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Abstract—In this paper, we develop medium accesscontrol
protocolsto enable usersin a wirelessnetwork to opportunisti-
cally transmit whenthey have favorable channelconditions, with-
out requiring a centralized scheduler We consider approaches
that usesplitting algorithms to resole collisions over a sequence
of mini-slots to determine which user will transmit. We consider
an asymmetric model where differ ent users may have differ ent
channel statistics and different priority levels. In this context,
we propose a new fairness criterion, distribution fairness, that
lends itself naturally to a distrib uted implementation. We give a
splitting algorithm for achieving distrib ution fair nessWe analyze
the performance of this algorithm and show that the average
overhead required is lessthan in a symmetric case,which we
have analyzed previously. Simulation results are also given.

|. INTRODUCTION

Recently “opportunistic scheduling” approachesave re-
ceived muchattentionasa meandfor exploiting the “multiuser
diversity” inherentin a wirelesssetting (e.g., [1-3]). These
approachesttemptto scheduletransmissiongluring periods
whenausers channeis “good” andhencecansupporta larger
transmissiormrate. This hasa theoreticalbasisin work suchas
[7], which shaws that to maximizethe ergodic capacityof a
multiple-acces$ading channel,at mosta single userwith the
bestchannelstateshouldtransmitat ary time. For an up-link
(multiple accessnmodel,suchapproachesequirea centralized
schedulewith knowledgeof eachusers channelgainto select
the user to transmitat a given time-slot. This requiresthe
schedulerto acquire estimatesof each users’ channelstate
beforemakingthe schedulinglecision;the overheadanddelay
incurred in doing this may limit the system$ performance,
particularly if the number of actve usersis large or the
channelschangerapidly.

In [5] [4], we have considerdistributed approachedor
opportunisticschedulingvhereeachuserhasknowledgeof its
own channelconditions,but no knowledgeof the otherusers’
channels.The transmissiondecisionsare individually made
by eachuserbasedon their local channelinformation. This
approachrequiresessoverheacandscalesvell asthe number
of usersincreasesin [5], a channel-aware Aloha approachs
introduced,where usersbasetheir transmissiorprobabilities
on their channelgain. Similar approacheshave also been

This researchwas supportedn part by the Motorola-NorthwesteriCenter
for Telecommunicationand NSF CAREER award CCR-0238382.

studiedin [6]. In [5], it is shavn that the total throughput
increasewith the numberof usersat the samerateasin the
optimal centralizedschemeput is asymptoticallyreducedby

a factor of 1/e due to the contention.In [4], a distributed
approachs given basedon using splitting algorithms[10] to

determinethe userwith the bestchannelover a sequencef

mini-slots. For a homogeneousnodel where the usershave

identicalchannektatisticsjt is shavn thatthe averagenumber
of mini-slotsrequiredto find the userwith the bestchannelis

lessthan2.5independenbf the numberof usersor the fading
distribution. In otherwords,the overheadheededor this type

of approachscaleswell asthe numberof usersincreases.

In both [5] and[4], we considereda homogeneousnodel,
whereeachusers channelgainswereindependenandidenti-
cally distributed.In this case a schedulingule thatmaximizes
the total throughputresultsin each user having an equal
throughput. In practice, the set of userswill likely have
asymmetricchannelstatistics,for exampledueto differences
in locationor mobility. In this paper we considerdistributed
approachesfor opportunistic transmissionin this type of
heterogeneousiodel.

In a heterogeneousetting, an importantissueto how to
guarantesomelevel of fairnessamongtheusersln particular
simply maximizing the total rate as in [4], [5], will tend
to overly favor userswith better channelstatistics.Also in
certain cases,it may be desirableto give someof the users
a larger share of the systemsresourcesthan others. Here
we addresstheseconcernsby using a new type of fairness
calleddistribution fairness, thatnaturallyleadsto a distributed
implementationas in [4]. With this definition, eachuseris
guaranteedo be able to transmitfor a specifiedfraction of
time. Giventhis fractionof time, the useris allowedto transmit
during thosetimes, when its channelis statistically “better”
thanaverage We give a precisedefinitionof thisin termsof an
optimizationformulation,thatis relatedto work in [1]. In [1],
thegoalis to maximizeatotal systemutility undera constraint
on the fraction of time eachusertransmits.In the formulation
for distribution fairness,a users“utility” is definedin terms
of its channeldistribution. The aim of this type of fairness
is similar to that of the proportionalfair schedulingrule in
[3], where the user who has a higher ratio of transmission
rateto its averagetransmissiorrate is scheduledo transmit.



