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Abstract -- Algorithms for controlling congestion are critical for the success of ATM networks.

The various sample algorithms appearing in the literature have in common significant non-

linearities that make these algorithms difficult to analyze using the tools of classical control

theory. This paper reports on the beginnings of a research program that considers the ATM

congestion control problem from the point of view of control theorist. A control scheme is

developed that can be designed and analyzed using well established linear control theory. There

is promise that as this approach is further developed it offers hope that analysis can assure

reasonable behavior in the large scale system setting of ATM networks.

I.  INTRODUCTION

A critical success factor for ATM networks is the resolution of a scheme to adequately control

the flow of data into an ATM network so as to avoid congestion at the network switching points

[1]. The ATM Forum is earnestly addressing this question and has defined protocols that enable

the switches and sources to communicate congestion information [2]. It has also produced a

series of sample congestion avoidance algorithms. These algorithms are not part of the standards

being set but are included to demonstrate the viability of the protocols. The algorithms suggested

to date fall into two categories – binary algorithms, e.g. the PRCA (proportional rate control

algorithm) [3], which use a single bit to communicate congestion information from the switches
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to the sources, and multivalued algorithms such as those presented in [4],[5] and [6], which

exchange much more information in both directions between the sources and the switches. While

more recent work in the ATM Forum has concentrated on multi-valued schemes, this paper

addresses only the more restricted binary schemes. Our attention is restricted to these schemes

because we are looking to more fundamentally understand the behavior of these schemes and the

role classical control theory can play in suggesting alternative schemes that can be more

productively analyzed.

The binary schemes that have been presented to date as sample switch and source algorithms

possess the characteristic that they contain control loops with significant non-linearities within

their operating regions. Such schemes are difficult to analyze even in a single loop setting. In a

network setting with many interacting loops, fully understanding the range of possible behaviors

quickly becomes intractable. The mathematics of dynamic system theory suggests that the

interaction of many non-linear feedback loops can produce unexpected and erratic behavior.

While no such behavior has been demonstrated for the carefully crafted binary algorithms, we feel

that it is a useful endeavor to examine if simple linear feedback loops can be designed in the

context of the ATM congestion avoidance problem. If adequate feedback loops can be obtained,

the expansion of the analysis to large interconnected systems becomes much simpler and more

fruitful.

In this paper, we address the creation of source and switch algorithms that can be analyzed and

designed using standard linear control system techniques that can be found in any standard

undergraduate text in the subject, for example, [7]. We believe that this theory of control which

has developed over many years has much to teach us about congestion avoidance algorithms and

that this theory has been largely ignored. We believe manipulating the problem to make use of

this theory can produce a number of benefits.  Among the potential benefits are:

(1) simpler and/or more effective algorithms,

(2) better understanding of the current non-linear algorithms,

(3) better analysis techniques for large systems of interacting algorithms.

In this paper, we consider only the simple case where two sources are trying to send cells to the

same output port of the same switch. Both sources are persistent in that they would like to send

cells as fast as possible but are limited by the bandwidth of the output port of the switch. Each

source should settle to a rate that is half the bandwidth of the output port.
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The results of this paper provide only the first steps in using control theory to analyze and

design alternative congestion avoidance algorithms. We are not yet at the point where we

advocate a particular alternative algorithm. We present our thinking and our results as a

contribution to the general understanding of the behavior of rate control algorithms and an

opening to a different way of considering such algorithms. We hope that the lessons learned in

addressing these issues from the viewpoint of a control engineer will enrich the work of those

working on the problem of congestion control, most of whom have different backgrounds from

ours.

II. A NON-LINEAR ALGORITHM

In this section we present a binary algorithm that is representative of those being considered in

the ATM Forum. As algorithms are developed in the Forum small changes are made but, for our

purposes, the algorithm given here summarizes the key ingredients of this class of algorithms.

Again, note that we are only considering the binary algorithms with single bit feedback from the

switches to the sources and not the multivalued algorithms with more sophisticated

communication capabilities. The purpose of presenting this algorithm is to point out two

characteristics that make the algorithm very difficult to analyze and that create behavior that is

cause of concern. The algorithms are usually presented in pseudo-code as in [4]. Here, we

present the algorithm somewhat less precisely and we fix the values of some parameters in order

to simplify the exposition.

