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Abstract—We consider a scenario in which two sources of transmission policies at the sources which trade-off the

exchange stochastically varying traffic with the aid of a bi- average cost with the average delay.
directional relay that may perform network coding over the

incoming packets. Each relay use incurs a unit cost, e.g., Ve begin by considering centralized policies in which

transmission energy. This cost is shared between the sourcesa centralized controller specifies the transmission rate of
when packets from both are transmitted via network coding; if each source based on perfect information of both source
traffic from a single source is sent, the cost is passed on to onlyqueue states. We use Lyapunov stability arguments as in
that source. We study transmission policies which trade-off the ' . . .

average cost with the average packet delay. First, we analyze [8]-{10] to develop rate allocation qu|C|es and anal_yze th.elr
the cost-delay trade-off for a centralized control scheme using Cost-delay trade-off. We then consider a model in which
Lyapunov stability arguments. We then consider a distributed each source individually decides its own rate based on the
control scheme, where each source selfishly optimizes its OWnjoint queue size, resulting in a non-cooperative game. We
cost-delay trade-off by playing a non-cooperative game. We naracterize the equilibria of this game and show that in

determine the Nash equilibrium and show that it performs . .
worse than the centralized algorithm. However, appropriate general it leads to worse performance than the centralized

pricing at the relay achieves the centralized performance. These Solution. These equilibria require each source to know the
algorithms require full information of queue backlogs. Next, we queue size of both sources. We next consider algorithms
relax this assumption and any source makes the transmission which do not require full knowledge of the queue sizes at
decision depending on whether the other sources queue backlogy, o1 sources. Specifically, we derive strategies against the
exceeds a threshold, or not. This needs only one bit information L
exchange and leads to asymptotically optimal cost, as the delayWorSt and b?St response of the _OPPO”e”t thereby I|m|t|_ng
grows. Finally, we consider cost sharing with only local queue the backlog information to the individual queues only. This
information at each source. The results illustrate new cost-delay leads to the result that appropriate pricing by the relay for the
trade-offs based on different levels of cooperation and queue worst-case response can achieve the cost-optimal operation

information availability at the expense of increasing the complexity of rate allocation.

Next, we present a simple transmission scheme that re-
quires only one bit information of the other source’s queue

A simple, yet fundamental model for a multi-hop wirelesga(?k_log' The transmission decisions are based on whether the
networks is the two-way relay network shown in Figure 1|_nd|\_/|dual gueue backlogs_ e_xceed _aflxed thre_shold, or not. I_n
In this network, two sources communicate with each othB@rticular, we show that it is possible to achieve asymptoti-
with the assistance of a single relay node. It has becoff@!y optimal cost, as the packet delay grows with increasing
well established that network coding [1] can improve ththreshold values. Then, we further relax the a§sumptlon of
throughput of such a two-way relay over traditional stordlueué state knowledge and extend the analysis to the case
and-forward routing, e.g. see [2], [3]. In many cases, the uWhere sources do not share any mf_ormatlon_on each other’s
of a relay node will incur a cost, for example representing/€ue backlog. All of the cost-sharing algorithms proposed
the energy consumption of the relay. The use of netwofk thiS paper do not require ang priori information of
coding can also reduce this cost [4], [5]. For example, Wit!ﬂacket arrival statistics and they can operate only with the
network coding a single transmission by the relay can stantaneous values of queue backlogs.
used to forward one packet from each source simultaneouslyin terms of related work, we note that there have been a
while with plain routing this would require two transmissionsnumber of works studying the interaction of network coding
If the cost per transmission was the same in both casesth stochastically varying traffic in both two-way relay
then network coding will result in a 50% reduction in thenetworks [11], [12] and other network topologies [6], [13]-
total cost. However, when the sources have bursty traff{d5]. There have also been a number of papers studying the
this cost reduction may come at the price of higher delaytsade-off of for wireless networks without network coding,
since each source must wait for packets to arrive at the otlecluding [9], [10], [16]. Other game theoretic models for
source in order to exploit the network coding gain. Thieetwork coding have been studied in [17], [18]; in these mod-
cost-delay trade-off has been observed in [6], [7] and is tleés the underlying conflict of interest is due flow optimization
main focus of this paper. Specifically, we consider the desigather than cost sharing.

