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ABSTRACT
In this paper we consider the optimal trade-off between av-
erage transmission power and average queueing delay for
a single user transmitting data over a wireless fading chan-
nel. In particular we study the behavior of this trade-off in
the regime of asymptotically large power and small delay.
Our focus is on channels which require infinite power to
minimize the average delay. For such channels, it is shown
that the average delay decreases no faster than e��P as the
average power grows, where � is a parameter that depends
on the fading distribution and the arrival rate. We also give
an sequence of policies that nearly mathc this lower bound.
Several other sub-optimal policies are also discussed.

KEY WORDS
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1 Introduction

For mobile wireless communication devices, energy effi-
ciency is a key issue that has attracted much interest. A ba-
sic technique for improving the energy efficiency of a wire-
less device is through transmission power control. With
data traffic, in addition to adjusting the transmission power
used to send each packet of data, energy efficiency can
be further improved by adjusting the transmission rate or
equivalently the transmission time per packet. In this con-
text, various transmission scheduling approaches have been
studied including [1–7]. In these approaches transmission
rate and power are adjusted over time based in part on the
offered traffic as well as any channel state information. A
theme underlying each of these approaches is managing the
fundamental trade-off between packet delay and transmis-
sion power or energy. Specifically, packet delay can be
reduced by transmitting at a higher rate, but this requires
more energy per bit. In fading channels, reducing packet
delay also prohibits users from optimally allocating their
power over time in response to channel variations.

In this paper, we revisit the basic model for trans-
mission scheduling over a fading channel studied in [2, 3].
In this model, data randomly arrives from some higher
layer application and is placed into a transmission buffer as
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Figure 1. System Model.

shown in Figure 1. Data is periodically removed from the
buffer, encoded and transmitted over the fading channel.
We focus on the case where each codeword is sent over
a fixed number of channel uses, but different codewords
may be of different rates. After the codeword is received,
it is decoded and sent on to the corresponding higher layer
application at the receiver. The transmitter can vary the
transmission power and rate based on both the channel state
and the buffer occupancy. In [2], the optimal trade-off be-
tween the average delay incurred by the arriving data and
the long-term average power was studied in a Markov deci-
sion framework. Furthermore, the behavior of this trade-off
was characterized in the asymptotic regime of large delays
(low power). In this regime, it was shown that the rate at
which the required power decreases as the average delay,
D, increases is1 �

�
�
D�

�
. This rate can be achieved via

a sequence of policies where the only dependence on the
buffer occupancy is via a simple threshold rule. Moreover,
some dependence on the buffer occupancy is required to
achieve this optimal convergence rate.

In this paper, we focus on the behavior of the
power/delay trade-off in the asymptotic regime of small de-
lays (high power). In this regime we show that the optimal
power delay trade-off behaves quite differently from large
delay regime. Specifically, we show that as the average
power increases to infinity, the average delay can decrease
no faster than ��e��P �, for channels whose fading distri-

1To characterize the asymptotic behavior of g�x� as x � x�, we use

the following notation g�x� � O�f�x�� if limsupx�x�
jg�x�j
jf�x�j

� �,

g�x� � ��f�x�� if limsupx�x�
jf�x�j
jg�x�j

�� and g�x� � ��f�x�� if

g�x� � O�f�x��, and g�x� � ��f�x��.



bution is non-zero at zero (such as a Rayleigh fading chan-
nel). Where � is a parameter that depends on the fading
distribution and the arrival statistics. This bound holds for
any transmission policy. We also shown that a sequence of
simple “channel threshold” policies can nearly achieve this
bound. For comparison, we also consider two other sim-
ple suboptimal policies which correspond to a fixed water-
filling allocation and a fixed power policy, and show that
these have a suboptimal convergence rate in the small delay
regime. Note that the rate of e��P is much a much faster
decrease in power than the �

D decrease in delay in the large
delay regime. This implies that the savings in power gained
by relaxing the delay constraint are much more significant
when the delay constraint is stringent. We also consider a
class of channels whose distribution is zero at zero. For
this case we show that with a constant arrival rate the aver-
age delay can decrease no faster than log

�
P����
P

�
� where

P ���� is the minimum power required to transmit every ar-
rival independent of the channel state. Before discussing
these results we first give a more precise description of the
basic model to be considered.

