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Abstract— In this paper, we develop medium accesscontrol
protocols to enable users in a wir elessnetwork to opportunisti-
cally transmit when they have favorable channelconditions,with-
out requiring a centralized scheduler. We consider approaches
that usesplitting algorithms to resolve collisions over a sequence
of mini-slots to determine which user will transmit. We consider
an asymmetric model where differ ent users may have differ ent
channel statistics and differ ent priority levels. In this context,
we propose a new fair ness criterion, distribution fairness, that
lends itself naturally to a distrib uted implementation. We give a
splitting algorithm for achieving distrib ution fair ness.Weanalyze
the performance of this algorithm and show that the average
overhead required is less than in a symmetric case,which we
have analyzedpreviously. Simulation resultsare also given.

I . INTRODUCTION

Recently, “opportunistic scheduling” approacheshave re-
ceivedmuchattentionasa meansfor exploiting the“multiuser
diversity” inherent in a wirelesssetting (e.g., [1–3]). These
approachesattemptto scheduletransmissionsduring periods
whenauser’schannelis “good” andhencecansupporta larger
transmissionrate.This hasa theoreticalbasisin work suchas
[7], which shows that to maximizethe ergodic capacityof a
multiple-accessfadingchannel,at mosta singleuserwith the
bestchannelstateshouldtransmitat any time. For an up-link
(multiple access)model,suchapproachesrequirea centralized
schedulerwith knowledgeof eachuser’s channelgainto select
the user to transmit at a given time-slot. This requiresthe
schedulerto acquire estimatesof each users’ channelstate
beforemakingtheschedulingdecision;theoverheadanddelay
incurred in doing this may limit the system’s performance,
particularly if the number of active users is large or the
channelschangerapidly.

In [5] [4], we have consider distributed approachesfor
opportunisticschedulingwhereeachuserhasknowledgeof its
own channelconditions,but no knowledgeof the otherusers’
channels.The transmissiondecisionsare individually made
by eachuserbasedon their local channelinformation. This
approachrequireslessoverheadandscaleswell asthenumber
of usersincreases.In [5], a channel-aware Aloha approachis
introduced,whereusersbasetheir transmissionprobabilities
on their channel gain. Similar approacheshave also been

This researchwassupportedin part by the Motorola-NorthwesternCenter
for TelecommunicationsandNSF CAREERaward CCR-0238382.

studied in [6]. In [5], it is shown that the total throughput
increaseswith the numberof usersat the samerateas in the
optimal centralizedscheme,but is asymptoticallyreducedby
a factor of ����� due to the contention.In [4], a distributed
approachis given basedon usingsplitting algorithms[10] to
determinethe userwith the bestchannelover a sequenceof
mini-slots. For a homogeneousmodel where the usershave
identicalchannelstatistics,it is shown thattheaveragenumber
of mini-slotsrequiredto find theuserwith thebestchannelis
lessthan2.5 independentof thenumberof usersor the fading
distribution. In otherwords,theoverheadneededfor this type
of approachscaleswell as the numberof usersincreases.

In both [5] and [4], we considereda homogeneousmodel,
whereeachuser’s channelgainswereindependentandidenti-
cally distributed.In this case,a schedulingrule thatmaximizes
the total throughput results in each user having an equal
throughput. In practice, the set of users will likely have
asymmetricchannelstatistics,for exampledue to differences
in locationor mobility. In this paper, we considerdistributed
approachesfor opportunistic transmissionin this type of
heterogeneousmodel.

In a heterogeneoussetting,an important issueto how to
guaranteesomelevel of fairnessamongtheusers.In particular,
simply maximizing the total rate as in [4], [5], will tend
to overly favor userswith better channelstatistics.Also in
certaincases,it may be desirableto give someof the users
a larger share of the systemsresourcesthan others. Here
we addresstheseconcernsby using a new type of fairness
calleddistribution fairness, thatnaturallyleadsto a distributed
implementationas in [4]. With this definition, eachuser is
guaranteedto be able to transmit for a specifiedfraction of
time.Giventhis fractionof time,theuseris allowedto transmit
during thosetimes, when its channelis statistically “better”
thanaverage.We givea precisedefinitionof this in termsof an
optimizationformulation,that is relatedto work in [1]. In [1],
thegoalis to maximizea total systemutility undera constraint
on the fractionof time eachusertransmits.In the formulation
for distribution fairness,a users“utility” is definedin terms
of its channeldistribution. The aim of this type of fairness
is similar to that of the proportionalfair schedulingrule in
[3], where the user who has a higher ratio of transmission
rate to its averagetransmissionrate is scheduledto transmit.