With proportionalfairnessthe ratio of the averagethroughput
of ary two usersis fixed, while the fraction of time each
usercantransmitmay vary. Anotherrelatedfairnesscriterion

was given in [9]. With the distribution fairness,the ratio of

the fraction of time differentusertransmitscan be adaptedo

emulateothertypesof fairnesscriterion aswell.

In the following section,we give a precisedefinition of
distribution fairnessand discussits propertiesin more detail.
When then given similar splitting algorithmsto thosein [4]
for achieving distribution fairnessin a distributed setting.We
shav thatin certain casesthe numberof mini-slots required
to resolhe collisionsin this asymmetricmodel is no greater
thanthoserequiredin a symmetricmodelasin [4]. Analysis
and simulationresultsare both presented.

Il. DISTRIBUTION FAIR SCHEDULING

We considera model of the up-link in a wirelessnetwork
with N usersall transmittingto a common recever. The
channelbetweeneach user and the recever is modeledas
a time-slotted, block-fading channel; if only the ith user
transmitsin a given time-slot, the recevved signal, y;(t) is

given by
t) = VHzi(t) + 2(0),

wherez;(t) is the transmittedsignal, H; is the fadingchannel
gain, and z(t) is additve white Gaussiannoise. The chan-
nel gain is assumedo be fixed during eachtime slot and
to randomly vary betweentime-slots. In the following, we
assumehat the channelgainsof eachuserin eachtime-slot
are independentrandom variables, with probability density
functionsfH (hi) on[0,00) fori=1,... ,N.Let Fy, (h;) =
fh S, (hi) dh denotethecompllmentar)dlstrlmtlonfunct|0n
for users’ s Channelgaln. To be begin, we considera central-
ized TDM schedulemwhich, giventhe vectorof channelgains
h = (hy, hs, ..., hyy) at eachtime-slot, schedulesone of the
usersto transmit.Let A(h) denoteschedulingallocation,i.e.
A(h) = i if useri is scheduledvhenthe joint channelstate
is h. We assumehat all usersareinfinitely back-loggedand
focuson the averagethroughputachiesed by eachuser

Definition: An allocationA(h) h = (hy, hs, ..., hy) is defined

to be distribution fair with parameterspy, ps, -..,pn, if it
satisfies
EL%EH (ZFH )1 A(n)= z> (1)
subjectto: Prob{A(h) =i} =p; fori=1,...,N.
Here,
1 )1, if A(h)=,
AR=ET0 g otherwise

The parametersp,,... ,py should be a probability mass
function and specify the fraction of time that eachuserwill
transmit. Given this constraint,a distribution fair scheduler
will attemptto scheduleuserswith a smallvalueof Fy, (h;);
this corresponds$o a userhaving a channelthatis statistically
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Fig. 1. Comparisorof differentschedulingschemessa function of
X1 = F'H1 (hl) anng = FHz(hQ).

strong,relative to theusersown distribution. This optimization
problemis similar to thatin [1] andthe solutionis a simple
extensionof [1]. The differenceis thatin [1], the goalis to
optimize the sum expectedutility, while the problemhereit
is to minimize the sum of the valuesof the complimentary
distribution function, which canbe viewed asa specialutility
function. Using the resultsin [1], the optimal solutionto (1)
is given by

A(h) = arg min (FH (hi) + vi), (2)
wherethe parameters; are chosento satisfy the constraints
Prob{A(h) = i} = p;, and so can be interpreted as

“fairnessparameters. For corvenience,we setv; = 0 for
¢ = max;—1..n p;, thenit canbe shovn thatv; > 0, for all j.

Next we comparehe performancef sucha schedulingule
with several otheralternatves.First supposéahatinsteadof (1)
we maximizethe expectedtotal throughput,i.e.

