throughput,/ andJ” are also observed, except that the abrupjsing the Ising model in statistical mechanics to obtain
change in throughput occurs dt = 0 for negativeJ and  the transmission probability and throughput of wireless ne
J" = —|h| for positive J, and the change is more rapid forygorks in the collision channel and the multipacket receptio
larger [h|. An example is shown in Fig. 3(b) fdh| = 1. channel. Our results showed that, if each station decides to

For any(h, J, J') tuple such that the throughput is aroundransmit based on the observed states of its neighbors only,
one, the corresponding transmission probability is alwaye best possible performance is the same as slotted ALOHA.
around a half. Therefore the probability that a transmissioHowever, if each station makes its decision based on the
results in a successful reception is around one, which cafates of its neighbors and itself in the previous time s
only happen when neighboring stations are in oppositesstaten the collision channel the throughput can be increasetewhi

In the multipacket reception channel, if we use TDMAthe corresponding transmission probability can be reduced
the optimal throughput isl. In this case, one in every and for the multipacket reception channel, the throughant ¢
two stations transmitg,e., a pattern of alternating-1 and  be doubled while keeping the same transmission probability
—1 should be observed. Indeed, this pattern appears if wehich is the same performance as TDMA.
chooseh, J, J' appropriately. This shows that the nearest The results obtained here assumed the protocol is executed
neighbor interactions can be used to maintain the altergatifor a long time such that the network is already in station-
+1 and —1 pattern in the network, which implies this is arity. One possibility for future works is to determine the
a distributed way to implement TDMA in the multipacketconvergence time for the protocol. We assumed symmetry
reception channel. Together with the results in the coltisi in the mutual interactions between stations to get the t®sul
channel, we can observe the dependence of the length mfiother direction would be to consider the case that there is
the activity pattern and the interaction range of the MAGio symmetry in the interactions.
protocol.
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