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Abstract—We consider broadcasting from a single source to
multiple destinations in a linear wireless erasure network with
feedback. The problem is to find the maximum stable throughput
under different transmission policies with opportunistic network
coding and forwarding. Given stochastically varying traffic, we
assume that network coding decisions are based on the availabil-
ity of queued packets. The network is clustered into groups of
terminals and network coding is applied locally to packets within
each group. This allows us to evaluate the effects of topology
control on the maximum stable rate. For each transmission
policy we derive the optimal cluster size. We show that network
coding improves the stable rate over plain retransmissions, and
the network coding gain significantly benefits from opportunistic
network coding, forwarding and topology control, ranging from
33% to 410%, depending on the physical channel parameters in
the numerical experiments.

I. INTRODUCTION

Network coding is known to improve the achievable rates
over routing in multicast networks [1]. Much of the work on
network coding has focused on models in which terminals
always have packets available to code and transmit. If traffic
is random, queues in the network may occasionally become
empty. In such cases, network coding decisions should be
made dynamically, based on the instantaneous queue contents.

For stochastically varying packet traffic, a basic objective is
to find the maximum stable throughput, i.e. the arrival rates
such that all packet queues in the network have finite delay.
For routing it is known that the back-pressure algorithms
optimize the achievable stable rates [2]. This approach can
be incorporated with random network coding [3] for general
network topologies.

Network coding also helps for single-hop models, in par-
ticular, for broadcast erasure channels with feedback. The
throughput and delay gains of random network coding have
been studied in [4], [5] for broadcast systems with saturated
queues. The maximum stable rate has been derived in [6]–
[8] with queue-based dynamic network coding under random
traffic. However, as the number of destinations increases, the
benefits of network coding over a single hop are reduced to
the bound imposed by the worst erasure probability, which
increases with the number of one-hop destinations.

This work was supported in part by the DARPA ITMANET program under
the grant W911NF-07-1-0028.

In this paper, we consider a linear wireless erasure network
with receiver feedback. We cluster terminals into groups such
that network coding is applied locally to packets within each
group. This reduces the worst erasure probability but raises
the need for joint network coding and forwarding of packets
to propagate within each cluster and between clusters.

While [9] studied the capacity of erasure networks with
backlogged traffic, we analyze the stable rate under random
packet traffic as a function of cluster size. As an alternative
to ARQ-based retransmissions, network coding is applied
only at the first terminal in each cluster. Then, we allow
packets to propagate within the cluster and apply network
coding opportunistically at the intermediate terminals. The
associated overhead for network coding is also discussed. The
comparison of stable rates reveals that the network coding gain
increases with opportunistic forwarding and topology control
(in the form of choosing optimal cluster sizes).

The rest of the paper is organized as follows. Section II
introduces the network model. A base-line retransmission pol-
icy is discussed in Section III. This is followed in Section IV
by the introduction of a simple network coding policy over a
single hop. Then, we introduce two improvements by allowing
network coding at the intermediate terminals in Section V
and by incorporating opportunistic forwarding in Section VI.
The overhead for each transmission policy is discussed in
Section VII and the stable rate performance is compared in
Section VIII. Finally, we draw conclusions in Section IX.

II. SYSTEM MODEL AND RETRANSMISSION POLICIES

We consider broadcasting from a single source in a linear
wireless erasure network. We assume the source is at one
end of the network and we label it terminal 0; the other
terminals are then labeled by the number of hops they are
away from terminal 0. Transmissions only go in the direction
of increasing i to avoid cycles. Each terminal can transmit a
packet to a terminal i hops away with erasure probability εi,
where εi increases with i. We assume a synchronous slotted
system in which each transmission takes one time slot. The
network is divided into groups of N terminals such that the
last terminal in each group broadcasts packets to all terminals
in the successive group on behalf of the source. The system
model is shown in Fig. 1.
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Fig. 1. A line network for N = 3. Terminals 0 and 3 are the group leaders
of Groups 1 and 2 respectively. The erasure probability between terminals i
and j, j > i, in the same group is εj−i.

The problem is to find the optimal group size N , where
the optimality is defined based on the maximum stable arrival
rate that the network can sustain under various transmission
policies. For each group, we call the terminal preceding the
group which broadcasts packets on behalf of the source the
group leader, and call the terminal i hops away from the
group leader receiver i. We assume the network operates on
a group basis, i.e., if a group is active, then either the group
leader or a terminal in the group is transmitting; otherwise,
the group leader and all terminals in the group are prohibited
from transmissions.

