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Abstract— In models of observational learning among
Bayesian agents informational cascades can result, in which
agents ignore their private information and blindly follow
the actions of other agents. This paper considers the im-
pacts of two types of errors in such models: action errors,
where agents occasionally choose sub-optimal actions and
observation errors, where agents observe the action of
another agent incorrectly. We investigate and compare the
impact of these two types of errors on the agents’ welfare
and probability of wrong herding. Using a Markov chain
model, we derive the net payoff of each agent as a function
of his private signal quality and the error rates. A main
result of this analysis is that in certain cases, increasing
the observation error rate can lead to higher welfare when
the number of agents is large.

I. INTRODUCTION

Consider a recommendation system where agents
sequentially decide whether to buy an item, for which
they have some prior knowledge of its quality/utility.
Later agents can potentially benefit from the information
obtained by observing their predecessors’ choices. Such
systems, however, can lead to herding. Herding or an
informational cascade occurs when it is optimal for the
agents to ignore their own signals and follow the actions
of others. In addition to the possibility of herding to the
wrong conclusion, an informational cascade results in a
loss of information about the private signals held by all
the agents following the onset of herding.

The study of herding was initiated in the seminal
papers [6], [7], and [8], which cast this in an obser-
vational Bayesian learning framework. In such models,
each individual has some prior knowledge or signal
about some payoff-relevant state of the world generated
according to a commonly known probability distribution.
Individuals make decisions sequentially and observe
exactly the decisions made by all previous agents. Given
these observations and their own signals, agents are
assumed to be Bayesian rational, i.e., they choose the
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action that reflects their posterior belief about the state
of the world. Assuming bounded private signals, these
assumptions lead to a positive probability of herding
toward the wrong choice.

In this paper we consider a similar model as in [6]-
[8] except we introduce two sources of errors: action
errors and observation errors. Action errors capture
the more realistic assumption that an agent’s action
may not be perfectly rational. For example, even highly
sophisticated decision makers such as investors ([18])
and consumers ([17]) can make mistakes in choosing
binary actions (investing in stocks or purchasing goods).
Indeed, there is a long history of introducing noise as a
way of relaxing the assumption of perfect rationality (see
e.g. [5], [9]) resulting in agents having so-called “noisy
best responses.” We follow this approach here, e.g. we
assume that all agents form exact posterior beliefs but
then choose the incorrect action with a given probability.
Further this probability is known to all other agents and
is assumed to be the same for all agents.

In fact, the reasons underlying human irrationality
have been well argued in [13] where the authors pre-
sented the numerous cognitive deficiencies that could ac-
count for human systematic deviation from the perceived
normative behaviors. Further, from the viewpoint of
Prospect Theory ([3]), the action error can also be argued
to be a consequence of inconsistency in preferences
when agents tend to act differently under the possibilities
of gains (facing a correct herding) and losses (being in
a wrong herd). Finally, such an optimality deviation has
also been used for equilibrium selection, in particular,
for trembling-hand perfection equilibrium ([2]).

We also consider observation errors, namely each
agent’s observations are not a perfect replica of the
previous agents actions. More precisely, we consider a
model where each agents actions are recorded for all
subsequent agents to see, but this record is subject to
error, again with the statistics of the error process known
to all agents. As an example, this could model a setting
where agents are asked to report their decisions on a web
site and agents occasionally misreport. Alternatively, this
could result from either strategic agents or a social plan-



ner who would manipulate the actions history toward
their benefits.

In summary, our model assumes that agents can make
errors in choosing their actions resulting in action errors,
and, in addition, the information history of past actions
can also be in error leading to observation errors. The
objective then is to study and compare the effect of these
two types of errors in the type of Bayesian learning
model considered in [6]-[8]. To this end, we develop
a Markov chain model that we use to analyze the
probability of herding and the expected pay-off of each
agent as a function of the error-rates and signal quality.
Our results demonstrate a counter-intuitive phenomenon:
for certain parameters, the agents’ total payoff can be
increased by increasing the errors rate in the observation
process. The extent of this phenomenon and the amount
of noise to be added depend on the agents’ signal
quality and the total amount of noise (function of action
and observation errors to be clearly specified later on)
already present in the model.

