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Abstract—We study a distributed algorithm for adapting
transmit beamforming vectors in a multi-antenna peer-to-peer
wireless network. The algorithm attempts to maximize a sum of
per-user utility functions, where each user’s utility is a function
of his transmission rate, or equivalently the received signal-
to-interference plus noise ratio (SINR). This is accomplished
by exchanging interference prices, each of which represents the
marginal cost of interference to a particular user. Given the
interference prices, users update their beamforming vectors to
maximize their utility minus the cost of interference. For a
two-user system, we show that this algorithm converges for a
suitable class of utility functions. Convergence of the algorithm
with more than two users is illustrated numerically.

I. INTRODUCTION

Mitigating interference is critical for efficiently sharing
wireless spectrum. When nodes are equipped with multiple
antennas, the additional spatial degrees of freedom can be
exploited to reduce interference. This paper considers such a
setting, namely an interference channel consisting of multi-
input, single-output (MISO) wireless links. The objective is to
select the beamforming vector and transmission power level
at each transmitter in an attempt to maximize the overall net-
work performance. Performance is measured in terms of the
sum of per user utilities, where each utility is a function of the
transmission rate, or equivalently the signal-to-interference
plus noise ratio (SINR). In a network without centralized
control (e.g., an ad hoc network), maximizing the total utility
is complicated due to the interference among users, which
causes each user’s beamforming vector to affect not only
that user’s utility but the utility of every other user. Solving
this in a scalable manner requires a distributed algorithm with
limited information exchange. Such an algorithm is the focus
of this paper.

The algorithm we study is motivated by the work in [1]
and [2], which consider algorithms for power allocation in
single-antenna wireless networks. These asynchronous dis-
tributed pricing (ADP) algorithms are based on exchanging
interference prices among users1, where an interference price
is a user’s marginal change in utility per unit interference
power. Given the interference prices from the neighboring
users, each user then optimizes his own utility minus the
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1We refer to each transmitter-receiver pair as a “user”.

interference cost to other users. By iteratively updating
interference prices and powers, the algorithms in [1], [2] are
shown to converge under suitable assumptions on the users’
utility functions.

The ADP algorithm for a single-antenna network in [1] can
be directly generalized to a MISO network, as shown in Sec-
tion II. Such an algorithm was previously presented in [3] for
the special case of rate utilities (i.e. a user’s utility is equal to
his transmission rate given by the Shannon capacity formula).
Simulation results shown there with two users indicate that
this algorithm converges to an allocation that is essentially
optimal. However, there is no proof that the algorithm must
converge, and it is not clear how it performs with other utility
functions. Moreover, the convergence proof in [1] for a single
antenna network, which is based on relating this algorithm
to best response updates in a supermodular game, does not
directly generalize to this setting. Likewise, the convergence
proof for the modified algorithm in [2] does not apply here.
For a two user MISO interference channel we prove that
this algorithm does converge under a similar condition as
in [1]. Our initial proof is based on first showing several
properties of the optimal beamforming vectors, which enable
us to re-parameterize the original optimization problem. The
steps in the ADP algorithm can also be written in terms of
these re-parameterized values. After doing this, we show that
the algorithm again corresponds to best response updates
in a supermodular game, under suitable choices of utility
functions. We also give an alternative proof that is based on
defining a different game in which the strategy of each player
is the “interference power” they create at the other user’s
receiver. With this formulation the algorithm also corresponds
to best response updates in a supermodular game.

In terms of related work, in addition to [1], [2], the
algorithms in [4] and [5] also exchange information similar
to interference prices to facilitate distributed power control in
single antenna interference channels. For MIMO interference
channels, the most common approaches that have been stud-
ied for distributed optimization are based on iterative water-
filling (e.g. [6]–[8]). In these approaches each user iteratively
selects their transmit covariance matrix to maximize their
rate given the current interference. Such approaches may
not converge in general or may converge to a rate-pair that
is not Pareto optimal. In [9], it is shown that for a two-



user MISO interference channel, any Pareto optimal rate-pair
can be achieved as a linear combination of a beamformer
corresponding to the Nash equilibrium and the zero-forcing
beamformer. This is closely related to the decomposition
result we give in Section III. However, [9] does not address
how to determine this combination in a distributed manner,
which is our focus here.

In the next section, we give our system model and gen-
eralize the ADP algorithm in [1] to this setting. Section III
contains our main analytical results. Simulation results are
presented in Section IV, and conclusions are given in Section
V.