With proportionalfairnessthe ratio of the averagethroughput
of any two usersis fixed, while the fraction of time each
usercantransmitmay vary. Anotherrelatedfairnesscriterion
was given in [9]. With the distribution fairness,the ratio of
the fraction of time differentusertransmitscanbe adaptedto
emulateother typesof fairnesscriterion aswell.

In the following section,we give a precisedefinition of
distribution fairnessand discussits propertiesin moredetail.
When then given similar splitting algorithmsto thosein [4]
for achieving distribution fairnessin a distributedsetting.We
show that in certaincasesthe numberof mini-slots required
to resolve collisions in this asymmetricmodel is no greater
than thoserequiredin a symmetricmodelas in [4]. Analysis
andsimulationresultsareboth presented.

I I . DISTRIBUTION FAIR SCHEDULING

We considera model of the up-link in a wirelessnetwork
with � users all transmitting to a common receiver. The
channelbetweeneach user and the receiver is modeledas
a time-slotted, block-fading channel; if only the � th user
transmitsin a given time-slot, the received signal, 	�
����� is
given by 	�
���������� ��
���
���������������! 
where ��
"�#��� is the transmittedsignal, �$
 is the fadingchannel
gain, and ������� is additive white Gaussiannoise. The chan-
nel gain is assumedto be fixed during each time slot and
to randomly vary betweentime-slots. In the following, we
assumethat the channelgainsof eachuserin eachtime-slot
are independentrandom variables,with probability density
functions %�&('!�*) 
 � on + ,- /.0� for �1���� 3242425 � . Let 67 &('!�*) 
 �8�9;:< %�&('=�>) 
 �@?A) denotethecomplimentarydistributionfunction
for user � ’s channelgain.To be begin, we considera central-
ized TDM schedulerwhich, given the vectorof channelgainsB �C�*)�D� )�EF 32G2H2G /)-IJ� at eachtime-slot, schedulesone of the
usersto transmit.Let KL� B � denoteschedulingallocation,i.e.KL� B �M��� if user � is scheduledwhen the joint channelstate
is
B

. We assumethat all usersareinfinitely back-logged,and
focuson the averagethroughputachieved by eachuser.

Definition: An allocationKL� B � B �N�*)�DF )�EF 32G2H2G /)-IO� is defined
to be distribution fair with parametersP5D� >P�EF 32G2H2H #P�I , if it
satisfies Q$RHST1UGV�W�X & Y IZ 
G[1D 67 &('!�>) 
 �!� T1UGV�W [\
#]

subjectto: Prob
� K^� B �_�`��a�bP 
 for �(���� 324242c �d2 (1)

Here, � T1UGV�W [\
 �fe �� if A(h)=i  ,g otherwise2
The parametersP5D� 423242\ >P�I should be a probability mass
function and specify the fraction of time that eachuserwill
transmit. Given this constraint,a distribution fair scheduler
will attemptto scheduleuserswith a small valueof 67 &('!�*) 
 � ;
this correspondsto a userhaving a channelthat is statistically
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strong,relative to theusersown distribution.Thisoptimization
problemis similar to that in [1] and the solution is a simple
extensionof [1]. The differenceis that in [1], the goal is to
optimize the sum expectedutility, while the problemhere it
is to minimize the sum of the valuesof the complimentary
distribution function,which canbe viewed asa specialutility
function. Using the resultsin [1], the optimal solution to (1)
is given by KL� B �8�vuFwx Q$RHS
G[1D/yzy I � 67 &('!�>) 
 �{�}| 
 �= (2)

wherethe parameters|F
 are chosento satisfy the constraints
Prob

� KL� B �~� �"��� P�
 , and so can be interpreted as
“f airnessparameters.” For convenience,we set |F
d��, for�1� Q u��g
G[1D/yzy I�P�
 , thenit canbe shown that |�����, , for all � .

Next we comparetheperformanceof sucha schedulingrule
with severalotheralternatives.First supposethatinsteadof (1)
we maximizethe expectedtotal throughput,i.e.