En (ZR )1 Am)= z) ;

giventhe sameconstraintswhere R(-) givesthe transmission
ratea a function of the channelgain. This type of scheduling
policy was consideredn [1] and will tendto favor the user
with the betterchanneldistribution more thanthe distribution
fair approach.For example, assumethat there are 2 users,
suchthat R(h1) > R(hs) for ary h, thatsatisfiesFy, (h1) <
0.5 and for ary hs. If the goal is to maximize the total
throughputwith the constraintthat p; = p, = 1/2, thenthe
optimalschedulingschemewill beasshavn in Fig. 1(a). This
figure shavs the optimal schedulingdecisionas a function
of X; = Fu,(h;), for eachuseri. In this case,user1 only
transmitswhenits gain satisfiesFy,, (h1) < 0.5, i.e. whenit
has a strong channel.However, the wealer useris likely to
transmitin any channelstate.For this case,the distribution
fair schedulingpolicy is shavn in Fig. 1(b) wherenow both
usersaremorelikely to transmitwhentheir channelis strong
relative to its own statistics.

Next we comparea distribution fair scheduletto a propor
tional fair one. We simulatedboth schedulingrule for two
userswith independentRaerigh fading User 1's channel
gain distribution is le (h1) = eXp( 1) anduser2’s is
fra(h2) = 7 - exp( o) Wheretheaveragechannegamsare
ho1 = 1 andhgs = 0.5. Fig. 2 shavstheaverageransmission
rate for both usersas well asthe sumrate. It can be seen
that both schedulingules have similar performanceWith the
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distribution fair schedulerthe averagerate for user1 (2) is
slightly lower (higher)comparedo the proportionalfair case;
the total throughputis slightly lower thanin the proportional
fair case.Fig. 3 shows the averagefraction of time eachuser
transmits.The distribution fair schedulerguaranteesin equal
portion of time to eachuser In this case,the proportional
fair schedulemlotsuserl a larger portion of time thanuser2,
which alsohelpsto explain why the proportionalfair scheduler
achievesa higherthroughput.

In the remainderof the paper we only considerntwo classes
of usersWhereall theusersin agivenclasshavei.i.d. channel
gainsand are assignedhe samep; in (1) (andthusthe same
fairnessparameten;). For k = 1,2, let C;, denotethe set of
classk usersandletny, = |C|, bethenumberof classk users.
Without lossof generalitywe assumehatwv; = 0 for all users
i € C1, andthatv; = v > 0 for all i« € C5. In this case,the
schedulingrule in (2) canbe viewed asfinding the minimum
of of a setof randomvariables{X;}, wherefor eachi € C;,
X; = Fy,(H;) is ani.i.d. uniform randomvariableon [0, 1],
andfor eachi € Cy, X; = Fy,(H;) + v is ani.i.d. uniform
randomvariableon [v,1 +v]. Also, let P, = P(A(H) € Cy,)
for k = 1,2, whereH = {H;} is randomvector of channel
gainschoseraccordingto thejoint density [ [, f#, (h;). Thus,
Py, istheprobabilitythata classk useris scheduledAssuming

the scheduleris non-idling, we have P, + P, = 1. Fromthe
above, P; is given by

no .
_ ni n2 i, no—1 ¢
PQ—(]. ’Ul) ;<l>(1 vl)vl (i+n1

Next we give tight upperandlower boundson P; this can,in
turn, be usedto help calculatethe correctfairnessparameter
v for a given choiceof p; andps.