II. SYSTEM MODEL AND GENERALIZED
ASYNCHRONOUS DISTRIBUTED ALGORITHM

We consider a MISO wireless network with a narrowband
time-invariant wireless channel, in which there are K pairs
of transmitters and receivers, each with N transmit antennas
sharing a single flat fading channel. The received signal for
user i = 1, . . . ,K is given by

yi = vi
†hiixi +

∑
j 6=i

vj
†hjixj + n (1)

where † denotes Hermitian transpose, hij =
[h1
ij , h

2
ij , · · · , hNij ]T , is the channel vector from the i-

th transmitter to the j-th receiver through the N antennas,
xi is the transmitted symbol of user i, n is additive complex
Gaussian noise with variance n0, and vi is the beamforming
vector for user i. Assuming the transmit symbol has unit
variance for all users, the received SINR for each user i can
be written as

γi =
|v†i hii|2

n0 +
∑
j 6=i |v

†
jhji|2

. (2)

The quality of service for each user i is measured via a
utility function ui(γi), which is assumed to be a monotoni-
cally increasing and concave function of the received SINR2.
Our objective is to maximize the total utility over all users’
beamforming vectors {vi}, i.e.,

max
v1,··· ,vK

K∑
i=1

ui

(
|v†i hii|2

n0 +
∑
j 6=i |v

†
jhji|2

)
(P0)

s.t. |vi|2 ≤ Pmaxi for all i = 1, . . . ,K

where Pmaxi denotes a power constraint for user i.
Any locally optimal solution ṽ1, . . . , ṽK of Problem P0

should satisfy the Karush-Kuhn-Tucker (KKT) conditions
[10]. In particular, there must exist unique Lagrange mul-
tipliers λi ≥ 0 associated with each power constraint such

2Equivalently, one can view each user’s utility as a function of his
transmission rate given by the Shannon capacity with interference treated as
noise.

that for all i = 1, . . . ,K:[
u′i

n0 +
∑
j 6=i |ṽ

†
jhji|2

(
hiih

†
ii

)
−
∑
j 6=i

u′j |ṽ
†
jhjj|2

(n0 +
∑
k 6=j |ṽ

†
khkj|2)2

(
hijh

†
ij

)]
ṽi = λiṽi (3)

where u′i denotes the first order derivative of ui(γi) with
respect to γi. Note that u′i is a function of ṽ1, . . . , ṽK but
to simplify notation we do not explicitly denote this.

Following [1], for any given choice of beamforming vec-
tors v1, . . . ,vK, let

πi = −∂ui
∂Ii

=
u′i|v

†
i hii|2

(n0 +
∑
j 6=i |v

†
jhji|2)2

(4)

be the interference price for user i, where Ii =
∑
j 6=i |v

†
jhji|2

is the total interference power for user i, which depends on
the beamforming vectors of all users other than i. Given fixed
interference prices and beamforming vectors for every other
user, suppose that user i then solves the following subproblem

max
vi

ui

(
|v†i hii|2

n0 +
∑
j 6=i |v

†
jhji|2

)
−
∑
j 6=i

πj |v†i hij|2 (Pi)

s.t. |vi|2 ≤ Pmaxi .

It can be seen that if the other users’ interference prices
and beamforming vectors are set at their optimal values,
then the KKT condition of this subproblem matches the i-th
KKT condition for Problem P0. In other words, some locally
optimal action for user i in this subproblem will also be the
same as that user’s action in the globally optimal solution of
Problem P0.

The previous observations lead to a natural generalization
of the ADP algorithm in [1] to this setting. Namely, we allow
each user to iteratively update their beamforming vectors
by solving Problem Pi and then announce new interference
prices. Formally, this algorithm is described as follows:

1) Each user i chooses an initial beamforming vector vi

satisfying the power constraint.
2) Using (4), each user i calculates the interference price

πi given the current beamforming vectors and an-
nounces this price to every other user.

3) Periodically, each user i solves Problem Pi and updates
his beamforming vector, given all the other users’
interference prices {πj}j 6=i.

4) Go to step 2 and repeat.
We refer to this as the MISO-ADP algorithm. Steps 2

and 3 of the algorithm may be performed asynchronously
among the users. Note that each user only announces a
single interference price. In addition to these prices, user i’s
calculations in this algorithm only require knowledge of that
user’s SINR, that user’s received signal power |v†i hii|2, and
the channel gains hij for all j. In particular, there is no need
to know the other users’ beamforming vectors or the channel
gains hkj for k 6= i.