2 Problem Formulation

The fading channel is modeled a discrete time, block fading
channel with additive Gaussian noise [8]. In such a chan-
nel the transmitted signal is multiplied by a time-varying
gain which models the fading. Over each block of N con-
secutive channel uses, the gain stays fixed. Let

p
Hm de-

note the magnitude of complex (base-band) channel gain
during the mth block and �m denote the phase. Let
Xm � �Xm��� � � � � Xm�N� and Ym � �Ym��� � � � � Ym�N �
be vectors in CN which denote, respectively, the channel
inputs and outputs over the mth block. These are related
by:

Ym �
p
Hme

�j�mXm � Zm� (1)

where the additive noise Zm is a complex, circularly sym-
metric Gaussian random vector with zero mean and covari-
ance matrix ��I . Furthermore, the sequence fZmg is i.i.d.
Here we assume that the sequence of channel gains, fHng,
is a sequence of i.i.d. random variables taking values in a
setH � R� with a probability densityfH over this set. We
assume that both the transmitter and receiver have perfect
CSI, i.e., during the mth block, both the transmitter and
receiver know the value of Hm and �m. 2

To model the buffer, we consider a discrete-time
“fluid” buffer model in which the time between samples
corresponds to a block of N channel uses. Let An be the
number of bits that arrive between time n and n � �, and
let Sn be the buffer size at the start of the nth block. As-
sume that at the start of each block Un bits are removed
from the buffer, encoded and transmitted over the fading

2Since both the transmitter and receiver know �m, we can ignore it in
the following.

channel during the next block. Thus the buffer dynamics
are given by:3

Sn�� � maxfSn �An�� � Un� An��g� (2)

Here we assume that the buffer size is infinite and that no
packets are lost. We also assume that the arrival process
fAng is a sequence of i.i.d. random variables taking val-
ues in a set A � �amin� amax	 with probability distribu-
tion FA�a�; here amin and amax are respectively upper
and lower bounds on the arrival process. This process is
assumed to be independent of the channel fading and noise
processes. The expected arrival rate is denoted by 
A.

Let P �h� u� be the transmission power required dur-
ing a block when the channel gain is h and the transmitter
chooses to transmit u bits. In the following, we assume that

P �h� u� �
��

h
��u�N � ��� (3)

This is the minimum power required so that the mutual in-
formation rate over the N channel uses is equal to u�N .
Provided thatN is large enough, this choice will give a rea-
sonable indication of the power needed to reliably transmit
at rate u�N using optimal coding. Most of the following
results can be generalized to other functions P �h� u� which
indicate the required power needed to transmit at rate u�N
bits per channel use in different settings.

Let S � ����� denote the buffer state space, and let
� 
 S �H �� R� denote a transmission policy which indi-
cates Un at any time n as a function of Sn and Hn. Under
a given policy, we denote the average delay by 
D� and the
long-term average transmission power by 
P�. For a given
channel and arrival process, in [2], the optimal power/delay
curve, P ��D� is defined as

P ��D� � inff 
P � 
 � such that 
D� � Dg�

This curve is decreasing and convex. Asymptotically, as
D � �, P ��D� is shown to converge to P� 
A� at a rate
of �� �

D� � [2]. The asymptotic value, P� 
A� corresponds
to the minimum power required to send at average rate 
A,
ignoring any delay constraints, i.e. the minimum power so
that the channel has an ergodic capacity of 
A�N bits per
channel use. An example power/delay trade-off curve is
shown in Fig. 2.

In the following it will also be useful to define the
optimal delay/power curve, D��P � as

D�� 
P � � inff 
D� 
 � such that 
P� � 
Pg�

Clearly, if P ��D� is strictly decreasing, then D�� 
P � will
simply be its inverse. Given the above model of the buffer
dynamics, each packet must spend at least one time unit
in the buffer, hence D�� 
P � 	 � for all P . The only way
that D�� 
P � � � is if the transmitter used a policy such that

3One reason for choosing this model of the buffer is that is provides
an upper bound on the delay incurred by any packet in the underlying
continuous time system.
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Figure 2. Example power/delay trade-off.