At each time each source i has a rate Ri at which it is sending cells. We assume that each

source always has cells to send and would like to send them as fast as possible. The switch sees

cells arriving for a particular output line at a rate R where R is the sum of the rates of cells being

sent from all sources to the particular output line. The sources share a single switch output line of

bandwidth B=3.54*105 cells/sec (150 Mbps). Every 32 cells the sources insert an RM (Resource

Management) cell which is returned by the destination. The switch controls one bit in the RM

cell to indicate congestion, C=1, or no congestion, C=0. We consider the case where the switch

marks the RM cell on its way back to the source (Backward Explicit Congestion Notification or

BECN).  The feedback may be essentially instantaneous or may be subject to delay.
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Switch Algorithm. The switch queues the cells until they can be delivered. The length, q, of

the queue at successive time instants separated by Δ seconds is modeled by

(1)

Equation (1) models the flow of cells through the queue as a continuously varying quantity. In

reality, cells arrive and leave the actual queue at discrete times and the actual queue always

contains an integer number of cells. The difference between the model of the queue in (1) and the

real queue is accounted for by the noise source nq.

This noise source will be characterized by considering the actual queue size in the two source/

one switch network when the input rates are both set at 1/2 the output bandwidth, B. In this case

the model in (1), without nq, specifies that the queue size should stay constant. Figure 1 shows the

queue size of the actual queue for this situation. In this figure Xi represents the time cells arrive

from source i. The x-axis is normalized by 2/B so that cells depart from the queue at 1/2, 1, . . .

This figure shows that the actual queue size will vary depending on when X1 and X2 occur and

when the queue is sampled. The noise, nq, is modeled as zero mean white noise whose variance is

equal to the variance of the queue in this situation.

Fig. 1  The actual queue size, q, when the two input rates are both B/2 for two cases.

To calculate this variance it is assumed that X1 and X2 are independent of each other and

equally likely to occur any where between 0 and 1, i.e. independent uniform random variables.

The variance of the queue is calculated for each of four equally likely cases: (1) X1 < 1/2, X2 <1/2,

(2) X1 < 1/2, X2 >1/2, (3) X1 >1/2, X2 < 1/2, and (4) X1 > 1/2, X2 > 1/2. Cases 1 and 2 are shown

in figure 1. Cases 3 and 4 can be thought of as cases 2 and 1 respectively with the origin shifted to

the left by 1/2. Due to this symmetry, the variance for cases 1 and 4 and cases 2 and 3 will be the
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same, so really only two cases need to be considered.

CASE 1: Conditional on being in case 1, then X1 and X2 are independent uniform random

variables on (0,1/2). We want to find the pmf of the queue in this case. This pmf can be written as

p(Q=q) = p(Q=q|X1<X2)p(X1<X2) + p(Q=q|X2<X1)p(X2<X1) (2)

Since the Xi are independent and indentically distributed, then we know that

p(X1<X2) = p(X2<X1) = 1/2 (3)

and p(Q=q| X1<X2) = p(Q=q|X2<X1) (4)

thus (2) reduces to

p(Q=q) = p(Q=q|X1<X2) (5)

From fig. 1, the pmf for Q given X1 and X2 is given by:

x1,              q = n

p(Q=q|X1=x1, X2=x2, X1<X2) =  x2 -x1 +1/2,  q = n+1 (6)

  1/2 - x2,       q = n+2

To get from (5) to (6), the pdf’s f(x1|X2=x2, X1<X2) and f(x2|X1<X2) are needed. The first of these

is given by

f(x1| X2 = x2 , X1<X2) = 1/x2 ,  0<x1< x2 (7)

Bayes rule is used to find f(X2|X1<X2) as follows

(8)

                                                              =  , if 0<x2<1/2 (9)

multiplying (6) by (7) and (8) and then integrating over X1 and X2 yields the desired pmf

p(Q=q| X1<X2) = (1/6)δ(q-n) + (2/3)δ(q-n-1) + (1/6)δ(q-n-2) (10)

From this, the variance of Q for case 1 can be found to be 1/3, this is also be the variance of nq for

case 1.

CASE 2: This is the simpler of the two cases. For this case X1 is uniform on (0, 1/2) and X2 is

f x2 X1 X2<( )
p X1 X2< X2 x2=( ) f x2( )

p X1 X2<( )
---------------------------------------------------------------=

2x2( ) 2( )
1 2⁄( )

---------------------
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uniform on (1/2,1) and again both are independent. The ordering of X1 and X2 is already fixed in

this case.  The pmf of Q, given X1 and X2, can be written, by looking at Fig. 1, as:

p(Q=q|X1=x1, X2=x2) =    x1 + x2 - 1/2, q = n (11)

3/2 - x1 -x2,    q= n+1

Multiplying this by the pdf’s for X1 and X2 and integrating over these variables results in the

unconditional pmf for Q:

p(Q=q) = (1/2)δ(q-n) + (1/2)δ(q-n-1) (12)

Thus the variance of Q and nq for this case is 1/4.

Since nq is zero mean, the overall variance for nq can be found by adding up conditional

variances for each case weighted by the probability of that case. This results in a total variance of

0.292 for nq.

The switch sets the congestion indicator of RM cells returning to the source if its queue length

surpasses some threshold (in this case, q=500).