The MISO-ADP algorithm gives a distributed approach
for adapting each user’s beamforming vector with limited



information exchange. However, there are two key questions.
First, how difficult is it to solve the optimization problem
in step 3? Second, does this algorithm converge? From our
previous arguments, it follows that if the algorithm converges,
then the limit point will satisfy the KKT conditions of
Problem P0. Furthermore, if there is a unique solution to
the KKT conditions, then this point will be globally optimal.
Next, we provide answers to these questions for a two-user
interference channel.

III. TWO-USER MISO INTERFERENCE CHANNEL

In this section we focus on the case of K = 2 users.
To begin, we show a key structural property of the solution
to Problem P0, which enables us to re-parameterize this
problem in terms of a single “angle variable” for each user.
We then re-cast the MISO-ADP algorithm in terms of this
parametrization and answer the two questions raised in the
previous section. At last, we provide an alternative proof of
the convergence by introducing interference power.

A. Angle Parametrization

Consider Problem P0 with K = 2 users, so that the opti-
mization variables are v1 and v2. The KKT conditions (3)
for this case can be re-written as:[

u′i

n0 + |ṽ†jhji|2
(
hiih

†
ii

)
−

u′j |ṽ
†
jhjj|2

(n0 + |ṽ†i hij|2)2
(
hijh

†
ij

)]
ṽi = λiṽi,

(5)
for i = 1, 2 and j 6= i.3 This is a nonlinear equation in the
beamforming vectors. However, given any fixed ṽ1 and ṽ2

that satisfy (5), for each i, ṽi must be an eigenvector of the
matrix

Ai =
[

u′i

n0 + |ṽ†jhji|2
(
hiih

†
ii

)
−

u′j |ṽ
†
jhjj|2

(n0 + |ṽ†i hij|2)2
(
hijh

†
ij

)]
with eigenvalue λi. If λi 6= 0, it follows that ṽi must lie in
the span of {hii,hij}. If λi = 0 for some pair of ṽ1 and ṽ2,
we can ignore this possibility. The reason is that since the
power constraint for user i is inactive, either the conclusion
of Proposition 1 (shown below) excludes the possibility that
this pair of ṽ1 and ṽ2 is optimal, or we can simply assume
ṽi = chii with real coefficient because hii is aligned with
hij. In another word, the following argument is still valid.

If hij is orthogonal to hii, it is easy to see that the optimal
beamforming vector ṽi will be aligned with hii and consume
all power, i.e., ṽi = chij, where c is some real constant. If
not, since hij can be expressed as a linear combination of
hii and P⊥hij

hii, where P⊥x y is the orthogonal projection of
vector y onto vector x, and the subspace spanned by hii and
hij is equivalent to the subspace spanned by hii and P⊥hij

hii,
then the optimal ṽi, i = 1, 2, can be written as

ṽ1 = c11h11 + c12P
⊥
h12

h11 (6)

ṽ2 = c22h22 + c21P
⊥
h21

h22 (7)

3In the remainder of this section, we will follow the convention that index
j refers to the interfering user for user i (i.e. j 6= i).

Fig. 1. Illustration of the vectors hii, hij, P⊥hij
hii, vi, v′i, and vi

′′ and
the angles αi and βi.

where the c’s are the combining coefficients. Taking cii =
1 and cij = 0, i 6= j, is conventional (channel-matched)
beamforming, whereas taking cii = 0, cij = 1 is a zero-
forcing approach, which cause no interference to the other
user. Note that in general neither is globally optimal.

¿From now on, we will focus on a general case, in which
hij is not orthogonal to hii, i.e., hii 6= P⊥hij

hii. Later on, it
is easy to verify that our results of parametrization can still
applied to the orthogonal case.

Without loss of generality, we can assume that c12 and c21
are real and nonnegative, but that c11 and c22 are complex
(for the time being). Substituting for the optimal ṽi in the
objective of the original problem gives

Total Utility = u1

(∣∣∣c∗11|h11|2 + c12
(
|h11|2 −

|h†12h11|2

|h12|2
)∣∣∣2

n0 + |c22|2|h†22h21|2

)

+ u2

(∣∣∣c∗22|h22|2 + c21
(
|h22|2 −

|h†21h22|2

|h21|2
)∣∣∣2

n0 + |c11|2|h†11h12|2

)
. (8)

Proposition 1: For each user i = 1, 2, if hii is not aligned
with hij, i.e., hii 6= ahij, for any real coefficient a, then the
corresponding power constraint is binding at optimality, i.e.,
|ṽi|2 = Pmaxi .

The proof follows from the observation that user i can
increase its power without increasing interference to user j
by adjusting cij . See Appendix A for more details.