Other than the addition of errors, we retain the rest of
the model from [6]-[8]: individuals take actions sequen-
tially, agents observe all past actions and each agent’s
private signal has a bounded likelihood ratio between the
two alternatives. More general models of observational
learning have been studied in the literature without errors
(e.g. [10], [11], [15], [16]). For Bayesian learning, the
work in [11] shows that allowing for unbounded private
signals can prevent herding from occurring and the work
in [15] considers more general information structures as
well as allows for unbounded signals.

Another strand of work related to our model of
action errors are models that allow for heterogeneous
preferences among the agents (e.g. [11], [14], [19]).
In these models agents have different types, which are
private information. As argued in [11], from the view
of other agents, a set of agents having a different type
is equivalent to some agents randomly choosing their
actions as in our model. In this case, in [11] it shown
that herding may still occur which is consistent with our
model. Further, compared to [11], we give a complete
characterization of the impact of such errors and also
allow for observation errors.

This paper is organized as follows. In Section II we
first develop a version of the model in [6] that allows for
both action and observation errors. We study the effect
of the two types of errors in Section III and model this
as a Markov chain. In Section IV, we study how the
probability of herding and the agent welfare vary as
a function of the noise level and signal qualities. We
conclude in Section V.

II. MODEL

We consider a model similar to [6] in which there is
a countable population of agents, indexed i = 1, 2, . . .
with the index reflecting both the time and order of
actions of the agents. Each agent i has an action choice
Ai of saying either Yes (Y ) or No (N ) to a new item.
The true value (V ) of the item can be either 0 (bad) or
1 (good); both possibilities are assumed to be equally
likely. The agents are Bayes-rational utility maximizers
whose payoff structure is based on the agent’s choice of
action and the true value of the item. If an agent chooses
N , his payoff is 0. On the other hand, if he chooses Y , he
faces a cost of C = 1/2 and two possibilities depending
on the true value of the item: his gain is 0 if V = 0 and
1 if V = 1. Thus, the ex-ante payoff of each agent is
E[V ] − C = 0. To reflect the agents’ prior knowledge
about the true value of the item, we assume that each
agent i receives a private signal Si through a binary
symmetric channel (BSC) with crossover probability
1−p, where 1/2 < p < 1. (See Fig. 1.) Thus, the private
signals are informative, but not revealing. Note also that
the likelihood ratios of the value of the item based on the
private signal remains bounded. We further assume that
each agent i makes a one-time action Ai based on his
own private signal Si and the observations O1, . . . , Oi−1
of all previous agents’ actions A1, . . . , Ai−1.
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Figure 1: The BSC over which agents receive signals.

It was shown in [6] and [12] that when agents are
rational and observations are perfect (i.e., Oi = Ai), this
model exhibits a herding phenomenon. Herding happens
when an agent chooses to follow his predecessor’s action
regardless of his own private signal. Here, we instead
consider a noisy model where the noise appears as a
result of two types of error:

1) Every agent takes a non-optimal action with prob-
ability ε1, where ε1 ∈ (0, 1/2). We call this action
error;

2) Later agents’ observations are noisy versions of
their predecessors’ actions. We call this observa-
tion error. For simplicity, this error is modelled
by passing every action Ai through another BSC
with crossover probability ε2 ∈ (0, 1/2).

Oi =

{
Ai, with probability 1− ε2.
Ai, with probability ε2,

(1)



We further assume that each agent reports his action
to a public database which is available to all successors.
The added noises reduce the dependence of every agent’s
decision on the predecessors’ choices and drives him
toward using his own signal.