X & Y IZ 
H[�D�� �>) 
 �!� T1UGV�W [\
�]  
given the sameconstraints,where � ��� � givesthe transmission
ratea a function of the channelgain.This type of scheduling
policy was consideredin [1] and will tend to favor the user
with the betterchanneldistribution morethanthe distribution
fair approach.For example, assumethat there are 2 users,
suchthat � �>) D ��� � �*) E � for any ) D thatsatisfies 67 & o �>) D ���,g2z� and for any ) E . If the goal is to maximize the total
throughputwith the constraintthat P D ��P E �����F� , then the
optimalschedulingschemewill beasshown in Fig. 1 �#�@� . This
figure shows the optimal schedulingdecisionas a function
of � 
 ��67 &('!�>) 
 � , for eachuser � . In this case,user1 only
transmitswhen its gain satisfies 67 &1��� �>)cD4����,g2z� , i.e. when it
has a strongchannel.However, the weaker user is likely to
transmit in any channelstate.For this case,the distribution
fair schedulingpolicy is shown in Fig. 1 �*�!� wherenow both
usersaremorelikely to transmitwhentheir channelis strong
relative to its own statistics.

Next we comparea distribution fair schedulerto a propor-
tional fair one. We simulatedboth schedulingrule for two
users with independentRayleigh fading. User 1’s channel
gain distribution is %F& o �>) D �O� D<3� o1� �A����� < o<�� o � and user2’s is% & t �*)-E��_� D< � t � �@�{�F� < t< � t � , wheretheaveragechannelgainsare)-�=D ��� and )g�/E¡�`,-2 � . Fig. 2 shows theaveragetransmission
rate for both usersas well as the sum rate. It can be seen
that bothschedulingruleshave similar performance.With the



0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time slot

av
er

ag
e 

th
ro

ug
hp

ut
 b

its
/H

z/
se

c

Average throughput Comparison of two fairness scheme

.... Proportional Fair 

___Distribution Fair

User One 

User Two 

Total Rate 

Fig. 2. Averagetransmissionrateof eachusers.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time slot

av
er

ag
e 

tr
an

sm
is

si
on

 ti
m

e 
fr

ac
tio

n

Transmission Time fraction Comparison of Two Fairness Scheme

user one 

user two

...Proportional fair 

__Distribution Fair 
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distribution fair schedulerthe averagerate for user 1 (2) is
slightly lower (higher)comparedto theproportionalfair case;
the total throughputis slightly lower than in the proportional
fair case.Fig. 3 shows the averagefraction of time eachuser
transmits.The distribution fair schedulerguaranteesan equal
portion of time to eachuser. In this case,the proportional
fair scheduleralotsuser1 a largerportionof time thanuser2,
whichalsohelpsto explainwhy theproportionalfair scheduler
achievesa higher throughput.

In the remainderof thepaper, we only considertwo classes
of users.Whereall theusersin a givenclasshave i.i.d. channel
gainsandareassignedthe sameP 
 in (1) (andthus the same
fairnessparameter| 
 ). For ¢£�f�� /� , let ¤-¥ denotethe set of
class¢ users,andlet ¦{¥J�¨§ ¤8§ ¥ bethenumberof class¢ users.
Without lossof generality, we assumethat | 
 �v, for all users�a©b¤ D , and that | 
 �¨|ª��, for all �O©b¤ E . In this case,the
schedulingrule in (2) canbe viewed asfinding the minimum
of of a setof randomvariables

� ��
«� , wherefor each �8©¬¤-D ,��
;� 67 & '!�>��
*� is an i.i.d. uniform randomvariableon + ,- 4�! ,
and for each �a©b¤gE , ��
�� 67 & '4�#��
*�;�0| is an i.i.d. uniform
randomvariableon + |� 4�(�®|� . Also, let ¯ ¥ � Pr�>KL�>°®��©²± ¥ �
for ¢ª�³�� � , where °´� � ��
«� is randomvector of channel
gainschosenaccordingto thejoint density, µ 
 %�&('=�>) 
 � . Thus,¯1¥ is theprobabilitythataclass¢ useris scheduled.Assuming

the scheduleris non-idling, we have ¯ D �¶¯ E �·� . From the
above, ¯ E is given by¯ E �N��� ¸b| D �«¹ o ¹ tZ 
H[�D»º ¦\E��¼ ��� ¸ª| D � 
 | ¹ t � 
D º ��5�}¦ D ¼ 2
Next we give tight upperandlower boundson ¯ E ; this can,in
turn, be usedto help calculatethe correctfairnessparameter| for a given choiceof P D and P E .