I. INTRODUCTION



a—[[]]e, O,[[[[«—7. ratemin;—,(ji;(t)). Any residual traffic is then routed in

relay uncoded form only from one sourcewith rate fi;(t) —
R min;—q 2(fi;(t)). Note that the network coding operation can
be carried out at packet or signal levels, i.e., relagither
Fig. 1. Two-way relay network: Two sources with packet arrivals and Qecodes, network-codes and transmits the Incoming packets,

single relay to exchange the incoming packets. or simply amplifies-and-forwards the received signals as in
analog network coding [3]. Decoding is accomplished by
Il. SYSTEM MODEL combining the received network-coded packets with that

We consider the two-way relay network with two sourcesource’s individual packets. We do not consider the network
1 and2, and one relayR, as shown in Figure 1. We assumé&oding overhead to notify sources whether the transmitted

a synchronous slotted system, in which each souree Packet is network-coded or in plain form, and assume that
1,2 buffers the incoming packets in quege with backlog this overhead is neghglblg compared to. packet size. _
g:(t) at time (slot)t. Each source chooses the service rate Each use of the relaj is assumed to incur a cost, which
11:(t) at timet¢ (namely, the number of packets/bits or mor€ould, for example, represent the energy expended by the

generally data units injected to the system) such that relay. We assume that the relay cost is partitioned among the
two sources depending on the rate allocation such that the

(1(t), p2(t)) € C(1), (1) cost of source = 1,2 for using the relayR with rate ji; is
whereC(t) is the rate region achievable by network coding 7 7 (1) i, (£)) = e (¢ 0 (s (t 6
at time ¢. In this paper, we focus on a simple rate region (1), fio(t)) = eill) (jlgr,lz(uj( ))) 6)
C(t) = {(ua (). pa(t)) = 0 < pi(t) < (1) = 1,2} (1) (t) — win (75 (1))
achievable over the relayk. This represents the case of J=12

orthogonal channels from sources to the relay. The extensigRere ¢;(¢) and d;(¢) are the costs charged by the relay
to more general rate regions can further couple the servigeto deliver one packet by network coding and routing,
rates in addition to the coupling effect of network codingrespectively. For most of the following we focus on the case
which poses the main interest in this paper. The queue lengfRerec; () = 1, andd,(t) = 1. This models the case where
at sourcei = 1,2 evolves as the cost per unit time of operating the relay is the same for

A _ A ‘ both routing and network coding and in the network coding

ai(t +1) = max(g;{t) = pi(t), 0) + ai(t), @ case the cost is equally shared by both sources, whereas any

wherea;(t) is the number of bits/packets arriving at sourceource is solely responsible for the cost of packets routed by
queueQ); at timet¢. For each sourcé we assume that;(¢t) the relay. Then, the individual cost (6) can be rewritten as

is generated via an ergodic process and\Jedenote its long- 1
term average. Ji(fu(t), i2(t)) = Ait) — 5 Join (f1;()) )
Alternatively, the queue dynamics can be written as o T
) such that the total cost is simplified to
gi(t+1) =qt) — f1:(t) + ai(t), ) )
where the actual transmission rate of sourde > Jia (), fia(t) = max (71 (t))- (8)
i=1 ’
,[Lz(t) = Inin(,ui(t)v qi(t))v i1=1,2, (4)

IIl. CENTRALIZED COSTOPTIMIZATION

since the number of transmitted packets is limited Dy the e start with the case where a centralized controller has
number of packets available in the queue. Note that the rafg.ess to all system parameters along with the queue backlog
pi(t), i = 1,2, is sufficient to optimize the throughput ratesintormation, and makes the transmission decisions for both
since sources can simply perform zero padding in the abseqggirces. The main objective is to minimize the total cost
of packets. However, we are interested in minimizing thg hoth sources while ensuring that the average delay is no

cost, which is a function of the number of transmitted pac'@'reater than a given valu®. This leads to the following
ets. Therefore, we use the actual transmission rate, nam&ﬁﬁmization problem:

fi(t), that is bounded by the number packets available in theTgia1 Minimum Cost Problem:
source queues. The instantaneous rate region is defined as

) . o t—1 2 ) )
O = (1), fo®) : (D). () €C0), () o mim o lim 2 Y B[ (7). ()]
fult) < ai(t),i = 1,2}, i e (PC)