III. HERDING AND ERROR THRESHOLDS

The first agent always follows his private signal since
no observation history is available. Starting from the
second agent, every agent i considers his private signal
Si and the observations O1, ..., Oi−1. Let the informa-
tion set of agent i be Ii = {Si, O1, ..., Oi−1}. Based on
Ii, agent i will update his posterior probability denoted
as γi,Ii = Pr[V = 1|Ii] using Bayes’ formula. If this
posterior probability is greater than the cost C, the agent
will choose Y . If γi,Ii is less than C, the agent i will
declare N . Finally, if γi,Ii equals the cost, then agent i
follows his private signal.1

In contrast to the model in [6], where the second agent
has 50% of the chance creating a herd, in our model
he always follows his own signal. However, depending
on the action error and the observation error, this will
not be the case starting from the third agent. Let us
define ε as the total amount of error introduced in the
information set of the agents: with probability 1 − ε,
an agent sees the actual optimal action of each of his
predecessors. It follows from the description in Section
II that ε = ε1(1−ε2)+(1−ε1)ε2. As the total amount of
error ε introduced into the model is increased, the index
of the first agent who can herd also increases as shown
in the following lemma.

Lemma 1. An agent k ≥ 3 will never herd if the noise
level ε satisfies ε ≥ ε∗(k, p), where:

ε∗(k, p) =
1− ( 1−p

p )
k−2
k−1

1− ( 1−p
p )

k−2
k−1 + ( 1−p

p )
−1
k−1 − ( 1−p

p )
. (2)

In other words, if ε satisfies the condition in this
lemma, there is no possible information set for agent k,
under which it would ignore its own signal. The proof
of this follows from direct calculation of γi,Ii . Fig. 2
shows the thresholds ε∗(k, p) for different values of k
and p ∈ (1/2, 1).

1This differs from [6], where it is assumed that indifferent agents
randomly choose one action. Our assumption simplifies the analysis
but does not qualitatively change the conclusions.
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Figure 2: Thresholds for ε

From (2) we can obtain some useful insights about the
properties of the threshold ε∗(k, p). First, ε∗(k, p) is an
increasing function of k, and as k →∞, ε∗(k, p)→ 1/2
for all values of signal quality p ∈ (1/2, 1). Later agents
have a higher likelihood of herding and such effects can
be countered if the whole model is noisier. In the limit,
if ε = 0.5, no information is passed through. In this
case, agents only use their own signals and herding is
prevented. However, no learning occurs either, and the
ex-post payoff of each agent remains 2p−1

4 . Secondly,
ε∗(k, p) is a decreasing function in p ∈ (1/2, 1); as p→
1, ε∗(k, p) → 0. This agrees with the intuition that the
more accurate the private signal, the less likely it is for
herding to occur in the “wrong” direction. Notice also
that the threshold curves are relatively flat for a wide
interval of p and only drop quickly when p is sufficiently
close to 1. This means that even if the private signal
quality is very high, with an intermediate level of noise
herding may still occur for most agents.

A. Consequences of noisy observations

In this section we outline some basic properties of
herding with action errors and observation errors. These
naturally extend properties for the noiseless case shown
in [6], [12] and so we omit detailed derivations.

Property 1. Until herding occurs, each agent’s
Bayesian update depends only on their private signal
and the difference in the number of Y ’s and N ’s in the
observation history.

In other words, the difference in the number of Y ’s
and N ’s is a sufficient statistic for the observation
history; we denote this quantity by #Y ′s−#N ′s. This
follows from the symmetry of the signal quality and the
two types of noises, which enables each agent to “cancel
out” opposite observations.

Property 2. Once herding happens, it lasts forever.

The reason for this phenomenon is that when herding
starts, agents stop using their private signals and thus
provide no more information to their successors. The
successors are left in the same situation as the first agent



who started herding and thus have the same optimal
action choice.

Property 3. Assume that ε∗(k, p) ≤ ε < ε∗(k + 1, p).
At any point in the process, if |#Y ′s−#N ′s| ≥ k,
herding will start and all subsequent observations will
be ignored by the subsequent agents.