We assume that whether a transmission is successfully re-
ceived by each receiver is immediately known to all terminals
within the group and to the group leader, possibly through a
perfect feedback channel. The minimum transmission power
is chosen to reach at most N -hop neighbor terminals, i.e., both
transmission and interference ranges are N hops. Therefore,
every third group can be active, provided that there are at least
three groups in the network.

For each transmission policy we consider, we will describe
how the policy works within each group and calculate µN , the
service rate for packets in each group. Therefore, the arrival
rate λ must satisfy the following stability condition:1

λ <
1

3
µN . (1)

This fixed time-division policy achieves the same maximum
rate as any other work-conserving policy, where (a) the system
does not allow any idle slot provided that there are packets in
the system, and (b) packet transmissions do not interfere. The
probability that any group has a packet to transmit is given by
the utilization factor of each group λ

µN
. Whenever one group

is activated, then two other groups on both sides should stay
idle to avoid interference. The stability condition is that the
sum of utilization factors for separately activated groups is
less than 1, which is equivalent to the stability condition (1).

In the following we propose four retransmission policies
based on network coding and opportunistic forwarding. The
first policy, simple network coding (SNC), is based on the
fact that if every receiver in a group misses only one packet,
then transmitting a linear combination from the group leader
using these missing packets allows each receiver to receive
the packet it misses. The second one, opportunistic network

1Throughout this paper, we assume that there are at least three receiver
groups (each of N receivers) in the network.

coding (ONC), takes advantage that any receiver can transmit
the linear combination of the missing packets if all its upstream
receivers have received all packets. These two policies only
consider packets that are missed at one receiver only. For those
packets lost at at least two receivers, these policies simply
assume these packets are lost at all receivers. To take care
of these packets, we incorporate opportunistic forwarding to
form the policies simple network coding with opportunistic
forwarding (SNCOF) and opportunistic network coding with
opportunistic forwarding (ONCOF), in which any receiver can
take the role of the group leader for a packet if this packet is
already received by all upstream receivers.

III. PLAIN RETRANSMISSION POLICY

Before we analyze the performance of these retransmission
policies, we define a benchmark plain retransmission policy
(PRP) based on standard ARQ. In PRP, the group leader
transmits a new packet only when the previous packet has
been received by all receivers. Otherwise, the same packet is
retransmitted until all receivers have received it. This policy
has been considered in [4], [6] in comparison with network
coding. For a group of N terminals, the service rate is

µN,PRP =
1

1 +
∑∞
l=1

[
1−

∏N
j=1

(
1− (εj)l

)] . (2)

The stability condition of PRP is (1) with µN = µN,PRP.

IV. SIMPLE NETWORK CODING

We next consider SNC, with the following queue system
for each group. The group leader keeps a queue Q0 storing
all newly arrived packets. If a packet transmitted from Q0 is
received by all N receivers, the packet leaves the system. If
the packet is received by all receivers except receiver k, then
the packet leaves Q0 and enters Qk at the group leader. When
Q0 is empty, we form a network-coded packet from all head-
of-line packets in queues {Qk}Nk=1 by XOR-ing all of them
and broadcast it to all receivers in the group. If some Qk’s are
empty, we let the corresponding head-of-line packets to be
all-zero dummy packets, where we assume ordinary packets
cannot be all-zero.2 If a packet is lost at at least two receivers,
then we consider the packet to be lost at all receivers and it
remains at Q0.

Theorem 1: The service rate of SNC is

µN,SNC =

[
1 +

∑N
l=1

εl
1−εl

]∏N
j=1(1− εj)

1− εN + εN
∏N−1
j=1 (1− εj)

(1− εN ) (3)

for each group of N terminals.
Proof: Packet transmissions can be modeled as a Markov

chain with two states. The initial state 1 corresponds to the
case when the packet under transmission is not received by
at least two receivers. If the packet is received by all but one
receiver, then state 2 is reached. Otherwise, if the packet is
received by all receivers, then the packet leaves the system and

2This is equivalent to adding an extra overhead bit to notify the receivers
whether the transmission is for an ordinary or a dummy packet.