We assume that relay? does not buffer the incoming I g Elg:(1)]
packets in queues and immediately forwards any received S.t. tlggo 7 ZZ SV <D.
data over a single channel which is orthogonal to the 7=0i=1 " ?
channels used by each source. Specifically, the relay whlkere, the average delay constraint follows from the ratio of
use network coding to transmit an equal number of packetse average queue length to the total arrival rate according to
per time-slot from both sources simultaneously at commadiittle’s theorem [19]. Note also that the objective (IRC) is



equivalent to the average cost per packet by normalizing bgiwen by the algorithn(Al) as follows:
the total long-term arrival rat&; + A». Let P*(D) denote the

solution to(PC) as a function of the delay constraif, i.e. (R (1), 115 (1)) = (A1)
the cost-delay trade-off. In general this will be a decreasing (0, 0), if V>aq(t)+ q(t),
function of D and asD — oo, it will yield the minimum (ue(t),uc(t)), if qi(t) + qa(t) >V > max(qi(t), g2(t)),
cost solution subject to the queue’s being stable. (ui(t),ue(t)), i qi(t) >V > (), 5 #1,

In principle, for a given delay constraint, ProblgfRC) (ui(t),uc(t)), if V <min(q:(t),q2(t)),
can be solved via dynamic programming. However, such (qi(t) — V)i (t) + q; (H)ue(t) >
solution quickly becomes intractable except for very simpl ’ ' e T
arrival processes and furthermore, requigegriori knowl- (g5(8) = V)uy (t) + qi(t)ue(t), 5 # 4,

edge of arrival statistics. Instead, we will follow the approacihere
in [10] and use Lyapunov stability arguments to yield an . A
approximate solution t¢PC) with provable approximation ui(t) = min(q;(t), 1"*(t)), (11)
bounds. This approach is based on generalizing the classical uc(t) = min(uy (1), uz(t)).
back-pressure algorithm from [8] which is guaranteed to sta- Proof: The objective function to be maximized depends
bilize the packet queues if this is possible. This throughpun which source is assigned a higher rate, and it is either
optimal solution is given by equal to(q1(t) — V)1 (t) + q2(t) a2 (t), if 1 (t) > fa(t) or
2 (g2(t) = V)fi2(t) + qu ()i (t), if fi2(t) > fir(t). Consider
Zqi(t),ui(t), 9) the case v_vithqi(t) > V_and g;(t) < V. Forp;(t) > (1),
the objective function is greater than or equal(tg(t) +
q2(t) — V)u,(t), whereas the objective function is at most
, (q1(t) + q2(t) — V)ue(t) for fi;(t) > jui(t). Accordingly, the
N rate allocation withu; (t) > p;(t) is selected withii; (¢) equal
0o 30 2 WO (A9 to ui(t) and ;1) equal touc(0)
Without loss of generality, consider the case wjittit) >
Note that (9)-(10) are not optimal with respect to minimiz#; (). Then, max(fi1 (¢), fi2(t)) = fi:(t), and the objective
ing the time-average cost ifPC) as shown in the following function is (g;(t) — V)i (t) + q;(t)f;(t).
example: If ¢;(t) <V, the optimal solution should minimize;(t),
since the multiplier associated with the rate of souice
is negative. However, the special case with{(t) = f;(t)
should be also taken into account.df(t) > |qg;(t) — V|,
or equivalently ifq;(t) + ¢2(t) > V, then the optimal rate
allocation isji;(t) = fi;(t) = u.(t). On the other hand, if
bed) < la:(t) = VI, e, if qi(t) + g2(t) < V, the optimal

max
(1 ()2 (1) EC(0),420

which can be rewritten as

Example 1:Let a;(t) = 1, a2(t) = 2 for event, and
a1(t) = 2, ax(t) = 1 for odd t. For ¢;(t) = 3 andd;(t) =
1, the back-pressure solution js (t) = 1, p2(t) = 2 for
event, and p1(t) = 2, pa(t) = 1 for odd t. The long-
term average costs per packhtand J, are % However, if
sources accumulate packets over time slots and transmit s SO -
that relay R performs network coding only, the decision ate. allocqnon I5(t) = fi;(t) = 0.
pi(t) = 1, pa(t) = 1 for event and i (t) = 2, pa(t) = 2 Finally, if both ¢;(¢) and ¢;(t) exceedV’, rates should be
for odd ¢ make the long-term average costs approach tfglected from one of the two pOSS.IbI|Ij[IeS in th'e fourth case
lower bound? (which is achieved, if relayz only performs of (A1) to maximize the overall objective function. OJ

2 .
network coding such that the relay cost for each network- 1ne cost-delay trade-offs for Algorith#1) are evaluated

coded packet is always equally shared by both sources). in Theorem 2:
Theorem?2: For Algorithm (A1), the average queue back-