This is shown by using Properties 1 and 2. Property 3
helps establish a simple finite-state birth-death Markov
chain for our model as presented in the next section.
Note also that herding occurs with probability one in
our model and with non-zero probability this herding
will be in in the “wrong” direction.

B. Markov analysis of herding
By the symmetry of the model, first consider the

case V = 1. From the previous section, for each agent
who has not herded, the observations history can be
summarized by (#Y ′s − #N ′s). Thus, viewing each
agent as a time-epoch, we can consider the agent’s
observation as a state of a finite-state discrete-time
Markov chain (DTMC). Each state i represents values of
(#Y ′s−#N ′s) that an arbitrary agent may see before
making his decision. Note that the first agent starts at
state 0 since no observation history is available.

For the rest of the paper, assume ε∗(k, p) ≤ ε <
ε∗(k + 1, p), so that an agent will not herd unless he
observes that |#Y ′s −#N ′s| = k. Since herding lasts
forever once it starts, the state space of this Markov
Chain is {−k,−k + 1, ..., 0, ..., k − 1, k} with states ±k
being absorbing. Thus, the event that an agent n faces
the herd toward Y (or N ) actions is equivalent to the
event that the state at the time n − 1 is k (or −k).
The probability of moving one step to the right is the
probability that one more Y is added to the observation
history, i.e., a = Pr[Oi = Y |V = 1] = (1− ε)p+ ε(1−
p) > 1/2. Likewise, the probability of moving one-step
to the left is 1−a. Hence, this Markov chain is a simple
random walk with a drift to the right as shown in Fig. 3.

-k -k+1 kk-10 1-1
a

1-a1

1aaaa

1-a 1-a 1-a 1-a

Figure 3: Transition diagram of the random walk when V=1.

The state transition matrix of this MC is given by

Q =


1 0 0 ... 0 0 0

1− a 0 a ... 0 0 0
. . . . . . .
0 0 0 ... 1− a 0 a
0 0 0 ... 0 0 1

 (3)

Since a > 0.5, Q is a row stochastic matrix with
a drift to the right. We will use methods developed
in [1] to calculate the probability of being at either
absorbing state at any given time; since the agent indices
correspond to the time index, this yields the probability
of herding of each agent. Assume that the process starts
at state i. Let u∗i,n, v

∗
i,n be the probabilities of being at

the left wall, −k, and the right wall, k, at the nth step,
respectively. Let ui,n, vi,n be the probabilities of hitting
the left wall and the right wall for the first time at the
nth step, respectively. Note that if n − i − k is an odd
number, the chain cannot be at either wall for the first
time, thus ui,n = vi,n = 0. Therefore, the absorption
probabilities at steps n and n − 1 are identical, i.e.,
v∗i,n = v∗i,n−1 and u∗i,n = u∗i,n−1. Moreover, as agent
1 starts at step 0, agent n+ 1 cannot herd if n ≤ k− 1,
i.e., u∗i,n = v∗i,n = 0 for 1 ≤ n ≤ k − 1. For n ≥ k,
the probabilities of agent n + 1 herding the wrong and
correct way are, respectively:

u∗0,n =

n∑
m=k

(m−k)even

u∗−k,n−mu0,m =

n∑
m=k

(m−k)even

u0,m,

(4)

v∗0,n =

n∑
m=k

(m−k)even

v∗k,n−mv0,m =

n∑
m=k

(m−k)even

v0,m, (5)

since u∗−k,n−m = v∗k,n−m = 1 (once agent m is the
first one to herd, the subsequent agents m+1, ..., n will
herd with probability 1). The next lemma gives explicit
expressions for the terms on the right-hand side in (4)
and (5).

Lemma 2.

u0,n =

{
0, n− k odd,
1
k2na

n−k
2 (1− a)

n+k
2 Ak,n, n− k even,

(6)

v0,n =

{
0, n− k odd,
1
k2na

n+k
2 (1− a)

n−k
2 Ak,n, n− k even,

(7)

where

Ak,n =

ν<k∑
ν=1
ν odd

cosn−1
(νπ

2k

)
sin
(νπ

2k

)
(−1)

ν−1
2 . (8)

Proof See the Appendix.