we are back to state 1. Let pi,j be the transition probability
from state i to state j, and ti be the service time of a packet
starting from state i. Then, the expected service time is given
by

TN,SNC = E[t1] = 1 +
∑
i=1,2

p1,iE[ti]. (4)

In state 2, the probability that any network-coded packet
is delivered to the receivers is upper bounded by the largest
erasure probability εN . In general, additional time should be
needed for the packets in Qk for all k 6= 0. However, this is
not necessary for SNC because the service time of the packets
in Qk for any k 6= 0 are all superimposed by means of network
coding. For k 6= 0, the arrival rate of Qk is

λεk
∏N
j=1,j 6=k(1− εj)∏N

j=1(1− εj) +
∑N
l=1 εl

∏N
j=1,j 6=l(1− εj)

,

and the service rate of Qk is 1− εk. Since {εi} is nondecreas-
ing, QN has the largest arrival rate and the smallest service
rate among all {Qk}Nk=1. At the verge of stability, QN will
always be nonempty, any packet in {Qk}N−1k=1 can be served
with packets in QN simultaneously. As a result, it is sufficient
to consider the case when the packets are delivered to receiver
N . The time to deliver the network-coded packets to receiver
N , namely t2, is a geometric random variable with success
probability 1− εN . Therefore, E[t2] = 1

1−εN .
The expected service time can be expressed from (4) as

TN,SNC = 1 +

[
εN

N−1∏
j=1

(1− εj)

]
1

1− εN

+

[
1−

N∏
j=1

(1− εj)−
N∑
l=1

εl

N∏
j=1,j 6=l

(1− εj)

]
TN,SNC. (5)

The service rate is then given by µN,SNC = 1
TN,SNC

.
The stability condition of SNC is (1) with µN = µN,SNC.
SNC improves the stable rate over PRP but it is still

inefficient, as we will discuss next. In the following we present
two methods to improve on its performance.

V. OPPORTUNISTIC NETWORK CODING

In SNC, suppose the group leader transmits network-coded
packets. Since Qk contains packets that are not received by
receiver k only, if {Qk}ik=1 are all empty for some i < N , then
the network-coded packets should be formed from packets in
{Qk}Nk=i+1 and intended for receivers i+1, i+2, . . . , N only.
Receiver i has the packets in {Qk}Nk=i+1, so it can construct
and transmit the network-coded packets. Hence, network cod-
ing should be done opportunistically. This is consistent with
using the side information (obtained through opportunistic
listening) to improve the network coding performance [10].

In ONC, we consider the following queue system in each
group. At the group leader, there are queues {Qk}Nk=0 as in
SNC. We introduce additional queues Qi,k with 1 ≤ i < k ≤
N . The queue Qi,k resides at receiver i and stores packets

that are not received by receiver k only. Hence, Qi,k stores
the same packets as Qk does.

ONC operates as follows. When Q0 is nonempty, packets
are transmitted from Q0. If it is empty, network coding is
used. If Q1 is nonempty, network-coded packets are formed
and transmitted from the group leader as in SNC. If there exists
an i such that {Qk}ik=1 are all empty and Qi+1 is nonempty,
network-coded packets are formed by XOR-ing the head-of-
line packets in {Qi,k}Nk=i+1 and transmitted from receiver i.

Theorem 2: The service rate of ONC is

µN,ONC =

[
1 +

∑N
l=1

εl
1−εl

]∏N
j=1(1− εj)

1 +
∑N
l=1 ρl,N

(6)

for each group of N terminals, where

ρk,N = ηk,N
1− εk
1− ε1

−
k−1∑
l=1

ρl,N
1− εk−l+1

1− ε1
, (7)

the summation when k = 1 is the empty sum and

ηk,N = εk

N∏
j=1,j 6=k

(1− εj)
1

1− εk
. (8)

Proof: The quantity ηk,N is the expected service time
to clear all packets in Qk if they are transmitted by the group
leader. From this, we calculate ρk,N , the expected service time
due to network coding when Qk is nonempty and {Qj}k−1j=1

are all empty. The expected service time of ONC is given by

TN,ONC = 1 +

N∑
l=1

ρl,N

+

[
1−

N∏
j=1

(1− εj)−
N∑
l=1

εl

N∏
j=1,j 6=l

(1− εj)

]
TN,ONC. (9)

This is the same as (5), except the second term on RHS of
(9) is replaced by the expected service time due to network
coding when it is done opportunistically. If Q1 is nonempty,
network coding is performed at the group leader, so

ρ1,N = η1,N .