The main idea in [10] is to augment the policy in (10) W'tnog and the average packet delay are proportiondd tavhile
an r_;ldd|t|onal term to reflect the cost. The resulting problefy isiance of the average cost from the minimum attainable
is given by cost is proportional to‘17:

o (ql(t)ﬂl(t)Jqu(t)/lz(t) (P1) M-1 2 B,
fir ()12 (1)) € ) ) A}iinoo i Z Zji(ﬁl(T)yﬂQ(T)) <J'+ v 12)
~V max(in (), fi2(1))), =0 o
M-1 2 4
whereV is a control parameter to tune the trade-off between lim 1 Z ZE[qi(T)] < b7 (13)
the average queue backlog and the distance from the min- M~ M = = €

imum achievable cost. InP{), maximizing the first term \\hare 7+ is the optimal cost per time sloB, and B, are
q1(t)fn (t) + ¢2(t) i=(?) is due to backpressure algorithm inyqsitive constants, andl; satisfies(\; +¢) € C(t), i = 1,2,
order to stabilize the source queues, whereas minimizing té?leany timet for an arbitrarily small positive constant
second termnag(/ll (), fi2(1)) Serves the purpose of moving Proof: (Sketch) We provide only a general sketch of the
the stable solutions to the minimum achievable cost. proof for brevity. The proof follows from the Lyapunov drift
Theorem1: At any time slot¢, the solution to(P1) is analysis with performance optimization arguments, as in [10].



First, the Lyapunov drift (namely, the time-average differencghere “ — i” denotes the player other than player

of Lyapunov functions for queue backlogs) is expressed fépr any source = 1,2, the strategy space is a non-empty
gueue dynamics, and the average cost is added to the resultiogvex subset of an Euclidean space and the utility function
drift formulation. This leads to Lyapunov drift conditions foris continuous inf1, fiz) and quasi-concave if;. Therefore,
stability. Next, we utilize the properties of the rate allocatiothere exists pure strategy Nash equilibrium at any time slot
algorithm to show that these conditions are satisfied, leadihdor given g;(¢), ¢ = 1, 2.

to bounds on the average queue lengths and consequently ohheorem3: The Nash equilibrium strategfA2) of any

the average values of delay and cost. [ sourcei = 1,2 as solution to(P2) is given by:

The optimal cost per packeigpf = 5 H is given by - - A2
max(A1,\2) 'u’i(t) - ( )
RS2, and it is reduced td for A; = Xo. v

For ql( )+ g2(t) > V > max(qi(t),q2(t)), relay R 0, if qi(t) < 3,
performs only network coding and does not forward any un- | (%), if gi(t) >V,
coded packet, which results in the energy-optimal operation. ¢ 0, if 5 < ai(t) < Vi,q(t) < %,j 71,
As V increases, sources tend to transmit less. On tr_]e other u.(t) it < gi(t) < Vi,q;(t) > Vj,j #4,
hand, asV decreases, relay: also forwards the residual v
traffic in uncoded form, which would result in the throughput- 001 uc(t), i 5 <qilt) < V“ i=1,2.

’ Proof:  Note that J;(fi1(¢), ie(t)) = f(t)

optimal operation of the classical back-pressure algorithmj . - N
pmat op P SOMS min, 1 (7, (1) s equal tof (1 Y L), i ) >

IV. INDIVIDUAL COST OPTIMIZATION f1;(t), or equal togji;(t), if fi;(t) > fi;(¢).

Next we consider a scenario in which the individual nodes Wlthout loss of generality, consider the former case, in

decide on their own rate allocations given full knowledge %hmh t[1e objective funcUon is equal 1@;(t) _V,Vi}”i(t) +
the other user’s queue size. Each user1,2 would like to ?qj(t)/jbj(t? for sourcei, and equal tdq; () — =)/, (t) for
solve the following individual optimization problem: sourcej # i. The latter case follows directly by interchang-
Individual Minimum Cost Problem: ing < and j. If ¢;(t) > V;, i = 1,2, the maximum possible
value for fi;(t) is selected asu;(t), since the multiplier
min lim * Z]E fin(7))] associated with the rate of sourtevill be always positive.
fs (8): (i () fin (1)) €C(£) 420 t—00 T Similarly, if ¢;(t) < ‘g , 7 = 1,2, the minimum possible value
(pcl)  for fi;(t) is selected a8, since the multiplier associated with