By symmetry, for the case V = 0, the probabilities that
agent n is the first one to reach the right and the left
walls are ṽ0,n = u0,n, ũ0,n = v0,n, respectively. Thus
ṽ∗0,n = u∗0,n, ũ

∗
0,n = v∗0,n.



IV. EFFECT OF ACTION ERRORS AND OBSERVATION
ERRORS

In this section we use the results of Lemma 1 and 2
to analyze the effect of varying the error rates on both
the probability of herding and the welfare of each agent.

A. Herding probabilities

Lemma 2 shows that the probabilities of wrong and
correct herding depend on k and a. From Lemma 1 and
since a = (1− ε)p+ ε(1− p), for a fixed signal quality
p these probabilities are ultimately determined by the
total error ε = ε1(1 − ε2) + (1 − ε1)ε2. Therefore, for
a fixed total error ε, varying either the action error ε1
or ε2 yields the same effect on the epoch where herding
starts and on the probability that herding happens for
each agent n.

The next theorem characterizes the effect of varying
the total error ε on the probability of wrong and correct
herding for an arbitrary agent.

Theorem 1. For ε in between any two consecutive
thresholds ε∗(k, p) and ε∗(k + 1, p), for any agent i:

1) The probability of wrong herding, u∗0,i, increases
with ε.

2) The probability of correct herding, v∗0,i, decreases
with ε.

Proof Consider ε∗(k, p) < ε
′
< ε

′′
< ε∗(k + 1, p),

and let {Z ′n}n≥0 and {Z ′′n}n≥0 be two DTMCs on the
same state space S = {−k,−k + 1, ..., 0, ..., k − 1, k}
corresponding to ε

′
and ε

′′
, respectively. We use the

following concept of stochastic ordering for comparing
these two DTMCs [4]:

Definition 1. Let X and Y be two discrete random
variables taking values on the same set S and let x and
y be their corresponding probability distribution vectors.
X(x) is said to be larger than Y (y) in stochastic
ordering, denoted by X ≥st Y (x ≥st y), if∑

i≥j

xi ≥
∑
i≥j

yi, for all i, j ∈ S. (9)

Definition 2. The chain {Z ′n} is said to be larger
than the chain {Z ′′n} in stochastic ordering, denoted by
{Z ′n} ≥st {Z

′′

n}, if

Z
′

n ≥st Z
′′

n , for all n ≥ 0. (10)

Definition 3. A transition matrix Q is said to be
stochastically increasing if for all i, i− 1 ∈ S:

Qi ≥st Qi−1 (11)

where Qi denotes the ith row of Q.

The proof continues by noting that the corresponding
transition probabilities to the right of the two chains sat-
isfy a

′
> a

′′
> 0.5. Thus, using (3), we have Q

′

i ≥st Q
′′

i

for all i ∈ S. Moreover, these matrices are stochastically
increasing, and both {Z ′n} and {Z ′′n} start from the
same initial state 0. Therefore, by Theorem 4.2.5a and
equation (4.2.16’) in [4], we have {Z ′n} ≥st {Z

′′

n}. Let
Z
′

n and Z
′′

n be the corresponding states at an arbitrary
time n. By Definition 2, we have Z

′

n ≥st Z
′′

n . Let z
′

and
z
′′

be the corresponding probability distribution vectors
at time n. Then using Definition 1, let j = k we have
v∗
′

0,n = z
′

k ≥ z
′′

k = v∗
′′

0,n. Similarly, letting j = −k + 1
yields: ∑

i≥−k+1

z
′

i ≥
∑

i≥−k+1

z
′′

i

so that u∗
′

0,n ≤ u∗
′′

0,n. We will next use a coupling
argument to prove that equality does not hold for n > k,
i.e., that v∗

′

0,n is strictly greater than v∗
′′

0,n for n > k.
Using Proposition 1.10.4 in [4], there exist two random
variables Z1

n−1 and Z2
n−1 on a common probability

space such that P(Z
′

n−1 = k) = P(Z1
n−1 = k),

P(Z
′′

n−1 = k) = P(Z2
n−1 = k) and the stochastic order

also holds for Z1
n−1 and Z2

n−1 almost surely, i.e.