Proposition 1: The probability a class2 useris scheduled,¯1E satisfies:��� ¸ª| D � ¹ o�½ D ¦ E�«� ¸b|�D!�«¦\E��}¦�D ��¯ E � �«� ¸¾| D � ¹ o«½ D ¦ E��� ¸ª|�D3�¿¦\E8��¦�D_��|�D 2
Proof: First we derive the upperbound.Note that¹ tZ 
H[�D^º ¦ E��¼ �«� ¸¾| D � 
 | ¹ t � 
D ��5�}¦�D� ¹ tZ 
G[5��º ¦\E��¼ �«� ¸¾| D � 
 | ¹ t � 
D ��c��¦ D��À¶Á ÂÂ ��¦�DÄÃ  

wherethe expectationis with respectto the p.m.f. Å 
 �Æ�«�M¸| D � 
 | ¹ t � 
D . FromJenson’s inequalitythis is upperboundedby:À8� Â �À;� Â �8�}¦ D � �«�M¸¾|�D!�«¦\E�«� ¸¾| D �¿¦ E ��¦ D 2
Therefore, ¯ E � �«� ¸¾| D � ¹ o«½ D ¦ E�«� ¸¾|�D!�«¦\E���¦�D 2
For the lower bound,note that

º ¦\E��¼ �1�v¦ E º ¦\EM¸0���¸0�»¼ 2
Thus,we have¹ tZ 
H[�D^º ¦ E��¼ �«� ¸¾| D � 
 | ¹ t � 
D ��5�}¦�D�a¦ E ¹ tZ 
G[�D^º ¦\E�¸¶���¸0�»¼ �«� ¸¾| D � 
 | ¹ t � 
D ��5�}¦ D�a¦ E ¹FÇtZ
 Ç [5� º ¦\ÈE� È ¼ �«� ¸¾| D � 
 Ç�| ¹FÇ

t � 
 ÇD �«� ¸¾| D �� È �}¦�D8�`�  
where ¦\ÈE �`¦\E ¸¶� . This is lower boundedby¦ E � ¸¾| D��� ¸ª|�D3�!�#¦\E ¸0���\�}¦�D8�`�� ��� ¸ª|�D3� ¹ o ½ D ¦\E�«� ¸¾| D �«¦ E ��¦ D �}| D
The lower boundthenfollows.

When |�Dv��� ¹ o¿½ ¹ oD ½ ¹ t , the two boundsare very close to
eachother; this will be true for most valuesof ¦�D and ¦\E as
shown in Fig. 4. For eachuserof class2, the probability of
transmissionis É t¹ t . The probability that the usersof class1
transmitis �¡¸�¯1E , and the transmissionprobability for each
userof class1 is

D ��É t¹ o . Thereforefor a given ¯ D and ¯ E , |
canbe found accordingly.
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I I I . A DISTRIBUTED SPLITTING ALGORITHM

In this section,we considera distributed approachfor im-
plementinga distribution fair schedulingpolicy. Our approach
is a generalizationof the splitting algorithmgiven in [4]. We
considera slottedsystemwherethechannelgain is a constant
within one slot. In each slot, each user knows only their
own channelgain during the slot, but not the gain of any
otheruser. At the beginning of eachslot, mini-slotsareused
for usersto sendrequeststo the receiver. Userswill senda
requestif their channelexceedsa threshold.The receiver will
feedback �#,- 4�� ��� indicating the mini-slot is idle, successful
or a collision happened.Basedon this feedback,the userwill
adjusttheir thresholdandeithersenda requestagainor back-
off, until a successfulrequestis received.The successfuluser
will thencontinueto transmitdatafor the restof the slot. We
are still considera 2 classsystemas above, and we assume
that the offset for class2 | in (2is known by all class2 users.
We then considerusing a splitting algorithmto find the user
that satisfies(2). First, we assumethat after eachmini-slot,
the numberof usersof eachclassinvolved in a collision, ¦ D
for classoneand ¦\E for classtwo, is known. We will remove
this assumptionlater.