Proposition 1: The probability a class2 useris scheduled,
P, satisfies:

(1 — 1)1)"1+1n2 S P2 S (1 — 1)1)”1+1n2 )
1—-wv)ne+ny — “(1l-wv)na+ni+uv
Proof: First we derive the upperbound.Note that

no .
N9 . i1

§ 1_ 1, N2—1

4 ('L)( v i+ ny

wherethe expectationis with respectto the p.m.f. ¢; = (1 —
v1)%]2 . From Jensors inequalitythis is upperboundedoy:

E(I) _ (1 - U1)n2
IE(I) +n1 o (]. — ’Ul)ng —+—n1'

Therefore,
(1 - 111)”1+1n2

(1 — vl)n2 +nq )
For the lower bound, note that

%) i = Ny — 1
i)' ="\ )
Thus,we have

o .
N9 : _; 1
1_ 1,,N2—1
z:zl(z)( v i+mny
n: .
ST 3 G [
= 1—1 1+
ni ,
n il nh—i' (1_1}1)
-3 (3 u -

wheren), = n, — 1. This is lower boundedby

P <

1-— V1
1—wv)(ne—1)+mng +1
(1 - vl)"1+1n2
(1 —v1)n2 +n1 +v;

The lower boundthenfollows. [ |

When v, << % the two boundsare very close to
eachother;this will be true for mostvaluesof n; andn, as
shawvn in Fig. 4. For eachuserof class2, the probability of
transmissions %. The probability that the usersof class1
transmitis 1 — P,, andthe transmissiorprobability for each
userof classl is %. Thereforefor a given P, and Py, v
canbe found accordingly

N2
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I11. A DISTRIBUTED SPLITTING ALGORITHM

In this section,we considera distributed approachfor im-
plementinga distribution fair schedulingpolicy. Our approach
is a generalizatiorof the splitting algorithmgivenin [4]. We
considera slottedsystemwherethe channelgainis a constant
within one slot. In each slot, each user knows only their
own channelgain during the slot, but not the gain of ary
otheruser At the beginning of eachslot, mini-slotsare used
for usersto sendrequeststo the recever. Userswill senda
requestf their channelexceedsa threshold.The recever will
feedback(0, 1,e) indicating the mini-slot is idle, successful
or a collision happenedBasedon this feedbackthe userwill
adjusttheir thresholdand eithersenda requestagainor back-
off, until a successfutequests receved. The successfuliser
will thencontinueto transmitdatafor the restof the slot. We
are still considera 2 classsystemas above, and we assume
thatthe offsetfor class2 v in (2is known by all class2 users.
We then considerusing a splitting algorithmto find the user
that satisfies(2). First, we assumethat after eachmini-slot,
the numberof usersof eachclassinvolvedin a collision, ny
for classoneandns for classtwo, is known. We will remaove
this assumptioriater.

Thesplitting algorithmin this cases givenby thefollowing:

initialize: m = 0, Hy, = oo, H; = hi™® and H;; = 0

while m # 1 andk < K do

m = (0,1,e)(feedbackfrom the basestation).

if m = e then
Basestationfeedsback(m, m2), wherem; is number
of classi usersinvolvedin collision.

end if

if m = e then
H; = H;, H = Split(Hl,Hh,ml,mg);

elseif m = 0 then

if Hy ;é 0 then

Hj = split(Hy, Hy,my1,my);
else

Hj = split(Hy, Hy,n1,n2);
end if

Hy = Hy;

Hy H; Hy,

Fig.5. Exampleof a split range:H;; is largestvalueof H; usedin the prior
mini-slots suchthat thereare someusersabove Hy;. H; < H < Hy, is the
transmissiorrange.

Hl :HII;
end if
k=k+1

end while

At each stage, only the userswhose channelgains are
betweenH; and H,, will transmit. H;; denotesghe maximum
channelgainabove which it is known thatthereis atleastone
user As shown in Fig. 5, if a collision occurs(m = e), the
range H; < h < Hj is split into two parts (denotedby the
function “split”); usersin the upperpart will transmitin the
next mini-slot. If anidle mini-slot occurs(m = 0), thereare
two possibilities:One,as shavn in Figure5 is that therehas
beena collision before,i.e. Hy; # 0. This meansthat the best
channelainlies betweenH;; < h < H;. Theotherpossibility
is that there hasnever beena collision before,i.e. H; = 0.
This meansall the users’channelgainsare all belov H;. In
both caseswe split the interval [Hy;, H;] into two parts;the
new transmissiorrangewill be the upperpart.