Z1
n−1 ≥st Z2

n−1 a.s. (12)

Define two independent random variables A1
n and Bn

that are also independent of Z1
n−1 and Z2

n−1 by:

A1
n =

{
1, with probability a

′
,

−1, with probability 1− a′ .
(13)

Bn =

{
0, with probability a

′′

a′
,

−2, with probability 1− a
′′

a′
.

(14)

Next, define the random variable A2
n by:

A2
n = A1

n + 1A1
n=1B

n. (15)

By (13)-(15), we have A1
n ≥ A2

n and A2
n has the

following distribution:

A2
n =

{
1, with probability a

′′
,

−1, with probability 1− a′′ .
(16)

Using the above, define Zjn for j = 1, 2 as:

Zjn =

{
Zjn−1, if |Zjn−1| = k,

Zjn−1 +Ajn−1, otherwise.
(17)

Thus, Z1
n and Z2

n have the same distributions as Z
′

n and
Z
′′

n , respectively. Now, Pr(Z2
n = k) can be written as:

P(Z2
n−1 = k) + P(Z2

n−1 = k − 1, A2
n = 1). (18)



Since Z1
n−1 ≥st Z2

n−1, Z2
n−1 = k implies Z1

n−1 = k.
Moreover, Z2

n−1 = k− 1 also implies Z1
n−1 = k− 1 or

Z1
n−1 = k. Thus (18) can be decomposed as:

P(Z2
n−1 = k, Z1

n−1 = k) (19)

+ P(Z2
n−1 = k − 1, Z1

n−1 = k,A2
n = 1)

+ P(Z2
n−1 = k − 1, Z1

n−1 = k − 1, A2
n = 1).

Since A2
n = 1 implies A1

n = 1, (19) is smaller than:

P(Z2
n−1 = k, Z1

n−1 = k) (20)

+ P(Z2
n−1 = k − 1, Z1

n−1 = k,A1
n = 1)

+ P(Z2
n−1 = k − 1, Z1

n−1 = k − 1, A1
n = 1).

Now, note that:

P(Z2
n−1 = k − 1, Z1

n−1 = k − 1, A1
n = 1)

< P(Z1
n−1 = k − 1, A1

n = 1),

P(Z2
n−1 = k, Z1

n−1 = k)

+ P(Z2
n−1 = k − 1, Z1

n−1 = k,A1
n = 1)

< P(Z1
n−1 = k) and

P(Z2
n = k) < PZ1

n−1 = k) (21)

+ P(Z1
n−1 = k − 1, A1

n = 1) = P(Z1
n = k).

Thus, this implies P(Z
′′

n = k) < P(Z1
n = k), i.e.

v∗
′′

0,n < v∗
′

0,n. Similarly, u∗
′′

0,n > u∗
′

0,n. Since Lemma 2
shows that u∗0,n and v∗0,n are continuous functions of ε,
this completes the proof.

As a demonstration of Theorem 1, Fig. 4 shows the
probability of wrong herding when the signal quality
is high, p = 0.99, agents i = 5, 10 and 100. Notice that
for any agent i, Lemma 1 shows that there exists ε close
enough to 0.5 that yields k ≥ i. Herding, thus, does not
happen and hence the probability of wrong herding will
go to zero for large enough ε, as shown in Fig. 4. Note
also that for each agent i, as ε increases the probability
of wrong herding discontinuously decreases at a finite
number of points. These points correspond exactly to
the values ε∗(k, p) for different choices of k.
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Figure 4: Probability of wrong herding as a function of ε for
agent i and p = 0.99