Proposition 2: There exists an optimal beamforming vec-
tor for which the coefficients c11, c12, c22 and c21 are all real-
valued and nonnegative. In another word, ṽi is in the convex
cone spanned by hii and P⊥hij

hii, shown in Fig. 1.



The proof is based on checking the KKT conditions for the
optimal beamformer. Namely, we first show that the optimal
beamformer for user i, which maximizes his signal power
given that the interference power to user j is fixed, can be
achieved with real cii and cij . Then we show that these
coefficients are nonnegative by excluding the possibility that
the optimal ṽi is not in the convex cone spanned by hii and
P⊥hij

hii. See Appendix B for more details.
According to Proposition 2, the original optimization prob-

lem is equivalent to finding the optimal nonnegative and
real coefficients c11, c12, c22 and c21 that maximize the total
utility. Propositions 1 and 2 imply that we can characterize ṽi

with a single angle αi. This angle is the same as that in real
space, i.e., we view an N -dimensional complex vector as a
2N -dimensional real vector. If we define the angle between
two complex vectors x and y as α, denoted by α ≡ x ∧ y,
then we have

cosα =
Re{x†y}
|x||y|

. (9)

Using this definition, we define αi as the angle between
the vector ṽi and P⊥hij

hii. Since the norm of ṽi is fixed, and
ṽi is between hii and P⊥hij

hii, we have αi ∈ [0, βi], where
βi is the angle between hii and P⊥hij

hii. This is illustrated in
Fig. 1.

We have 
αi = vi ∧ P⊥hij

hii

βi − αi = vi ∧ hii

βi = hii ∧ P⊥hij
hii

and can therefore write

cii =
1√

|hii|2 − |P⊥hij
hii|2

sinαi (10)

cij =
1

|P⊥hij
hii|

cosαi −
1√

|hii|2 − |P⊥hij
hii|2

sinαi. (11)

Substituting for the coefficients c’s in (8) gives4

Total Utility =u1

(
|h11|2 cos2(β1 − α1)
n0 + |h21|2 sin2 α2

)
+ u2

(
|h22|2 cos2(β2 − α2)
n0 + |h12|2 sin2 α1

)
(12)

and the maximization is over α1 and α2.

B. Parameterized Asynchronous Distributed Algorithm

With the previous parametrization, we restate the utility
maximization problem as

max
α1,α2

u1

(
|h11|2 cos2(β1 − α1)
n0 + |h21|2 sin2 α2

)
+ u2

(
|h22|2 cos2(β2 − α2)
n0 + |h12|2 sin2 α1

)
s.t. αi ∈ [0, βi] i = 1, 2 (Pa)

4Here, for simplicity, we assume unit power constraints. You can also
view it as Pmax

i is absorbed by channel vector h.

where βi = hii ∧ P⊥hij
hii. We can now apply the distributed

algorithm proposed in Section I by replacing variables vi’s
with αi. The resulting subproblem for each user is

max
αi

ui

(
|hii|2 cos2(βi − αi)
n0 + |hji|2 sin2 αj

)
− πj |hij|2 sin2 αi (Pai)

s.t. αi ∈ [0, βi].

The objective function can be interpreted as a payoff function
in a non-cooperative game. That is,

si(αi;αj , πj) = ui

(
|hii|2 cos2(βi − αi)
n0 + |hji|2 sin2 αj

)
−πj |hij|2 sin2 αi,

(13)
where πj is the interference price announced by user j given
by

πj = −∂uj
∂Ij

= u′j
|hjj|2 cos2(βj − αj)
(n0 + |hij|2 sin2 αi)2

. (14)

The parameterized asynchronous distributed pricing algo-
rithm is described as follows:

1) Each user i (1 or 2) chooses an initial angle
α0
i ∈ [0, βi] and an initial interference price π0

i ∈
[0,max{u′i}

|hii|2
n2

0
].

2) At each time n, one user i is randomly selected to
maximize its payoff function si(αi) and update its
angle αi, given the other user’s angle αj and prices
πj , j 6= i, i.e.,

αi(n+ 1) = argmax
αi∈[0,βi]

si(αi;αj(n), πj(n)). (15)

3) Each user i calculates the new interference price πi
given the current angles α1,2 and announces it to the
other user.

4) Repeat from step 2.
As in [1], we can view the distributed algorithm as a

noncooperative game, denoted by G, in which there are four
players corresponding to {α1, α2, π1, π2}, and each of them
maximizes its own payoff function. The payoff function for
αi is given in (13), while the payoff function for πi is

sπi = −
(
πi − u′i

|hii|2 cos2(βi − αi)
(n0 + |hji|2 sin2 αj)2

)2

(16)

in order that interference price is always updated according
to (14).