1 the rate of source will be always negative.
st lim lz Elai(r)] _ p;  Consider the case withy < ¢i(t) < Vi. If ¢;(t) < %,
t—oo t = Ai source; will not transmit and the best strategy of soulice

is_to reduceu;(t) to 0. On the other hand, if;(t) > Vj,

In this setting, the two users can be viewed as paylngthe best strategy of sourcgeis to transmit. Then, source

non-cooperative game, in whichPCl) reflects the pay-off cither tends to decrease its ratedd() for jis(t) > jis(t)
of useri. In principle, this can be viewed as a stochastlcr tends to increase its rate to.(¢) for ji;(t )1 < ﬁ-(t)] Ir;
game which can again be solved using dynamic programmlnﬁect sourca selects the rate,.(t) for eitjher (;’;lsel '
ideas. However, again such an approach quickly become or l < g(t) < Vi i = 1, 02 there are mult .Ie Nash
intractable and we instead consider a Lyapunov drift formu % o P

equmbna since the equmbrlum can also be established at
lation as as we did inR1) for the centralized optimization (#) = 0, i = 1,2, in addition toj;(£) = u(t), i = 1,2. [
problem. Furthermore, we assume that in each time-slot, fite o Halt) = Uell)y 1= 4 2

sources play a single-stage game against each other with the V. DYNAMIC PRICING AT THE RELAY
corresponding pay-off functioh.In other words, giveni;, In this section, we consider the case where sources have no
j # i, sourcei = 1,2 chooses the individual strategy(t) information about each other's queue backlog in contrast to
to solve: (P2). For that purpose, any sour¢e= 1,2 assumes that the

N s (N TS T - opponent sourcg # ¢ plays a fixed strategy. The worst-case
i (£): (,7,1(@{3?(};)60@)7%0 (ql(t)/“(t) VlJl(“l(t)’M(t)))' response of the opponetitis fi; = 0 such that there is no

(P2) possibility of performing network coding to reduce the relay

Minimizing the first termg;(¢)i;(¢t) in the individual ob- cost. If sourcei = 1,2 assumes that sourge+ ¢ plays the
jective function is to stabilize the queue of sourée worst-case strategy, it ends up with the optimization problem:
whereas minimizing the second teriJ;(fi1(¢), fi2(t)) ~ ~
moves the stable solution to the optimal cost value. Define =~ max _ = (qi(t)ﬂi(t) - ViJz‘(Mz‘(t)aO))- (P3)
T (1), fio () = qa(D)s(t) = Vidi(in (t), fia(8))- , _

Definition 1: A pair of strategies{ji*} are a Nash equi- 1he solution to(P3) is given by:
librium for the resulting stage game if, for each player Bult) = {0’ if (1) < Vi,

Ji(ig, ity) > Ji(js, i” ), for all fi; € C(t), (14) wi(t), if gi(t) > Vi

10ne advantage of this formulation is that it does not require any (AB) simply involves com_pa_rlng the individual queue back-
knowledge of the long-term arrival statistics of either source. log with a threshold that is independent of the opponent’s

(A3)



gueue backlog or transmission decision. A similar algorithm If V' < min(q; (%), ¢2(t)) (20)
(A4) can be defined by assuming that the opponent plays the (4. (1) — V)u, (t) + q; (t)uo(t) > (a;(t) — V)uy (1)
best strategy. 11tP2), the best-case response of the opponent .,

s ie o~ max +qz(t)u0(t)a J 7& [
sourcej is fi; = p;***(t) such that for packets of source
i there is always an opportunity to perform network coding  @i(t) + ei(t) < qi(t), d;(t) +e;(t) > ¢;(t),
such as to reduce the relay cost. The resulting problem is c;i(t) > d;(t) +e;(1).

. - e Proof: The idea is to arrange the coefficients in (16) and
B (8): (s (6) ) ) €C (1) <Qi(t)“i(t)_wji(“i( ), 15 (t ))>' adjust the weights; (¢), d;(t) ande;(t) to mimic the behavior
’ (P4) of the centralized casAl). The objective function to be