B. Agent Welfare

Let πi be the payoff or welfare of agent i. From
Section II we have πi = 0 if Ai = N , while if Ai = Y ,
πi is either 1/2 or −1/2 corresponding to V = 1 or
V = 0, respectively. All agents i from 1 to k use their
own signals, thus they all have the same welfare given
by:

E [πi] =
1

4
{P [Ai = Y |V = 1]− P [Ai = Y |V = 0]}

= (1− 2ε1)
2p− 1

4
=

2a1 − 1

4
, F. (22)

where a1 = (1− ε1)p+ ε1(1− p).
For agents i ≥ k + 1:

E [πi] =
1

4
{P [Ai = Y |V = 1]− P [Ai = Y |V = 0]}

=
2a1 − 1

4
+

1

2

[
(1− a1 − ε1)v∗0,i−1 − (a1 − ε1)u∗0,i−1

]
= F + (1− 2ε1)

[
1− p

2
v∗0,i−1 −

p

2
u∗0,i−1

]
. (23)

Thus, for a fixed total error ε, (22) and (23) suggest
that the action error ε1 results in the welfare of every
agent being reduced by a factor of 1−2ε1. The following
theorem shows some properties of the agents’ welfare.

Theorem 2. With the same signal quality p and k
satisfying ε∗(k, p) ≤ ε < ε∗(k + 1, p), we have:

1) The expected welfare for each agent is at least
equal to the expected welfare of his predecessors.
Thus E [πi] ≥ F and is non-decreasing in i.

2) lim
i→∞

E [πi] exists and equals:

Π(ε1, ε2) = F +
(1− 2ε1)

2

[
1

1 +
(
1−a
a

)k − p
]
.

(24)

3) The expected welfare of every agent i, E [πi],
decreases continuously as ε increases over the
range where k is fixed so that:

lim
ε↓ε∗(k,p)

E [πi] > E [πi] > lim
ε↑ε∗(k+1,p)

E [πi] = F.

(25)

Proof 1) When herding happens, every user takes
the same action and thus achieves the same expected
welfare. Thus, we are left to show E [πi] ≥ F for all
i ≥ k + 1. Using (23) and the form of v∗0,i−1, u∗0,i−1,
we only need to show:

(1− p)a
j+k
2 (1− a)

j−k
2 − pa

j−k
2 (1− a)

j+k
2 ≥ 0 (26)

which can be seen by noting that ε∗(k, p) ≤ ε < ε∗(k+

1, p) leads to 0 <
(
1−a
a

)k
< 1−p

p < 1.



2) Let V0(s) and U0(s) be the probability generating
function for the first hitting time of state k and −k,
respectively. Using these, the limiting welfare can be
written as:

Π(ε1, ε2)− F =
1− 2ε1

2
[(1− p)V0(1)− pU0(1)] .

(27)

Expressions for these generating functions are given in
equations (35) and (36) in the Appendix; evaluating
these at s = 1 yields (24).
3) For a fixed p, (22) shows that F decreases in ε. The
proof follows by using (23) and Theorem 1.

Assume that the action error ε1 and the observation
error ε2 are fixed. Suppose a social planner is allowed to
randomly change the history of actions with probability
ε3. Thus, this introduces an effect that is equivalent to
increasing the observation error to ε̃2 = (1 − ε2)ε3 +
ε2(1 − ε3). Fig. 5 and 6 show an example when ε1 =
0.05, ε2 = 0.1, adding more observation error (i.e.
letting ε3 > 0) benefits the expected agent’s welfare at
infinity, Π(ε1, ε̃2), for both high and low signal quality.
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Figure 5: The opportunity to increase expected welfare at
infinity when signal quality is high
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Figure 6: The opportunity to increase expected welfare at
infinity when signal quality is low

By part 1) of Theorem 2, this also maximizes the
(Cesàro) average social welfare of the entire population.
We formalize this phenomenon in the following theorem.