��Sn� Hn� 	 An for all n. The minimum power required
by such a policy is given by

P ���� � EA�HP �H�A��

For many practical fading models, such as a Rayleigh fad-
ing channel, this quantity will be infinite. In the following,
we initially restrict ourselves to such settings. Specifically,
we make the following assumption:

Assumption A: Assume that the channel gain Hn, has a
continuous density, fH on R� and that fH��� � �.

For example, for a Rayleigh fading channel, H has
an exponential distribution with fH��� � �

EH . This as-
sumption has several consequences that will be used in the
following. First, a direct consequence is that fH�h� � � for
all h within some sufficiently small neighborhood of zero.
From this it follows that

Pr�jHnj� 	 h� � ��h�

as h goes to zero. Also, for any such distribution EH � �
H � �

� and so, P ���� � �� Hence, D�� 
P � will be strictly
greater than � for any finite 
P but will approach � as 
P �
�. Finally, for any such distribution with finite mean, we
have the following lemma.

Lemma 2.1 Let fH�h� be a fading density that satisfies
Assumption A and has a finite mean. Given any ht � �,
then there exists a constant K� such that for all h 	 ht,Z �

h

�

h
fH�h� dh 	 K� ln

�
�

h

�
�K��

where K� � infffH�h�jh � htg .
Likewise, these exists a constant �K�, such for all h 	

ht, Z �

h

�

h
fH�h� dh � �K� ln

�
�

h

�
� �K��

where �K� � supffH�h�jh � htg .

This implies that the integral
R�
h

�
hfH�h� grows like

ln
�
�
h

�
as h� �. The lower bound follows because

Z �

h

�

h
fH�h� dh

	
Z ht

h

�

h
K� dh�

Z �

ht

�

h
fH�h� dh

� K��ln�ht�� ln�h�� �

Z �

ht

�

h
fH�h� dh

� K� ln

�
�

h

�
�K��

Note that since H has a finite mean, fH�h� must go to zero
faster than �

H as H � �. Hence,
R�
ht

fH�h� dh is finite
for all ht � �. The upper bound can be derived in a similar
manner.

3 Asymptotic Analysis

3.1 A Lower bound on the convergence rate

In this section we consider a lower bound on the rate at
which D�� 
P � approaches �.

Proposition 3.1 Assuming the fading distribution satisfies

Assumption A, as P � �, D�� 
P � � � � �
�
e��

�P
�

, for

any � � �EAP ��� A�fH����
��

In other words, the buffer delay decreases to 1 no faster
than e��P under any sequence of policies.

PROOF. To prove this proposition, we consider a ficti-
tious system where every packet leaves after waiting for 2
time-units without requiring any power (recall each packet
must wait at least one time-unit). The maximum delay in
the fictitious system will be no more than 2 time-units. For
a given average power 
P , let �D� 
P � be the minimum aver-
age delay experienced by a packet in this fictitious system.
Clearly we must have �D� 
P � � D�� 
P � for all 
P . We derive
our lower bound on the rate of convergence for D�� 
P � by
calculating the rate at which �D� 
P � � � goes to zero as 
P
increases.

Under the assumption that every packet leaves after 2
time-slots, the buffer dynamics can be re-written as

Sn�� � max�An � Un �An��� An����

Also, at each time n an optimal policy will set Un � An,
since any other packets waiting in the buffer will leave the
system anyway without requiring any power. Therefore, an
optimal policy for this system can be expressed as function
of the current channel state, Hn and the number of arrivals
An. It follows that �D� 
P � is the solution to the following



optimization problem:

minimize
U �H�A��R�

� �
�

A
EH�A

�
�A� U�H�A���

�
subject to: EH�AP �H�U�H�A�� � 
P

U�h� a� 	 �� 
h � H� a � A
Here the objective function correspond to the expected
number of packets in the system under the policy U�H�A�
divided by the average arrival rate, which by Little’s law is
equal to the average delay. Note, we have also used the fact
that the arrivals are i.i.d.