Thesplittingalgorithmin thiscaseis givenby thefollowing:

initialize: Ël�v, , � < ��. , �$Ì5��) 
 ¹ 
GÍÌ and �$ÌÎÌ{�Ï,
while ËÑÐ��� and ¢¬��Ò doËl� (0,1,e)(feedbackfrom the basestation).

if Ël�`� then
Basestationfeedsback ��Ë D  "Ë E � , whereË 
 is number
of class � usersinvolved in collision.

end if
if Ël�`� then� ÌÎÌ �Ï� Ì ; � Ì � split �#� Ì  "� <  �Ë D  "Ë E � ;
elseif ËÓ�v, then

if �$ÌÎÌ�Ð�`, then�®ÈÌ � split �#�$ÌÎÌ« �^Ì¿ "ËdD� �Ë£E3� ;
else�®ÈÌ � split �#�$ÌÎÌ« �^Ì¿ "¦�D� "¦\E3� ;
end if� < �Ï� Ì ;

ÔÕJÖzÖ ÕJÖ Õ�×
Fig. 5. Exampleof a split range:Ø ÖzÖ is largestvalueof Ø Ö usedin theprior
mini-slotssuchthat thereare someusersabove Ø ÖzÖ . Ø ÖcÙ Ø Ù Ø × is the
transmissionrange.

�$Ì5�Ï�®ÈÌ ;
end if¢��v¢»�v�

end while

At each stage,only the users whose channel gains are
between� Ì and � < will transmit. � ÌÚÌ denotesthe maximum
channelgainabove which it is known that thereis at leastone
user. As shown in Fig. 5, if a collision occurs( ËÛ�Ü� ), the
range �^ÌO�Ü)¶�Ü� < is split into two parts (denotedby the
function “split”); usersin the upperpart will transmit in the
next mini-slot. If an idle mini-slot occurs( ËÝ��, ), thereare
two possibilities:One,asshown in Figure5 is that therehas
beena collision before,i.e. �^ÌÚÌ�Ð�Ï, . This meansthat the best
channelgainlies between� ÌÎÌ ��)d�0� Ì . Theotherpossibility
is that therehasnever beena collision before,i.e. � ÌÎÌ �·, .
This meansall the users’channelgainsare all below � Ì . In
both caseswe split the interval + � ÌÎÌ  � Ì  into two parts; the
new transmissionrangewill be the upperpart.

Thefunctionsplit �>� Ì  "� <  "¦ D  "¦ E � is chosento minimizethe
numberof mini-slotsrequired.In [4] it is shown thatfor |$�Ï, ,
the averagenumberof mini-slotsrequiredis lessthan2.4414
when the numberof usersinvolved in a collision is known.
In the following we considerwhetherthe averagenumberof
mini-slotsrequiredfor this asymmetricmodelwith |dÐ�Ï, can
be no larger thanfor the |$�Ï, case.

For a given | , let X �#Þ� �|@� denotethe event that for exactly
one user � , � 
 �ßÞ , where for each � , � 
 is a uniform
random variable as defined above. This correspondsto a
successoccurringin the first mini-slot, if ) 
 ¹ 
GÍÌ �ÏÞ . The next
propositionstatesthat for |£�Ï, the probability of this event
for the “best” choiceof Þ will be no less than in the |ª�·,
case.

Proposition 2: Let ¯��>Þ« �|@�_�`à8w � X �#Þ� �|@�/��2 This satisfies:Q u��Ì ¯��#Þ� �|@��� Q u��Ì ¯��#Þ� ",��! 
where Q uF� Ì ¯��#Þ� ",Ä�_�N�«�¡¸ D¹ o ½ ¹ t � ¹ o�½ ¹ t � D .

Proof: By definition, for Þ1�á� ,
¯��>Þ« "|A�_�ãâäääå äääæ

¦ D Þ��«��¸bÞ>� ¹ o � D ��� ¸¾Þ-��|A� ¹ t�a¦ E �#Þ\¸ª|@�!��� ¸¾Þ-��|A� ¹ t � D ���M¸bÞ>� ¹ o
for Þ1�0|¦ D Þ��«��¸bÞ>� ¹ o � D for Þ1�¶| (3)