Theorem 3. Assume that ε∗(k, p) ≤ ε < ε∗(k + 1, p):
1) The asymptotic social welfare is maximized at

either ε3 = 0 or ε3 = ε∗(k+1,p)−ε
1−2ε , and

2) The latter case happens when

ε∗(k + 1, p) > ε >
1

1− 2p

[
1

1 + ( 1−a
a )(k+1)/k

− p
]
,

(28)

where a = [1− ε∗(k + 1, p)] p+ε∗(k+1, p)(1−p).

Proof 1) The proof follows by part 3 of Theorem 2.
2) We need to find ε3 such that Π(ε1, ε2) < Π(ε1, ε̃2).
Using (24), we obtain the lower bound as in (28).

Note that when it is optimal for the social planner to
add ε3 > 0, the welfare of every individual agent is not
necessarily improved. This is because at the beginning
of each new threshold epoch, the welfare of an agent is
less than that of his successor. Thus by increasing ε3, the
welfares of the first few agents will be decreased while
this increases the welfare for all successive agents. This
effect is shown in Fig. 7 and 8 with the same values ε1 =
0.05 and ε2 = 0.1. For high signal quality, increasing ε3
is beneficial for all agents i = 5, 10 and 100; whereas for
low signal quality, this will increase the welfare of agent
i = 100 and decrease the welfare of agents i = 5, 10.
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Figure 7: Expected welfare for agent i when signal quality is
high
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Figure 8: Expected welfare for agent i when signal quality is
low

V. CONCLUSIONS AND FUTURE WORK

This paper studied the effect of two types of error
in a simple Bayesian information cascade: action error
and observation error. By assuming that the agents occa-
sionally make mistakes in choosing their actions, and the
history of actions has errors, the model is investigated



using a Markov-chain-based analysis. We determined
the probabilities of herding for an arbitrary agent and
used these to calculate the agents’ welfare based on
the given signal quality and the two types of error. Our
main result shows that for certain ranges of parameters,
adding a controlled amount of observation error always
increases the total welfare when the society is large. In
future work we plan on generalizing to heterogeneous
agents with the heterogeneity in private signals, action
and observation errors and allowing each agent to only
observe subsets of past agents’ actions prior to taking
actions.
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VI. APPENDIX

A. Proof of Lemma 2

The proof follows using techniques from [1]. Let τ−k,i
and τk,i be random variables denoting the first time
the Markov chain hits the absorbing states −k and k,
respectively, starting from state i. Let Ui(s), Vi(s) be
the corresponding probability generating functions. We
have:

ui,n = P [τ−k,i = n] , vi,n = P [τk,i = n] , (29)

Ui(s) = E[sτ−k,i ] =

∞∑
n=0

ui,ns
n, (30)

Vi(s) = E[sτk,i ] =

∞∑
n=0

vi,ns
n. (31)

With probabilities a and 1− a, respectively, the state
one step after state i is i + 1 or i − 1. Thus we obtain
the following the difference equations:

Ui(s) = asUi+1(s) + (1− a)sUi−1(s), (32)

Vi(s) = (1− a)sVi+1(s) + asVi−1(s), (33)

where −k < i < k, with the boundary conditions:

U−k(s) = 1, Uk(s) = 0, V−k(s) = 0, Vk(s) = 1. (34)

The solutions to the above equations are:

Ui(s) =
λi+k1 (s)λ2k2 (s)− λ2k1 (s)λi+k2 (s)

λ2k2 (s)− λ2k1 (s)
, (35)

Vi(s) =
λi+k1 (s)− λi+k2 (s)

λ2k1 (s)− λ2k2 (s)
, (36)

where λ1,2(s) =
[
1±

√
1− 4a(1− a)s2

]
/(2as).

Considering that our Markov chain starts at state i =
0, u0,n and v0,n can be written as:

u0,n =
dnU0(s)

n!(ds)n
|s=0, v0,n =

dnV0(s)

n!(ds)n
|s=0, (37)

which can be written in closed-form as in (6) and (7).