Proposition 3: The game G can be viewed as a supermod-
ular game with transformed strategies if −u

′′
i γi
u′
i
∈ (0, 1], or

−u
′′
i γi
u′
i
∈ [1, 2], for both i = 1, 2, where γi is the received

SINR of user i.
Proof: In order to show a game is supermodular, we

need to verify: a) the strategy space for each player is a
nonempty and compact sublattice; b) each payoff function is
continuous in all players’ strategies; c) each player’s payoff
function is supermodular in his own strategy; and d) each
player’s payoff function has increasing differences between
any component of his own strategy and any component of any
other’s strategy. For the game G, conditions a) - c) are trivial
because each player’s strategy space is one-dimensional.



Condition d) does not hold with the original definition of
strategies. However, it can be checked that if −u

′′
i γi
u′
i
∈

(0, 1], then G is supermodular in the transformed strategies
(α1,−α2, π1,−π2); if −u

′′
i γi
u′
i
∈ [1, 2], then G is supermod-

ular in the transformed strategies (α1, α2,−π1,−π2).
¿From Theorem 1 in [1], we conclude that the distributed

pricing algorithm converges under the following conditions.
Corollary 1: For a two-user MISO network, if both users’

utility functions satisfy −u
′′
i γi
u′
i
∈ (0, 1] (or −u

′′
i γi
u′
i
∈ [1, 2])

and the distributed algorithm is initialized with the smallest
(or largest) element in its transformed strategy space, then the
strategies5 monotonically converge to the component-wise
smallest (largest) Nash Equilibrium (NE) which corresponds
to a solution to the KKT condition for the original problem.

Specifically, if −u
′′
i γi
u′
i
∈ (0, 1], the smallest element in

the strategy space is (α1 = 0, α2 = β2, π1 = 0, π2 =
max{u′2}

|h22|2
n2

0
), while the largest element is (α1 = β1, α2 =

0, π1 = max{u′1}
|h11|2
n2

0
, π2 = 0). The initial strategies are

similar when −u
′′
i γi
u′
i
∈ [1, 2]. Since the theorem in [1] only

shows that the strategies are eventually bounded component-
wise by the smallest and largest NE, convergence is not
guaranteed if each user starts from an arbitrary strategy (se-
lection of beamformers). In other words, without excluding
the possibility that there are multiple NE’s, to guarantee
convergence we must carefully select the initial strategy.

Now, we will show how to solve the subproblem Pai
efficiently, i.e., optimize the payoff function for αi. Taking
the derivative of si in (13) over αi, we obtain

∂si(αi)
∂αi

=u′i
2|hii|2 cos(βi − αi) sin(βi − αi)

n0 + |hji|2 sin2 αj

− πj |hij|2 sin 2αi
=2u′iγi tan(βi − αi)− πj |hij|2 sin 2αi

where u′i and γi (SINR) are both functions of αi. It is easy
to check that the derivative is positive at αi = 0 and negative
at αi = βi. Therefore, the optimal solution is not binding.
Therefore, we only need to solve the following equation

2u′iγi tan(βi − αi) = πj |hij|2 sin 2αi (17)

which is easier than solving subproblem Pi with an N -
dimensional variable, although no closed-form solution is
available.

Furthermore, if −u
′′
i γi
u′
i
> 1, i.e., ∂u′iγi

∂γi
= u′′i γi + u′i < 0,

then we know u′iγi is monotonically decreasing as γi in-
creases, which implies that u′iγi decreases as αi increases.
Therefore, 2u′iγi tan(βi −αi) is a monotonically decreasing
function. Then, it is obvious that the solution to (17) is unique
and the payoff function si(αi) is quasi-concave. The utility
function satisfying −u

′′
i γi
u′
i
∈ [1, 2] fits into this case.

5Note that, when optimizing the payoff function, if the optimal solution
is not unique, both players should pick either the largest (in the transformed
strategy space) maximizer or the smallest one uniformly.

For a two-user system, the problem can be further simpli-
fied if the utility function has the form of θi log(γi). Then,

Total Utility = log
(

[|h11|2 cos2(β1 − α1)]θ1

[n0 + |h12|2 sin2 α1]θ2

)
+ log

(
[|h22|2 cos2(β2 − α2)]θ2

[n0 + |h21|2 sin2 α2]θ1

)
.