To compute ρ2,N , we first compute the difference η2,N−ρ1,N ,
the expected time to transmit the packets in Q2 by the group
leader that are not network-coded with packets in Q1 because
Q1 is empty. These packets are transmitted by receiver 1 at
rate 1− ε1 in ONC instead of 1− ε2 by the group leader. So,

ρ2,N = (η2,N − ρ1,N )
1− ε2
1− ε1

.

Similarly, we can compute

ρ3,N =

(
(η3,N − ρ1,N )

1− ε3
1− ε2

− ρ2,N
)
1− ε2
1− ε1

= η3,N
1− ε3
1− ε1

−
(
ρ1,N

1− ε3
1− ε1

+ ρ2,N
1− ε2
1− ε1

)
,

and in general, we have (7). The service rate is given by
µN,ONC = 1

TN,ONC
.

The stability condition of ONC is (1) with µN = µN,ONC.



µN,SNCOF =
1− ε1 + ε1

∏N
j=2(1− εj)

1 + εN
∏N−1
j=1 (1− εj) 1

1−εN +
∑N−1
l=2 εl

∏l−1
j=1(1− εj)

[
1−

∏N
j=l+1(1− εj)

]
1

µN−l+1,SNCOF

(10)

µN,ONCOF =
1− ε1 + ε1

∏N
j=2(1− εj)

1 +
∑N
l=1 ρl,N +

∑N−1
l=2 εl

∏l−1
j=1(1− εj)

[
1−

∏N
j=l+1(1− εj)

]
1

µN−l+1,ONCOF

(12)

VI. NETWORK CODING COMBINED WITH OPPORTUNISTIC
FORWARDING

In SNC, if a packet is received by all receivers j ≤ i, where
i ≤ N − 2, it is considered to be lost at all receivers. Since
receiver i already has the packet, receiver i can forward it
on behalf of the group leader. Therefore, we should consider
combining SNC with opportunistic forwarding.

The queue structure for SNCOF for each group is as follows.
We have queues {Qk}Nk=0 at the group leader as in SNC.
For receiver i, i ≤ N − 2, we include additional queues Qi0
and {Qik}Nk=i+1. Consider a reduced group that consists of
receivers i+1, . . . , N with receiver i acting as the group leader
of this reduced group. Qi0 stores the packets that are already
received by receivers 1, . . . , i but not receiver i+1, and are not
handled by SNC. We assume packets in Qi0 are not received by
any receiver in the reduced group. Qik stores packets that are
already received by all receivers in the reduced group except
receiver k. The roles of the queues Qi0 and {Qik}Nk=i+1 are
the same as the queues {Qk}Nk=0 in the group leader.

SNCOF works as follows. When Q0 is nonempty, packets
are transmitted from Q0. If Q0 is empty, we use SNC
with queues {Qk}Nk=1. If all queues in the group leader and
receivers 1, . . . , i− 1 are empty, but not all queues in receiver
i are empty, then we consider the reduced group with receiver
i as the group leader. Packets are transmitted from Qi0 if it is
nonempty; otherwise, we use SNC with queues {Qik}Nk=i+1.

Theorem 3: The service rate of SNCOF is given by (10)
for each group of N terminals.

Proof: The expected service time of SNCOF is

TN,SNCOF = 1 +

[
εN

N−1∏
j=1

(1− εj)

]
1

1− εN

+

N−1∑
l=2

[
εl

l−1∏
j=1

(1− εj)

(
1−

N∏
j=l+1

(1− εj)

)
TN−l+1,SNCOF

]

+

[
1−

N∏
j=1

(1− εj)− ε1
N∏
j=2

(1− εj)−
N∑
l=2

εl

l−1∏
j=1

(1− εj)

]
× TN,SNCOF. (11)

The third term on RHS of (11) is the expected service time due
to opportunistic forwarding. For a packet that is received by
all receivers j < l and is lost at receiver l, if it is received by
all remaining receivers, it will be delivered by SNC; otherwise
it will be delivered by opportunistic forwarding in a reduced
system that consists of only N − l+1 receivers. The last term
on the RHS of (11) is changed to include only packets that

are not received by all receivers and do not participate in SNC
or opportunistic forwarding. Upon simplification of (11), the
service rate µN,SNCOF = 1

TN,SNCOF
is given by (10).