The solution(A4) to (P4) is given by: maximized depends on which source is assigned a higher
R rate, and is equal t0q;(t) — d;(t) — e;(t)): () + (d;(t) +
() = BYei(t) — @)y (0, 1 u(t) = fis(t), o ((t) + eilt) -
0, if qi(t) < %, ci(t) () — eq(t) iy (8), i fii(t) < fa;(t).
u;_nax(t)7 if (1) > pmax 1), % <qt) < Vi j#i, For brevity, we will consider two _subcases. F|~rst, assume
wi(b), it us(t) > g (t), qi(t) > Vi, j # i, Y > ¢1(t) + ¢2(t), where the solution should bg;(t) =
. . v. fi(t) = 0 from (AL). If ¢;(¢t) < d;(t) + e;(t), assuming
u;(t), if wi(t) < @), a(t) 2 5, j #1. fis(t) > fi;(t), the the worst-case responsgiigt) = 0, and

if d;(t)+ei(t) > qi(t), f1:(t) is selected a8, resulting in an
objective value of). Next, consider the assumptign(t) <
f;(t), where the worst case responseijgt) = 0 fore; < 0
andfi;(t) = u;(t) if e; > 0. Fore; < 0, we have the desired
solutionfi;(t) = 0 from the initial assumptiom; () < /i;(t).

> 0, the maximum value of the objective function is

So far, we assumed fixed weightgt) = 1 for network
coding andd;(t) = 1 for routing. Instead, relay? can apply
dynamic pricing by selecting the weights(¢) and d;(t)
in (6) as functions of queue backlogs(¢) and ¢»(t) to aﬂre
adapt the distributed energy costs to the centralized opti g
solutions. For that purpose, relay penalizes the differen +61 t)— Cz(t))“c(t) ei(t)ue(t) = (qi(t) —ci(t))uc(t).
between the data rates transmitted from each source ther gﬁ ) < ci(t), note that the resulting objective value is
increasing the network coding opportunities and minimizingedative and the overall rate selectiorigt) = 0. Changing

the relay cost. The individual cost for nodés changed to e indices: and j results in the symmetric operation, and
the centralized solution is achieved for this case.

Ji(fa (), fi2(t)) = ci(t) ;21112 fi;(t) + di(t) (Ri(t) (15) Next, assumey (t) + g2(t) > V > max(qi(t),qa(t)).
. " . For f;(t) > f;(t), by selectinge;(t) > di(t) + e;(t),
=ris (8)) + eilt) ( e “'(t) - (1)), the wo(rs)t—case]r(e)sponse is to max(iriwjfzf(t). 5—|Z)weve(r,)if
+ e;(t) > q(t), sourcei tends to reducei,(t) to
u.(t) because of the worst-case response from sojurdhe
resultmg objective value is equal 1@;(t) — c;(t))uc(t). It
max ( ()i () — di(t) i (t) (16) can be shown that the maximum objective value achieved by
i (1):(fis (£)) EC(£) 420 assumingi; () < fi;(t) is also equal tdg; (t) — ¢;(t))uc(t),
+(di(t) + e;(t) — ¢;(t)) min fi;(t) — e;(t) max Mg( )) with [i;(t) = u.(t). Hence, the overall solution ig;(t) =
j=12 j=1.2 u.(t). The other two subcases fdqAl) can be derived
where the rate weights;(¢), d;(¢t) and e;(t) are adjusted similarly. By settingd;(¢) +e;(t) < ¢;(t), the rates of source
by the relayR depending on the queue backloggt) and i are increased in accordance with the solutioffAf). O
¢2(t), and the sources play the worst-case response without
knowing each other’s queue backlogs. VI. COSTSHARING WITH 1-BIT QUEUE INFORMATION

wheree;(t) is the we|ght to equallze the transmission rate (*)
for both sources. The individual optimization problem is

Theorem4: Given the queue backlogs(t), i = 1,2, and For the individual cost optimization problem, we can
threshold parametdr, the rate weights; (), d;(¢) ande; (t) further simplify the transmission decisions by limiting the

for (A3) to achieve the optimal solutior&1) satisfy: necessary queue information to one bit, which distinguishes
whether the opponent’s queue exceeds a threshold, or not.
fV>aqt)+ae() : (17)  For that purpose, we present the following algorittis):
gi(t) < ci(t) < d;(t)+ei(t), i=1,2 Let u™® = min;— » p'**. The system starts with thresh-
old equal toV; = p™** 4" for each sourceé Then, source
If q1(t) + g2(t) >V > max(qi(t), ¢2(¢)) : (18) i = 1,2 decides to transmit, if its individual backlog satisfies
di(t) + es(t) > qi(t), i(t) > do(t) + eit), i = 1,2 qi(t) > V;. When the relay observes that both sources have

transmitted at least once, then it knows thalt) > p™**
L, for bothi = 1,2, so it reduces the threshold to the common
It qi(t) 2V > q;(t), 5 # i : (19)  aximum service ratg™* knowing that both sources will
di(t) + ei(t) < qi(t), d;(t) + e;(t) > q;(t), operate with network coding. Afterwards, the thresholds are
ci(t) > d;(t) +e;(t), set toV; again, and the operation continues.