After reorganizing, the terms containing α1 and α2 separate.
Therefore each user only needs to optimize the corresponding
term regardless of the other’s beamformer, which means no
iteration is needed. The optimal beamformer for user i in this
case is the solution to

2θi tan(βi − αi) = θj
|hij|2 sin 2αi

n0 + |hij|2 sin2 αi
. (18)

The angle parametrization for the two-user MISO system
therefore enables a distributed algorithm, which uniquely
determines the optimal beamforming vector for each user.
Furthermore, the computation in every iteration becomes
relatively simple. In Section IV, we compare the original
(N -dimensional) and parameterized asynchronous distributed
algorithms numerically in terms of convergence rate.

C. Alternative Game formulation

In this section we discuss an alternative game formulation
of the original MISO-ADP algorithm (discussed in Section II.
Using this formulation, we can can again show that for
suitable utility functions, the two user algorithm corresponds
to best response updates in a supermodular game. Note
that the “natural” game formulation for the original MISO-
ADP algorithm does not correspond to a supermodular game
because the strategy space for each user’s beamformimg
vector is not a sublattice. However, in such a game the only
aspect of user i’s strategy that effects user j’s strategy choice
is the received interference power. Motivated by this, we
consider a game where the action chosen by each user is
not the beam-forming vector but the interference power at
the other user’s receiver.

More precisely, let Iij = |v†i hij|2 denote the interference
power from transmitter i to receiver j. Problem Pi in Sec-
tion II is equivalent to the following problem:

max
Iij≥0

Sij(Iij) (19)

where

Sij(Iij) := max
vi

ui

(
|v†i hii|2

n0 + Iji

)
− πjIij (PIij )

s.t. |vi|2 ≤ Pmaxi

|v†i hij|2 ≤ Iij (j 6= i).

Problem PIij can be viewed as finding the optimal beam-
former satisfying not only the power constraint but also the
interference constraint set by Iij . Therefore for a given value
of Iji an πj , choosing Iij to maximize Sij is equivalent to
selecting a beam vi to maximize Problem Pi. Also note that
for any such choice of Iij it must be that the second constraint



in Problem PIij is tight and so Iij will in fact be the actual
interference power received by user j.

Now we can construct a non-cooperative game G′ with
four players corresponding to the variables Iij , Iji, πi and
πj . The pay-off of each Iij-player is given by Sij . The payoff
function of each πi-player is again given by

Sπi(πi) = −

(
πi − u′i

(
|v†i hii|2

n0 + Iji

)
|v†i hii|2

(n0 + Iji)2

)2

,

which is the same as in the game G from the previous
section..

Note that now the choice of vi now does not correspond to
the action of any player in the game, but can still be viewed
as an implicit function of corresponding interference power
and prices.

Proposition 4: The game G′ is a supermodular game with
the transformed strategies (Iij ,−Iji, πi,−πj) if −u

′′
i γi
u′
i
∈

(0, 1], or (Iij , Iji,−πi,−πj) if −u
′′
i γi
u′
i
∈ [1, 2], for both

i = 1, 2, where γi is the received SINR of user i.
The proof of this again follows from verifying the four

conditions listed in the proof of Proposition 3. The details
are given in Appendix C.

Based on Proposition 4, as long as the beamformers and
interference prices of the original MISO-ADP algorithm
are initialized to the smallest (or largest) element in the
transformed strategy space6 for G′, then the algorithm will
converge. We summarize this in the following corollary.

Corollary 2: For a two-user MISO network, if both users’
utility functions satisfy −u

′′
i γi
u′
i
∈ (0, 1], and the original

MISO-ADP algorithm is initialized with (v1 = 0,v2 =
c2h21, π1 = 0, π2 = max{u′2}

|h22|2
n2

0
) or (v1 = c1h12,v2 =

0, π1 = max{u′1}
|h11|2
n2

0
, π2 = 0), where c1 and c2 are real

coefficients chosen to that the beamformer has maximum
power, then the algorithm converges to a Nash Equilibrium
that corresponds to a solution to the KKT condition for
the original problem. If both users’ utility functions satisfy
−u

′′
i γi
u′
i
∈ [1, 2], the same results hold result with a different

initialization.

IV. SIMULATION RESULTS

In this section, we show some typical performance plots
for both the generalized asynchronous distributed algorithm
in Section II and the parameterized asynchronous distributed
algorithm in Section III.

A. Generalized Asynchronous Distributed Algorithm

In the system there are 5 pairs of transmitters and receivers
with 4 transmit antennas each. The users are randomly
placed within a square of 1 km × 1 km. Each entry of the
channel vector is assumed to be an iid complex Gaussian
random variable, where the variance is determined by the
distance attenuation. Specifically, the variance of both real

6If vi = 0, then the corresponding interference power is zero. If vi =
chij with appropriate real scalar c to reach the maximum power, then Iij
reaches its maximum.