Thefunctionsplit( H;, Hy, n1,n2) is choserto minimizethe
numberof mini-slotsrequired.n [4] it is shawvn thatfor v = 0,
the averagenumberof mini-slotsrequiredis lessthan2.4414
when the numberof usersinvolved in a collision is known.
In the following we considerwhetherthe averagenumberof
mini-slotsrequiredfor this asymmetricnodelwith v # 0 can
be no larger thanfor the v = 0 case.

For a givenw, let E(I,v) denotethe eventthat for exactly
one useri, X; < [, where for eachi, X; is a uniform
random variable as defined above. This correspondsto a
succes®ccurringin the first mini-slot, if ki = [. The next
propositionstatesthat for v > 0 the probability of this event
for the “best” choiceof I will be no lessthanin thev =0
case.

Proposition 2: Let P(l,v) = Pr{E(l,v)}. This satisfies:

mlaxP(l,v) > mlaxP(l,O),

wheremax; P(1,0) = (1 — ——

ni+nz

Proof: By definition,for [ < 1,

)n1+n271.

nl(1 =)™ (1 -1+ )"
+na(l —v)(1 =1 +0v)"27 (1 - )™
forl>wv
nl(1=1)m=tforl <w

P(l,v) = ®3)



First assumey > n% andchoose

=1
ni
then P(l,v) = (1 - ;-)™~*, and since (1 -
decreasing,

(4)

1yz—1 ;
) s

nit+ng—1

1
P(l,v) > (1-
(o) > (1= =

Therefore

nit+ne—1
)

1
max P(l,v) > (1 —
ni + no

for any v > . Next, consider0 < v < --. Choose
1 ni

_ 1+ vng

l= ;
ny + ne

(®)

then! > v, andso
_ 1+ vng ni-1(q _ 1+ vnq na—1

P(l,v) =(1
n1 + na n1 + na

(6)

1—ovng
[(1+ vng)(1— -

Thus to shaw max; P(I,v) > (1 — ——
sufficient to shav that

VN9

1—-— "

( ny+ng —1

ving —n —|—v2n n

1+ (ny 2) 1n2
ny+ng—1

T+

)nz—l
ny+ng—1

(@)

)>1

Let
vne

ny+ng —1
vny

ni+ng—1
—n2) + v2ninsg
ny+ne—1

f(v) = (n1 —1)log(1 -

+ (ny — 1) log(1 +

)
)

);

then (7) is equivalent shaving that f(v) > 0. Taking the
derivative of f(v), it can be shavn thatfor 0 < v < 1,

ni
%SJ”) > 0. Becausef(0) = 0, therefore f(v) > 0 for

0 <w < -, asdesired. [
Let m(v, K) denote the average number of mini-slots
required as a function of the offset v and the maximum
numberof mini-slots, K, i.e. if the collision is not resohed
after K slots, we stop and restart. We want to showv that
m(v, K) < m(0, K). The following is a proof for the case
whenthereare only two users,onein C; andonein C,. We
conjecturethis holdsin general,but do not yet have a proof.
Corallary 1: If ny = ny =1, thenm(v, K) < m(0, K).
Proof: Definea sequencef “stages”m = 1..K, where
eachstagecorrespond#o onesplittinground.At eachstagem,
we definethe systemto be in one of three possible“states”:
Sm = 0,a,b. StateS,,, = 0 meansa successhas occurred

(n1

+log(1+ Y

in some previous stageand splitting algorithm has stopped.

StateS,,, = a meansthatat the end of the previous split it is
known that both userschannelgainsare lessthan somefinite
value, while state S,,, = b meansthat this is not the case.

And if S, = a or b, the splitting algorithm continues.For
eachstage,we also definea cost-to-go.J(S,,) which is the
expectednumberof additionalsplitting roundsneededo find
thebestuserstartingin stateS,,,. We assumehatafter K steps
the sequencestops. Thereforefor the last stageJ(Sk) = 0,
andfor m < K,

0 if S;no1 =0,
J(Sm_1) = { !

1+, P(Sm-1,5m)J(Sm), 0O.W.