The relay cost can be further improved as follows. Eadlate is p;u™** and the arrival rate is\;. If we denoteg;
sourcei starts with one threshollf; (which is greater than as the stationary queue backlog of souice- 1,2, then
ey, and transmits with rate™*® if its queue size exceeds P(g; < pu™**) =1 — - t,gax from the Little’s theorem [19].

V;. Sourcei only needs to know whether the queue backlolf a source transmits a packet, the average cost depends on
¢;(t) of the other sourcg # i exceeds the minimum of thethe probability that the other source also transmits. Then, for
maximum service rates of both us@r$™ = min;_; » p'**, each source the average cost per packet is

or not. If so, a second thresho}d,,,. is introduced. Then, 2\ 2\

if the queue size of sourceis between the two thresholds ~ E[Ji] = 0.5 x ( ;m)pi +1x (1 - ;ax)pi(Zl)

Lmaz @NdV;, sources transmits with ratex, ... The resulting bt pip

. o Ai
algorithm (A6) is given by: =1-05—nw-.
prmax
0, if qi(t) < pm, where J; denotes cost per packet for sourice
0, if ™ <g(t) < Vi, When the queue backlog is between 1 aféef*, we can
N qj(t) < pmex,j #£ i, allow the sources to transmit with some non-zero probability
fii(t) = e pmax < gi(t) < V; (A6) (either fixed or queue state dependent). In this algorithm
’ T (A8), the transmission decisions are given by:
q;(t) > ™, j # i,
R g (t) > Vi 0, if ¢;(t) =0,
We will show in Section VIII that the cost performance of #i(t) = uit) with prob. p;, or (A8)
(A6) is very close to the centralized algorithm, especially as 0 with prob. (1 —p;)  if ¢;(t) > 1,
we increase the threshold$, i =1, 2. In (A8), given that a source transmits, the probability that the

(A6) has a similar strL_Jcture as the algorithm pro_posed_ Bther source transmits is higher comparedAd). On the
[7], where two queues in the relay store packets inCOMiRgher hand, when sources transmit and their queue backlogs
from two sources. If both relay queues are nonempty, tWq |ess thamimay, there might be a mismatch between the
packets, one from each relay queue, are network-coded gfhper of packets transmitted from each source, and the cost

transmitted by the relay. If one of the relay queues is emp%(,L,Br packet might be greater than the optimal vaéueven if
there is no transmission unless the backlogged queue lengfi, sources transmit simultaneously.

exceeds a fixed threshold (the buffer capacity). However, in
[7], the system is not slotted and the scheduling decisions VIII. COMPARISON OFCOSTDELAY TRADE-OFFS

are carried out at the instants of packet arrivals. Betweenwe compare the cost and delay performance of different
two consecutive scheduling instances, at most one packet g&jbrithms summarized in Table I. We assume Poisson traffic
arrive at one of the two sources, and the combined queWfh symmetric arrival rated,; = ), parameter§; = V and
state can change at most by 1. This particular model alloygnsmission rateg < (t) = u™**, i = 1,2. The achievable

a Markov chain analysis for the decoupled source queuggsts are shown in Figures 2 and 3 fot** = 5 and forV =
However, in this paper we assume that the number of packet and 25, respectively. As expected, the centralized case
arrivals per time slot may be arbitrary, and this leads to moggitperforms the individually optimal solutions. The average
complex transitions between the two queue states. costs are high for low arrival rates, since the possibility of

VII. COST SHARING WITH LOCAL QUEUE INFORMATION performing network coding is lower than the case with higher
Next, we assume that sources do not have any informatilor‘%l ds, Wh.e re itis more likely that queues are backlogged and
about éach other's queue backlogs. First, we focus on t s possible 0 perform network COdmg'.AS expected, the
: NS \?erage cost is reduced, as the paramegténcreases.
class of algorithmgA7), where any sourcé does not trans-

. . o Figures 4 and 5 depict the average delay as function of
mit, until the individual queue backlogs exceed a thresho, :
T, and transmits with probability;, if the individual queue {He average cost per packet for different values’ofor the

: X : . centralized optimal problem, the usual energy-delay trade-
backlog is greater thaii. The resulting algorithnfA7) is off is observed (such that the energy cost decreases, as delay
0, if g;i(t) <T, increases), whereas the individual optimization problems may
(A7) deviate from this behavior because sources do not have full

information on each other’s queue backlogs.