The solution, U��H�A�, to this problem is similar to
the classic “water-filling” power allocation [9]. In particu-
lar it can be characterized as follows:

P �h� U��h� a�� �

	
�

�
� if h � hL
�
� � ��

h if hL � h � hU �a�
��

h

�
�a�N � �

�
if h 	 hU �a�

(4)

Here, 
 � � is a constant chosen to satisfy the average
power constraint. The parameters hL 	 hU �a� are chan-
nel gain thresholds that satisfy hL � 
�� and hU �a� �

���a�N . Notice that the upper threshold depends on the
value of An. When h 	 hU �a�, (4) corresponds to the
usual water-filling power allocation, where �

� is the “wa-
ter level” and hL represents the threshold below which no
power is used. When h � hU �a�, the transmitter inverts
the channel to transmit at the constant rate a; this is due to
fact that U��H�A� � A, as noted above. Also notice that
as 
P is increased, 
 will decrease and thus so will hL and
hU �a�.

From the above, it follows that

�D�P �� � �
�

A
EH�A �A� U��H�A���

�
�

A

�
Pr�H 	 hL� 
A�Pr�H 	 hL�

� EH�A

�
�A� U��H�A���



H 	 hL
��

	 Pr�H 	 hL�

Here, we have used that �A � U��H�A��� is always non-
negative and is equal to A for H 	 hL. Using Assumption
A, we then have, as hL � �,

�D�P �� � � ��hL�� (5)

Next we bound the average power as follows:


P �

Z amax

amin

�Z hU �a�

hL

�
�



� �

h

�
fH�h� dh

�

Z �

hH

��

h

�
�a�N � �

�
fH�h� dh

�
dFA�a�

	
Z amax

amin

Z �

hU �a�

��

h

�
�a�N � �

�
fH�h� dh dFA�a�

Pick some constant ht such that infffH�h�jh �
htg � K� � �. Then, from Lemma 2.1, we have that
for all h 	 htZ �

h

�

h
fH�h� dh 	 K� ln

�
�

hH

�
�K��

For a large enough average power, hU �a� will be less than
ht for all a � A. In this case,


P 	
Z amax

amin

�
K� ln

�
�

hU �a�

�
�K�

�
P ��� a� dFA�a��

Note that hU �a� � hL�
a�N . Hence,


P 	 K� ln

�
�

hL

�
�EAP ��� A�� �K	�

where K	 is a constant independent of hL.
From this it follows that as 
P � �, hL �

�
�
e��

�P
�

, where � � �K��EAP ��� A���
��. Combin-

ing this with (5), we have �D � � � �
�
e��

�P
�

and so

D��P � � � � �
�
e��

�P
�

either, as desired. Finally, we

note that in the above bound, K� 	 fH��� and be made
arbitrarily close to this value by choosing ht small enough.
This gives the desired lower bound on �. �

3.2 A nearly order optimal sequence of poli-
cies

In this section, we show that the above bound can nearly be
achieved by a simple sequence of channel threshold poli-
cies in which the transmitter only transmitts when the chan-
nel gain H is larger than a threshold hth. Given that the
channel is greater than this threshold, we consider a policy
that sets Un � An � �, where � � � is a small constant.4

Clearly, if sn�N 	 An � � then there is not enough in-
formation in the buffer to transmit. In this case we can
assume the transmitter sends extra “dummy” bits. This is
clearly a poor choice from the view of saving power, but
is sufficient for our purposes. A sequence of these policies
can nearly achieve the optimal convergence rate in the low
power regime.

Proposition 3.2 There exists a sequence of channel thresh-
old policies f�Kg such that as k � �, 
P�k �
�, and D�k � � � O �exp���P �k ��, for any � 	

�fH��� �EAP ��� A���
��

PROOF. Let f�kg be a sequence of channel threshold
policies as in the lemma with a fixed parameter � for each
policy, and such that as k ��, hth decreases to 0.

4Note that policy does not base the transmission decision on only Hn
and Sn, but can be viewed as using the past history of Sn and Un. Such
a dependence is not needed for an optimal policy.