(a) The generalized asynchronous distributed algorithm.

(b) The parameterized asynchronous distributed algorithm.

Fig. 2. Illustration of the performance of two distributed algorithms.

and imaginary parts is σ2(d) = σ2
0( d

100 )−4, where σ2
0 is

the reference variance at a distance of 100 m, which is the
minimum separation between any transmitter and receiver,
and d is the separation in meters. We also assume the
normalized maximum transmit power for each user is one,
σ2

0 = 10−7, and the variance of noise is 10−9 so that the
average received SNR at 100 m is 200 (about 23 dB). For
these results the utility function is u(γ) = log(1 + γ).

Although in Section II, we are not able to show the conver-
gence of the generalized asynchronous distributed algorithm,
it is observed to converge numerically in all cases simulated.
Fig. IV-A shows total utility versus number of iterations for a
particular model realization. The algorithm starts from a ran-
dom selection of beamformers, and converges to a stationary
point, which is an NE of the corresponding noncooperative
game. To check whether the limit point is indeed optimal,
we used MATLAB to solve the global optimization problem



starting from the limit point achieved by the algorithm. The
total utility obtained in this way is indicated by the red dash-
dot line in Fig. IV-A, which matches the limit point. Hence
we conclude that the generalized asynchronous distributed
algorithm does converge to a local optimum.

B. Parameterized Asynchronous Distributed Algorithm

Here, we consider a two-user MISO system with the
same setting as in the previous subsection. Applying the
parameterized asynchronous distributed algorithm proposed
in Section III, we optimize the total utility iteratively. The
numerical results show that the algorithm still converges even
if we start from any arbitrary angle satisfying the constraints.
As in Fig. IV-A, Fig. IV-A also shows total utility versus
number of iterations for a particular model realization, which
illustrates the convergence of the algorithm. Furthermore,
we compare it with the generalized asynchronous distributed
algorithm. Both algorithms start from random beamformers
or angles7. It is easy to see that the parameterized asyn-
chronous distributed algorithm yields a higher initial total
utility, and it converges more rapidly. The main reason is
because we narrow the domain of potential beamformers by
angle parametrization. The preceding observation is quite
typical after trying many model realizations. When aver-
aged over 100 model realizations, the results show that
it takes 4.28 iterations for the parameterized asynchronous
distributed algorithm to converge8, while for the generalized
asynchronous distributed algorithm, it takes 6.0 iterations for
convergence. In Fig. IV-A, we also show the total utility with
the (suboptimal) zero-forcing and channel-matched filters.

V. CONCLUSIONS

We have presented two distributed algorithms for selecting
each user’s beamforming vector to maximize the total utility.
The generalized asynchronous distributed algorithm is an
extension of the asynchronous distributed pricing algorithm
in [1]. (See also [3].) In that algorithm, each user announces
an interference price, which represents his current marginal
cost per unit interference power. After exchanging inter-
ference prices, users update their beamforming vectors by
maximizing a local payoff function. Although we have not
proved that this algorithm converges with more than two
users, numerical results indicate that it performs quite well.
For a two-user system we have presented two proofs that this
algorithm converges: one based on an angle parameterization
and one based on viewing interference power as the strategic
variable.

Unfortunately, both the angle parametrization we apply in
Section III and the proof using interference power appear
to be difficult to generalize to multi-user systems. An open
issue, then, is how to prove the convergence of the gen-
eralized asynchronous distributed algorithm for multi-user

7Since an arbitrary beamforming vector vi may not lie in the convex cone
spanned by hii and hii, we cannot ensure that the two algorithms start with
the same beamformers.

8Numerically, we define convergence as the minimum number of iterations
for which the difference in total utility between two consecutive iterations
is no greater than some threshold (0.1% in our simulation).

systems. Furthermore, it still unknown if the optimum is
unique. Extensions to MIMO channels are also interesting
for future work.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: Suppose that the optimal |ṽi|2 < Pmaxi for some
i. Then fixing the corresponding coefficient cii, which means
the interference power to the other user will be fixed, we can
always increase user i’s signal power by adjusting cij . That

is, if Re{c∗ii|h11|2 + cij
(
|hii|2−

|h†
ij
hii|2

|hij|2
)
} ≥ 0, increase cij

within the power constraint; otherwise , decrease cij . Note
that the assumption that hii is not aligned with hij implies

|hii|2 −
|h†

ij
hii|2

|hij|2 > 0, i.e., cij has a non-trivial form.