The stability condition for SNCOF is (1) with µN =
µN,SNCOF, where µN,SNCOF can be found recursively by (10).

We can also combine ONC with opportunistic forwarding,
since the packets that are taken care of by opportunistic
forwarding in SNCOF are also ignored by ONC. Hence,
both network coding and forwarding should be done oppor-
tunistically. We can simply modify SNCOF by using ONC
everywhere instead of SNC to form a new policy, ONCOF.

Theorem 4: The service rate of ONCOF is given by (12)
for each group of N terminals, where ρl,N is given by (7).

Proof: The expected service time of ONCOF is

TN,ONCOF = 1 +

N∑
l=1

ρl,N

+

N−1∑
l=2

[
εl

l−1∏
j=1

(1− εj)

(
1−

N∏
j=l+1

(1− εj)

)
TN−l+1,ONCOF

]

+

[
1−

N∏
j=1

(1− εj)− ε1
N∏
j=2

(1− εj)−
N∑
l=2

εl

l−1∏
j=1

(1− εj)

]
× TN,ONCOF, (13)

where we replaced the second term on RHS of (11) by the
expected service time due to network coding when it is done
opportunistically to get (13). Upon simplification of (13), the
service rate µN,ONCOF = 1

TN,ONCOF
is given by (12).

The stability condition for ONCOF is (1) with µN =
µN,ONCOF, where µN,ONCOF can be found recursively by (12).

VII. OVERHEAD AND FEEDBACK REQUIREMENT

We compute the overhead for each policy, i.e., the number
of bits needed to indicate which receivers are the intended
ones and notify those receivers what packet is transmitted.
The following only apply for N > 1, since all policies reduce
to hop-by-hop forwarding when N = 1, thus no overhead is
incurred.
• PRP: The group leader needs to inform the receivers

whether the transmitted packet is a new transmission, or
not. This can be handled by alternating one control bit
depending on whether all receivers have already received
the packet under transmission, or not.

• SNC: Any network-coded packet is formed from the
head-of-line packets in queues {Qk}Nk=1. When a
network-coded packet is transmitted, if a receiver decodes



the packet to get a dummy packet, it can simply discard
the packet. Hence, any transmitted packet is intended for
all receivers and we only have to distinguish whether it
is a network-coded packet or not, i.e., one bit is needed
for the overhead.

• ONC: When receiver j receives a network-coded packet
from receiver i < j, receiver j can decode the packet as if
it were transmitted from the group leader, with {Qk}ik=1

all empty. Hence, one bit of overhead is required as in
SNC.

• SNCOF: SNCOF can be considered as SNC applied to
N−1 groups, either the whole group or the reduced group
with receiver i being the group leader for i ≤ N − 2.
Therefore, a total of 1+ dlog2(N − 1)e bits are required
for the overhead.

• ONCOF: By similar reasoning as for ONC and SNCOF,
the overhead required for ONCOF is the same as that of
SNCOF, i.e., 1 + dlog2(N − 1)e bits.

Next we discuss the amount of feedback required. The
feedback needs to inform every terminal in the group and the
group leader which receivers receive the packet transmitted
in the current time slot. Assuming perfect channel feedback,
this can be done by letting each receiver broadcast one bit
indicating whether it receives a packet in the current time
slot or not. Therefore, the amount of feedback is equal to
the number of terminals in a group, which is independent of
the policies we use.

VIII. EFFECTS OF NETWORK CODING AND TOPOLOGY
CONTROL ON STABLE THROUGHPUT

For illustration, suppose the probability of successful trans-
mission varies with the number of hops according to some
power law, i.e., 1 − εi ∝ i−α with α > 0, and we only
allow transmissions with erasure probability at most εth > 0.
If we divide the network in groups of N terminals, this means
εN ≤ εth. We assume εN = εth in the following. Then

εi = max{1− (1− εth)(N/i)
α, 0}, i < N, (14)

where max{·, ·} is included to satisfy εi ≥ 0. Figs. 2 and 3
show the maximum stable rates of PRP, SNC, ONC, SNCOF
and ONCOF, with different values of α and εth. The packet
length is taken to be sufficiently large so that the overhead is
insignificant. The following observations are made:

• The maximum stable rate starts with 1
3 (1−εth) at N = 1,

which corresponds to hop-by-hop forwarding.
• The performance of ONCOF is the best, followed by

ONC or SNCOF, and SNC is the worst.
• For small N , ONC has better performance than SNCOF;

but as N increases, SNCOF is better than ONC.
• The optimal cluster size can be greater than one, e.g.,

four in Fig. 2 and two in Fig. 3.