Note that the average cost per packet achievedAs)

We assume that the maximum service rates of both sourégsvery close to the centralized algorithi@1l) and the
are identical tou™?*. One restriction orp; is that it should delay is reduced while achieving the near-optimal cost. This
be large enough to ensure that the system operates ureféect is due ta/A6)’s property of having a lower threshold,
negative drift afterg;(t) exceedsmax(u™**,T), i.e., we which causes sources to transmit without having to exceed
needp; > —Ai_. If T > ™, the queueing system canthe original threshold/ (whenever both source queues are
be modeledlwith two states: states with queue backlogs léscklogged) such that the average delay is reduced.
thanpu™2* and states with queue backlogs greater th&f*. Figures 6 and 7 show the performance of algorithms
This leads to a bulk queue system model, where the servigghout queue backlog information. AlgorithrfA7’) is a

f;(t) = < u;(t) with prob.p;, or
0 with prob. (1 — p;) if ¢;(t) >1T,



TABLE |

SUMMARY OF THE PROPOSED COST SHARING ALGORITHMS 1 3
Al Centralized optimal algorithm 0.95f- A
A2 Individually optimal algorithm 0.9
A3 Worst-case response algorithm 085
A4 Best-case response algorithm %

A5 | Dynamic threshold-based algorithin k. 08
with initial transmission sensing 30-75

A6 | Dynamic threshold-based algorithin = 0.7}
with 1-bit queue backlog info S 065

A7 | Algorithm w/ local queue info only,
) 0.6
T = Hmazs Pi = 1= 132

A7" | Algorithm w/ local queue info only, 0.55
T= “pﬂ for varyingp;, i = 1,2 0.5

A8 | Algorithm w/ local queue info only, ' Arrival Rate (packets/time slot)
and w/o thresholdp;, = 1,7 =1,2

Fig. 2. Cost per packet as function of common arrival rateVfoe= 10.

—+—Al||
—©-A2

variant of (A7), where threshold is “==x This illustrates 0.95

the effect of dynamic threshold based on the transmissi 0.9 ——A3M
decision. If there is no information available regarding th _ g5 A4l
gueue backlog of the opponent source, and the thresholc % 0.8 —E-A5||
greater than or equal tp.., the delay-optimal strategy & A6
is to select the lowest threshold,,.., and p; = 1, i.e., 20'75 AT
each source transmits whenever its queue backlog exce g 0.7 g ™ A8

the given threshold. Note that the cost performance is O 0.65}---i-bomeooee Sl Db
accordance with (21). Operating without threshold decreas Y ISR SN SRR B S\ A
the cost for the case without queue backlog informatio P § § "N\
Any increase in the transmission probability overcome %> b o b o b NC
the negative effect of the queue backlog mismatch on t 0505 1 S s
average cost. Yet, the average cost of such an algorithm Arrival Rate (packets/time slot)

significantly higher than algorithrfA6) with one bit queue _ _ _
. . . . Fig. 3. Cost per packet as function of common arrival rateVfoe 25.
state information, and it cannot approach the optimal value,
unless the operating regime is very close to queue saturation.
either have one bit or no information regarding the queue
state of the other source. With only one bit queue infor-
mation, the threshold-based algorithms approach the optimal

In this paper, we considered the problem of minimizingost, whereas the packet delay does not not increase with the
the cost at a relay node that exchanges the incoming packéteshold as fast as the centralized cost-optimal scheme does.
by network coding or routing depending on the availability ofhis leads to new cost-delay trade-offs for network coding.
randomly arriving packets at both sources. The cost is sharedruture work should generalize the model to arbitrary rate
by the sources depending on their rate allocation over thegions. This may further increase the coupling of the source
relay. We considered different levels of source cooperatigiueues by imposing joint constraints on the achievable rates.
and availability of queue state information at the sources.is also crucial to extend the analysis of the cost-delay
First, we derived the centralized control scheme to jointlyade-offs to an arbitrary number of sources communicating
optimize the cost and stable throughput rates. For distributgtough the relay node. This would require more complicated
operation, sources share the cost of network coding for thegtheme of network coding (beyond pairwise packet match-
packets, whereas the residual cost for plain routing is chargegd) depending on the instantaneous backlogs of all sources.
to the individual source with higher rate requirement.
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