APPENDIX B
PROOF OF PROPOSITION 2

Proof: Consider the optimal beamforming vector ṽi for
user i. The result is trivial if hii is aligned with hij or it is
the case that either cii = 0 or cij = 0 at optimality. Then
suppose that |cii| > 0 and cij > 0, and write cii = c′iie

jθii ,
where c′ii is real and positive.

If we fix c′ii and optimize over θii and cij , then we claim
that the optimal θii is 0 or π. This is because when c′ii is
fixed, the interference power to user j is |cii|2|h†iihij|2, which
is fixed, and θii and cij can only influence the signal power
of user i. Therefore this problem reduces to:

max
cij , θii

|v†i hii|2

s.t. |vi|2 = Pmaxi

which can be further simplified as

max
cij , θii

c2ij
|P⊥hij

hii|2

|hii|2
+ 2c′iicij cos θii

s.t. c2ij + 2c′iicij cos θii = constant.

The KKT conditions are
2cij

|P⊥hij
hii|2

|hii|2 + 2c′ii cos θii + λi(2cij + 2c′ii cos θii) = 0
−2c′iicij(1 + λi) sin θii = 0
c2ij + 2c′iicij cos θii = constant

where λi is the Lagrange multiplier, and the unique solution
is sin θii = 0, i.e, θii = 0 or π. Therefore cii is real.

Now, we can assume all these coefficients are real. Then
we want to exclude the possibility that the optimal ṽi is not
in the convex cone spanned by hii and P⊥hij

hii. Without loss
of generality, we can assume cii > 0 and only consider the
right half-plane in Fig. 1. Since |vi|2 = Pmaxi , we know
the angle between vi and hii will uniquely decide its own
signal power, while the angle between vi and hij will decide
the interference power to user j. It can be shown that if vi

is out of the cone (e.g., v′i or v′′i in Fig. 1) it cannot be
a candidate of the optimal ṽi because we can always find
another vi which will yield either a higher signal power or
a lower interference power.



APPENDIX C
PROOF OF PROPOSITION 4

Proof: For this proof we again verify conditions a)-
d) given in the proof of Proposition 3. Conditions a) - c)
are trivial because each player’s strategy space is still one-
dimensional. For condition d), we need to make sure increas-
ing differences are satisfied between any pair of transformed
strategies. If −u

′′
i γi
u′
i
∈ (0, 1], i.e., u′′i γi + u′i ≥ 0, in order

to show increasing differences hold with the transformed
strategies (Iij ,−Iji, πi,−πj), we need to check the following
four inequalities for any strategy choices Iij < Iij , Iji < Iji,
and πi < πi:

(a) Sij(Iij ;πj)−Sij(Iij ;πj) ≤ Sij(Iij ;πj)−Sij(Iij ;πj)

(b) Sij(Iij ; Iji)−Sij(Iij ; Iji) ≤ Sij(Iij ; Iji)−Sij(Iij ; Iji)

(c) Sπi(πi; Iij)−Sπi(πi; Iij) ≥ Sπi(πi; Iij)−Sπi(πi; Iij)

(d) Sπi(πi; Iji)−Sπi(πi; Iji) ≤ Sπi(πi; Iji)−Sπi(πi; Iji)

Inequality (a) is equivalent to

−Iij(πj − πj) ≤ −Iij(πj − πj)

which is obviously true.
Let s denote the optimal signal power of user i by solving

Problem PIij given Iij , and s denote the optimal signal
power given Iij . Then inequality (b) can be expressed as

ui

(
s

n0 + Iji

)
− ui

(
s

n0 + Iji

)
≤ ui

(
s

n0 + Iji

)
− ui

(
s

n0 + Iji

)
,

which can be further written as∫ Iji

Iji

− u′i
(

s

n0 + Iji

)
s

(n0 + Iji)2
dIji

≤
∫ Iji

I
ji

−u′i
(

s

n0 + Iji

)
s

(n0 + Iji)2
dIji. (20)

Using the assumption that u′′i γi + u′i ≥ 0 implies that

−u′i
(

s

n0 + Iji

)
s

(n0 + Iji)2

≤ −u′i
(

s

n0 + Iji

)
s

(n0 + Iji)2
(21)

Therefore, (20) holds and hence so does inequality (b).
Similar to inequality (b), we can show inequality (c) holds

by using (21).
Since the optimal vi only depends on Iij , then Sπi can be

viewed as a continuous function with respect to πi and Iji.
Furthermore, using that ∂Sπi

∂πi∂Iji
≤ 0, we know inequality (d)

holds.
Similar arguments apply for the case where −u

′′
i γi
u′
i
∈ [1, 2].
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