From (14), εi = 0 may occur if N is sufficiently greater than
i. This means a high transmission power is used to reach the
receiver N hops away, then the received power at the receiver
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Fig. 2. Maximum stable rate against group size, with α = 2 and εth = 0.8.
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Fig. 3. Maximum stable rate against group size, with α = 4 and εth = 0.5.

i hops away is high enough that the channel becomes error-
free. If εi = 0 for all i < N , it is possible for the maximum
rates to be leveled off as shown in Fig. 3 for small N .

Consider the inequality
∑N−1
l=1 εl

∏N−1
j=1,j 6=l(1 − εj) +∏N−1

j=1 (1 − εj) ≤ 1, meaning the probability that a packet
is lost at at most one receiver when a transmitter broadcasts
to N −1 receivers must be no more than one. This holds with
equality for any {εi} if and only if N = 1, 2, where the empty
sum is zero and the empty product is one. From this we obtain[

1 +
∑N
l=1

εl
1−εl

]∏N
j=1(1− εj)

1− εN + εN
∏N−1
j=1 (1− εj)

≤ 1.

Together with (3), the maximum stable rate of SNC is the
largest when N = 1, 2 for any {εi}, implying the optimal
N for SNC is one or two. The above argument also holds if
εN−1 and εN are the only possible nonzero elements in {εi}.
Hence the maximum rate of SNC levels off between N = 1
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Fig. 4. Maximum stable rate against erasure threshold, with α = 2.
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Fig. 5. Maximum stable rate against path loss exponent, with εth = 0.9.

and N = 12 in Fig. 3. From (2), the maximum stable rate
for PRP is the largest when N = 1 for any {εi}. Therefore,
the optimal N for PRP is one. The maximum stable rate can
also be achieved when εN is the only nonzero element in {εi}.
For ONC, SNCOF and ONCOF, it is possible to have a larger
maximum stable rate by increasing N as in Figs. 2 and 3.

Fig. 4 shows the maximum rate (optimized over N ) against
erasure probability threshold εth when α = 2. The maximum
stable rate is always achieved at N = 1 for PRP and SNC,
i.e., λmax,PRP = λmax,SNC = 1

3 (1 − εth). For ONC, SNCOF
and ONCOF, the improvement over PRP and SNC is minimal
when εth is too small, e.g., εth < 0.2 in Fig. 4. As εth increases,
ONC has a larger maximum stable rate than SNCOF, but
eventually SNCOF outperforms ONC. Erasure probabilities εi,
i < N , increase as εN = εth increases. When εth is small, most
packets will have a high probability to be lost at at most one

receiver, hence a higher rate can be achieved by ONC rather
than SNCOF (in which these packets are actually delivered by
SNC). As εth increases, packets that are received by all but one
receivers will be less likely to appear. Since ONC only helps
in delivering these packets, the benefits of ONC drop when
εth is too large. ONCOF combines both ONC and SNCOF to
achieve the best performance among all policies.

Fig. 5 shows the maximum rate (optimized over N ) against
path loss exponent α when εth = 0.9. For PRP and SNC,
λmax,PRP = λmax,SNC = 1

3 (1− εth), independent of α. SNCOF
achieves a higher maximum stable rate than ONC for small α,
and the opposite holds as α increases. Since εN = εth is fixed,
the erasure probabilities εi, i < N , decrease as α increases.
Therefore, the observations when α increases are similar to
those when εth decreases.

IX. CONCLUSION

We considered network coding for broadcasting in a linear
wireless erasure network. We presented different network
coding policies with opportunistic forwarding and topology
control, and derived the maximum achievable rate while
keeping the packet queues stable. For each transmission policy,
we clustered terminals into groups of fixed size and applied
network coding within each group. Then, the optimal cluster
size was found to optimize the achievable rates by taking into
account the packet overhead necessary for network coding.
The results showed that the throughput gain improves with
opportunistic network coding and benefits from topology con-
trol in terms of choosing transmission and interference ranges.
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