(8)

Here P(S,,—1,Sm) is the probability of transitioningfrom
state S, to S,,_1. The Corollary can then be proved using
backward induction. Specifically at stageK, J(Sk) will be
the samefor both casesLet J,(S,,) and P(Sy,—1,Sm), be
the cost-to-goand transition probability for the v > 0 case
andlet J)(Sm), P'(Sm-1,Sm) be the analogousguantities
for the v = 0 case.lt can be shown that P(Sy,—1,Sm) <
P'(Sym—1,Sm), for all Sy,—1,Sm = a,b. Fromthis it follows
that J(Sy—1) < J'(Sm—1). By induction,we have J(Sp) <
J'(So), which meansthe averagenumber of mini-slots re-
quired is lessin the asymmetricmodel than the symmetric
case. [ |
Based on (4) and (5), we define the function
split(H;, Hp,n1,n2) to be equal to the value of Hj
that satisfies,% = g(ny,n2,v), where
g(n17n27v)
Lhlo=Fu(H)ne it Fy(Hy) <v &
e — if FH(Hh) >v

ni+na’
otherwise.

ni(v—Fg (Hy)

Fa () —Fa(hy <1

)
Therefore,
Splitk(Hl,Hh,nl,nz) :FEl (FH(Hl)g(nl,nz,v)
+(1 = g(n1,n2,v))Fg(Hy)) .

Numericalresultsusing this algorithmare shovn in Fig. 6.
Until now we have assumedhat after a collision occurs,
the numberof usersof eachclassinvolvedin the collision is
known to all the users.However, this may be hardto realize
in practice.Therefore,we next considerthe casewherethe
numbersof usersinvolved in a collision is unknavn. When
a collision occurs,the mostlikely scenariois that two users
wereinvolvedin this collision [10]. Accordingly, the splitting
algorithmis modifiedto the following:
initializ&e m =0, H, = oo, H;=0andH; =0
while m # 1 andk < K do
m = (0,1,e)feedbackirom the basestation.
if m = e then
Hy = Hy; Hy = splity(Hy, Hy);
elseif m =0 then

if Hy, 75 0 then
Hl, = Sp"tg(H”,Hh);
else
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Fig. 6. Numberof mini-slotsrequiredvs. total numberof userswith
knowledge of humberof usersof eachclassinvolved in a collision

Hll = Split(HhHh; klykZ);
end if
Hy = Hy;
H, = Hj;
end if
k=k+1
end while
Where

splity(Hy, Hy) = F3;'! (FH(Hz) +FH(Hh)> _

H 2

Again, we want to comparethe averagenumberof mini-
slots required using this algorithm for two classesto that
requiredfor a oneclassschemeln [4] we have shavn thatfor
theoneclassschemeéhis numberis no greatetthan2.5070.We
male the following conjecture As before,whenn; = ns =1,
it canbe shown to be true.

Conjecture 1: Without knowing the number of usersin-
volved in a collision, the mini-slots requiredusing the given
algorithmfor two classeds lessthanthe mini-slots required
for one classscheme2.5070.

Next we give some numerical results for both of these
algorithms.For the two classcase the samenumberof users
are in eachclassand v = 0.01. Here we generatedthe
normalized random variables X; = Fpy,(h;) which could
correspondo ary fadingdistribution. Fig. 6 shavsthe average
number of mini-slots required when each user learns how
mary usersof eachclasswere involved in a collision; both
a single classand a two classcaseis shavn. It canbe seen
thatthe mini-slotsrequiredfor two classess lessthanfor one
classof usersasconjecturedThe analogousesultsareshovn
in Fig. 7 whenthe numberof usersinvolved in the collision
is not known by eachuser Again, the two classcaserequires
fewer mini-slots.

IV. CONCLUSION AND FUTURE WORK

In this paper we introduceda fairnesscriteria, distribution
fairness,and developed distributed splitting algorithms for
achieving this. Thesesplitting algorithmswere analyzedfor a

Number of Minislots Required versus Number of Users
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— One Class
— - Two Classes
2 L ,

L L L L L L
0 50 100 150 200 250 300 350 400 450 500

Total Number of Users

Fig. 7. Number of mini-slots requiredvs. total number of users
without knowledge of the numberusersof eachclassinvolved in a
collision

two classcaseand simulationresultsare given. In our future
work, we would like to completethe analysisof the single
classsystemand extendthe modelto morethantwo classes.
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