The average power of such a policy is given by


P�k �

Z �

hth

Z amax

amin

��

h

�
�a���N � �

�
fH�h� dh dFA�a��

By a similar argument as in the proof of Prop. 3.1, it can be

shown that as 
P �k increases, hth � O
�
e��

�P�k
�

, where

� � �EAP ��� A � �� �K��
�� and �K� is the constant from

Lemma 2.1.
To bound the average delay under such a policy we

use the following lemma:

Lemma 3.3 For any policy where Un �An is an i.i.d. se-
quence, the average buffer occupancy is bounded by

ES � ��

�� 
��

� 
A�

where 
� and ��
 are the mean and variance of �Un�An�.

This is essentially the same as Kingman’s upper bound on
the average delay for a continuous-time G/G/1 queue [10].
Notice that here we are bounding the average buffer occu-
pancy in a discrete-time queue with dynamics given by (2);
however, the same bounding techniques can be used.

Using this lemma and applying Little’s law, we that
the average delay is bounded by


D�k � � � ��

�� 
�� 
A

(6)

Evaluating this for a channel threshold policy we have,


D�k � � � ��� q�q��� � �� 
A� � q 
A� � q�� 
A��

����� q�� � �q� 
A�� 
A�
� (7)

where q � Pr�jH j� 	 hth�� From this it is clear that 
D�k�
� � O�q� as q � �. Again using Assumption A, q �
��hth�� and hence we have D�k � � � O �exp���P �k��
as desired. �

3.3 Suboptimal policies

Next we illustrate two simple policies with suboptimal con-
vergence rates. First we consider a simple fixed power pol-
icy which does not depend on the buffer state. By this we
mean a policy in which the transmitter transmits at a fixed
power, 
P in each slot, i.e.,

�
�P �h� � N log

�
� � h �P

��

�
for all s� h

Using this policy the average power is clearly equal to 
P .
The expected rate under a fixed power policy is increasing
with 
P ; the rate at which it is increasing can be shown to
satisfy:

EH

n
�

�P �H�
o
� ��log� 
P ���

Next we consider the variance of � �P �H�. It can be
shown that as 
P increases, the variance is increasing. How-
ever, asymptotically the variance is bounded. Specifically,
we have

Lemma 3.4 Under a fixed power policy, � �P , for all 
P ,

var
�
�

�P �H�
�
� N

� var �log�H��

To see this note that

var
�
�

�P �H�
�
�

�

�
EH� �H

�
�

�P �H���
�P � �H�

�
�

where �H is another random variable, independent of H
and identically distributed. Substituting the expression for
�

�P �h�, we have

var
�
�

�P �H�
�
�

�

�
EH� �H

�
N log

�
� � H �P

��

� �
�H �P
��

��
�

As 
P �� this converges to

N
� EH� �H

�
log

�
H
�H

��
� N

� var �log�H�� �

as desired.
Using these observations in the bound from lemma

3.3, it follows that the average buffer occupancy using a
fixed power policy is upper bounded by

ES � ��A � N
� var �log�H��

�
�
EH

�
� �P �H�

�� 
A
� � 
A

Therefore, from Little’s law, the average buffer delay,

D is upper-bounded by


D � K

EH

�
� �P �H�

�� 
A
� ��

whereK is a constant, depending on the arrival and channel
statistics but not on the average power.

Finally, since EH

n
�

�P �H�
o

increases at rate

��logP �, it follows that the average delay using a fixed

power policy decreases at a rate faster than O
�

�
logP

�
.

Next we give a lower bound for the convergence rate
of a fixed power policy. Specifically we have

Proposition 3.5 For any sequence of fixed power policies,
D�k � � � �� �

P logP � as P ��.

This can be shown by considering the following lower
bound, which is analogous to Kingman’s lower bound for
a G/G/1 queue [10]. Specifically, the average buffer occu-
pancy is lower bounded by


S � 
A 	 E��A � U����

�� 
U � 
A�



where �A � U�� � max�A� U� ��, and A and U are two
random variables with the respective steady state distribu-
tions.