First assume|ç� D¹ o andchooseÞ\� �¦ D  (4)

then ¯��#Þ� �|@�Æ� ���d¸ D¹ o � ¹ o � D  and since �«�d¸ Dè � è � D is
decreasing, ¯��#Þ� �|@���á��� ¸ �¦�D_��¦\E ��¹ o ½ ¹ t � D 2
Therefore Q u���¯��#Þ« "|A���é�«� ¸ �¦ D ��¦ E ��¹ o ½ ¹ t � D  
for any |ê� D¹ o . Next, consider,��ë|ç� D¹ o . ChooseÞ{� �_�ë|Ä¦\E¦ D ��¦ E  (5)

then Þ1�0| , andso¯��>Þ« "|A�_�^�«� ¸ ����|Ä¦\E¦ D ��¦ E � ¹ o � D ��� ¸ ����|Ä¦�D¦ D ��¦ E � ¹ t � D+H�«���ë|�¦\E��!��� ¸ � ¸¾|Ä¦ D¦ D ��¦ E �;¸ª¦\E4|�ì2 (6)

Thus to show Q uF�@Ì�¯��>Þ« "|A�é�í�«�¬¸ D¹ o«½ ¹ t � ¹ o ½ ¹ t � D , it is
sufficient to show that�«�¡¸ |Ä¦ E¦�D;��¦\E ¸¶� � ¹ o � D �«��� |�¦ D¦�D_��¦\E�¸0� � ¹ t � D���«��� |c��¦�D�¸¾¦\E3�\��| E ¦�D=¦\E¦ D ��¦ E ¸¶� ���á� (7)

Let %(�#|A�_�¨��¦ D ¸¶���@îGï�x��«� ¸ |�¦ E¦�D_��¦\E�¸0� ��Ï��¦\EM¸0���AîGï�x������ |Ä¦ D¦ D ��¦ E ¸¶� ���îHï�x������ |c��¦ D ¸ª¦ E �{�}| E ¦ D ¦ E¦�D;�}¦\E ¸¶� �! 
then (7) is equivalent showing that %(��|@���ð, . Taking the
derivative of %(��|@� , it can be shown that for ,��C|N� D¹ o ,ñ�ò UGó=Wñ ó �ã, . Because %(�#,Ä����, , therefore %(��|@�N�ã, for,��ë|ç� D¹ o , asdesired.

Let Ëb��|� "Òª� denote the average number of mini-slots
required as a function of the offset | and the maximum
numberof mini-slots, Ò , i.e. if the collision is not resolved
after Ò slots, we stop and restart. We want to show thatË¾�#|� Òª�ê�fË¾�>,g "Ò¾� . The following is a proof for the case
when thereareonly two users,one in ¤ D and one in ¤ E . We
conjecturethis holds in general,but do not yet have a proof.

Corollary 1: If ¦ D �`¦ E �N� , then Ë¾�#|� Òª���ëËb�#,- "Ò¾�=2
Proof: Definea sequenceof “stages” ËÓ�N��2H2 Ò , where

eachstagecorrespondsto onesplittinground.At eachstageË ,
we definethe systemto be in one of threepossible“states”:ô5õ �Ý,g "�� /� . State

ô5õ �Ý, meansa successhas occurred
in someprevious stageand splitting algorithm has stopped.
State

ô\õ �v� meansthat at the endof the previous split it is
known that both userschannelgainsarelessthansomefinite
value, while state

ô õ �~� meansthat this is not the case.

And if
ô õ �ö� or � , the splitting algorithm continues.For

eachstage,we also definea cost-to-go ÷_� ô õ � which is the
expectednumberof additionalsplitting roundsneededto find
thebestuserstartingin state

ô õ
. We assumethatafter Ò steps

the sequencestops.Thereforefor the last stage ÷_� ô\ø �a�Ü, ,
andfor ËC�¶Ò ,÷_� ô õ � D �_� e ,g if

ô5õ � D �v,- ���¶ùÏú�û¬¯�� ô5õ � D� ô\õ �=÷;� ô5õ �= o.w.
(8)

Here ¯�� ô õ � D  ô õ � is the probability of transitioning from
state

ô\õ
to
ô5õ � D . The Corollary can then be proved using

backward induction.Specifically, at stage Ò , ÷_� ô ø � will be
the samefor both cases.Let ÷ ¹ � ô\õ � and ¯�� ô\õ � D� ô5õ � , be
the cost-to-goand transition probability for the |`�ü, case
and let ÷\È¹ � ô5õ � , ¯�È>� ô5õ � DF ô5õ � be the analogousquantities
for the |��Ý, case.It can be shown that ¯�� ô õ � D  ô õ �£�¯�È*� ô õ � D  ô õ � , for all

ô õ � D  ô õ �v�� /� . From this it follows
that ÷_� ô õ � D �O�¨÷ È � ô õ � D � . By induction,we have ÷;� ô � �¡�÷\È>� ô � � , which meansthe averagenumberof mini-slots re-
quired is less in the asymmetricmodel than the symmetric
case.