As before the denominator will increase at rate
��log�P ��. To bound the numerator, note that by Markov’s
inequality

E��A � U���� 	 Pr�A� U � ����

and

Pr�A� U 	 �� � Pr

�
jH j� � ��A� ��

P

�
�

By Assumption A, this last term is decreasing at rate�� �P �.
Therefore combining these results we have that D�k � � �

�
�

�
P logP

�
as desired. Note this is much slower than the

optimal convergence rate obtained by a channel threshold
policy.

Next consider a sequence of “fixed water-filling” pol-
icy. By this we mean a policy that uses a water-filling
power (and rate) allocation, once again independent of the
buffer state. For such a sequence of policies the same
bounds once again apply.

Proposition 3.6 For any sequence of fixed water-filling
policies, f�kg� with 
P�k � �� barD�K � � �

O
�

�
logP�K

�
. Furthermore assuming the channel gain sat-

isfies assumption A, then 
D�K � � � �
�

�
�P�K log �P�k

�
The proof of this follows similar arguments to the

above.

3.4 Finite state channels

In this section we briefly discuss a class of channels that
does not satisfy assumption A. Specifically, consider a fi-
nite state channel, i.e., a channel where jHj 	 �, and as-
sume that for each h � H, h � �. In this case, P ���� will
be finite. Therefore, we consider the rate at which the av-
erage delay converges to 1 as a function of how fast 
P is
converging to P ����� Specifically we have

Proposition 3.7 For a finite state channel, as P � P ����,

D��P � � �
�
log

�
P����
P

��
.

This can be proved using a similar argument as in
Prop. 3.1.

4 Conclusions

In this paper we consider the behavior of the optimal power
delay trade-off in the regime of small delay and large
power. In this regime we showed that the average delay
decreases at the rate of e��P , as the power P increases, as-
suming that the channel gain’s density is strictly positive at

zero. This implies that when delay is tightly constrained, a
small increase in the delay will result in substantial power
saving. We also illustrated that a simple channel threshold
policy is order optimal and discussed several other subop-
timal policies.

5 Acknowledgments

The author wishes to thank Vijay Subramanian at Motorola
for several helpful discussions, and Bruce Hayek for sug-
gesting the proof to Prop. 3.1.

References

[1] B. Collins and R. Cruz, “Transmission Policies for
Time Varying Channels with Average Delay Con-
straints,” in Proc. 1999 Allerton Conf. on Commun.
Control, & Comp., (Monticello, IL), 1999.

[2] R. Berry and R. Gallager, “Communication over fad-
ing channels with delay constraints,” IEEE Trans. on
Information Theory, vol. 48, pp. 1135–1149, May
2002.

[3] R. Berry and R. Gallager, “Buffer control for com-
munication over fading channels,” in Proc. 2000
IEEE International Symposium on Info. Th., (Sor-
rento, Italy), p. 409, June 25-30 2000.

[4] R. Berry, “Some dynamic resource allocation prob-
lems in wireless networks,” in Proc. of SPIE
(E. Chong, ed.), vol. 4531, (Denver, CO), pp. 37–48,
2001.

[5] B. Prabhakar, E. Uysal-Biyikoglu, and A. E. Gamal,
“Energy-efficient transmission over a wireless link
via lazy packet scheduling,” in Proc. IEEE Infocom
2001, 2001.

[6] Bettesh and S. Shamai, “Optimal power and rate
control for fading channels,” in Proc. IEEE Vehic-
ular Technology Conference, Spring 2001, (Rhodes,
Greece), May 6-9 2001.

[7] D. Rajan, A. Sabharwal, and B. Aazhang, “Trans-
mission policies for bursty traffic sources on wireless
channels,” in Proc. of 35th Annual CISS, (Baltimore),
Mar 2001.

[8] L. Ozarow, S. Shamai, and A. Wyner, “Information
Theoretic Considerations for Cellular Mobil Radio,”
IEEE Tranactions on Vehicular Technology, Vol. 43,
No. 2, pp. 359–378, May 1994.

[9] R. Gallager, Information Theory and Reliable Com-
munication. New York: John Wiley and Sons, 1968.

[10] L. Kleinrock, Queueing Systems, vol. II. John Wiley
and Sons, 1976.