Based on (4) and (5), we define the function
split �#� Ì  "� <  �¦ D  �¦ E � to be equal to the value of �®ÈÌ
that satisfies, ýÄþ U & Çÿ W � ýÄþ U &(� WýÄþ U & ÿ W � ý�þ U &;� W ���5��¦�D� �¦\E� �|@� , where

�c�#¦ D  "¦ E  �|@�
� âäå äæ

D ½ UGó � ý�þ U &;� W�W ¹ t¹ o ½ ¹ t  if
7 & �>� < ���0| & ¹ o UGó � ýÄþ U &(� Wý�þ U & ÿ W � ýÄþ U &(� W �á�D¹ o¿½ ¹ t  if
7 &^�>� < ���0|D¹ o  otherwise.

(9)

Therefore,

split¥g�#� Ì  "� <  �¦ D  "¦ E �8� 7 � D& � 7 &$�#� Ì ���5��¦ D  �¦ E  �|@��$�«� ¸��5��¦ D  "¦ E  "|A�"� 7 &$�>� < �"�52
Numericalresultsusingthis algorithmareshown in Fig. 6.

Until now we have assumedthat after a collision occurs,
the numberof usersof eachclassinvolved in the collision is
known to all the users.However, this may be hard to realize
in practice.Therefore,we next considerthe casewhere the
numbersof usersinvolved in a collision is unknown. When
a collision occurs,the most likely scenariois that two users
wereinvolved in this collision [10]. Accordingly, the splitting
algorithmis modifiedto the following:

initialize: Ël�Ï, , � < �á. , � Ì �v, and � ÌÎÌ �v,
while ËÑÐ��� and ¢¬�¶Ò doËl� (0,1,e)feedbackfrom the basestation.

if Ël�v� then�$ÌÎÌ{�`�$Ì ; �$Ì{� splitE��>�$Ì« "� < � ;
elseif Ël�`, then

if �^ÌÚÌ�Ð�v, then� ÈÌ � splitE �>� ÌÎÌ  "� < � ;
else
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Fig. 6. Numberof mini-slotsrequiredvs. total numberof userswith
knowledgeof numberof usersof eachclassinvolved in a collision

�®ÈÌ � split �#�$Ì« "� <  ¢AD� /¢�E�� ;
end if� < �Ï� Ì ;� Ì �`� ÈÌ ;

end if¢��Ï¢��v�
end while
Where

splitE��>�$Ì« "� < �_� 7 � D& º 7 & �>�^Ì*�{� 7 & �#� < �� ¼ 2
Again, we want to comparethe averagenumberof mini-

slots required using this algorithm for two classesto that
requiredfor a oneclassscheme.In [4] we have shown thatfor
theoneclassschemethisnumberis nogreaterthan2.5070.We
make thefollowing conjecture.As before,when ¦�D �v¦\E¡��� ,
it canbe shown to be true.

Conjecture 1: Without knowing the number of users in-
volved in a collision, the mini-slots requiredusing the given
algorithm for two classesis lessthan the mini-slots required
for oneclassscheme2.5070.

Next we give some numerical results for both of these
algorithms.For the two classcase,the samenumberof users
are in each class and |Ý�í,-2 ,-� . Here we generatedthe
normalized random variables ��
`� 7 & '!�>)�
ì� which could
correspondto any fadingdistribution.Fig. 6 shows theaverage
number of mini-slots required when each user learns how
many usersof eachclasswere involved in a collision; both
a single classand a two classcaseis shown. It can be seen
that themini-slotsrequiredfor two classesis lessthanfor one
classof usersasconjectured.Theanalogousresultsareshown
in Fig. 7 when the numberof usersinvolved in the collision
is not known by eachuser. Again, the two classcaserequires
fewer mini-slots.

IV. CONCLUSION AND FUTURE WORK

In this paper, we introduceda fairnesscriteria, distribution
fairness,and developed distributed splitting algorithms for
achieving this. Thesesplitting algorithmswereanalyzedfor a
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Fig. 7. Number of mini-slots requiredvs. total number of users
without knowledgeof the numberusersof eachclassinvolved in a
collision

two classcaseandsimulationresultsaregiven. In our future
work, we would like to completethe analysisof the single
classsystemandextendthe model to morethantwo classes.
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