(13)

where the threshold function equals 1 if the argument is greater than or equal to 0 and the function

equals 0 otherwise.  This, of course, is a significant non-linearity in a control system.

Source Algorithm.  The source changes its rate when either one of two events occurs:

1. It is time to send a new RM cell. At this time the source decreases its rate by a multiplicative

scale factor

2. The source receives a returned RM cell with C=0. If this occurs the source raises its rate by

more than enough to overcome the decrease incurred during the last condition 1 situation.

There is an aspect of this algorithm that makes it unamenable to analysis. The rate at which

cells are being sent by a source is constantly changing; indeed, it is the variable being controlled.

Since the times at which changes are being made in the rate depends on the rate itself, the time

between successive sample instants is constantly changing making a discrete-time analysis very

difficult. Also, the feedback mechanism is corrupted by the timing out aspect of condition 1 in the

source algorithm. The RM cells are not being sent out and returned at a constant rate since the

returning RM cells were generated some time ago when the source's rate may have been lower or

higher. If the RM cells are going out faster than they are coming back there are times when rate

C threshold q 500–( )=
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decreases due to condition 1 are not offset even though there is no congestion in the switch.

A simulation of the switch and source algorithms described above is presented in Fig. 2. Two

persistent sources are contending for a single switch's output port which has a bandwidth of

3.54*105 cells/sec. The cell rates of the two sources are shown in Fig. 2a. Rather than converging

to steady-state rates of 1.77*105 cells/sec each, both source rates oscillate in unison between

0.5*105 and 3.0*105. The switch's queue length also oscillates between 300 and 600 cells as

shown in Fig. 2b.

Also shown in Fig. 2b is the timing of the C=0 and C=1 RM cells as received back at a source.

The timing out problem is seen most clearly at the top of the source's rate cycle. The source rate

levels off while it is receiving only C=0 (no congestion) indicators. At this point the rate is high

and new outgoing RM cells are being generated much faster than RM cells (which were generated

at lower rate previously) are being returned. The result is many false slowdowns due to timing

out.  Notice that this effect is in fact stabilizing but that is makes accurate analysis very difficult.

 .

Fig. 2a  The Rates of the sources.

Fig. 2b  The size of the queue and the C indicators on returning RM cells.

Fig.2  The simulation results for the non-linear algorithm.
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Some analysis of this representative algorithm can be performed if this timing out problem is

assumed away by only letting the source adjust at fixed time intervals. An adjustment mechanism

using fixed intervals but retaining the spirit of the ATM Forum PRCA algorithm is

(14)

where C0 is the number of C=0 RM cells received in time interval Δ,

C1 is the number of C=1 RM cells received in time interval Δ,

α is the multiplicative decrease factor, and β is the additive increase factor.

A system very similar to this is analyzed in [8]. Even with the timing out problem removed, the

system contains two non-linearities which cause it to exhibit steady-state oscillations similar to

those demonstrated in Fig. 2. A typical cycle in the oscillation is described in [8] where it is made

apparent that the cycles are fundamentally caused by the threshold non-linearity in (13).

In summary, the non-linearities in the algorithm of (1),(13)-(14) create a control system that

results in large limit cycles. The binary control variable C does not anticipate changes in the

queue. By the time C is used to indicate congestion the rates are large and growing. The

congestion indication causes the rates to begin to decrease but the queue continues to grow until

the sum of the rates falls below the outgoing bandwidth. The cycle is reversed on the downside.

The two sources are synchronized in their oscillation since the nonlinear mapping of the single

queue is driving them simultaneously in the same direction. The situation becomes worse when

delay is added to the feedback.

III.  USING PROBABILISTIC FEEDBACK TO CREATE A LINEAR CONTROL SYSTEM

The most serious problem in the system discussed above is the restriction that only a single bit

can be fed back from the switch to the sources. If a many valued control variable could be used in

the feedback loop then linear control could be applied and standard control design techniques

could be used to create a system that behaves better. While we agree to live with the binary

feedback restriction, we believe that it can be used more wisely. The system actually has many

chances to send a congestion bit back to the source. It can create the effect of a many valued

feedback variable by using probabilistic feedback.

Consider the situation where the switch would like to communicate the parameter p, a number

Ri nΔ( ) 1 α–( )
C1Ri n 1–( )Δ( ) C0β+=
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between 0 and 1 to the source. It can use a pseudo-random number generator to set C=1 with

probability p and C=0 with probability 1-p. The source can then recreate a noisy estimate of p by

averaging over a number of successive C's. This is the scheme we suggest to turn the rate control

system into an (almost) linear control system.

Source algorithm. In the interval between time (n-1)Δ and nΔ accumulate as C1 the number of

RM's received with C=1 and as C0 the number of RM's received with C=0.  Let

(15)

At nΔ , compute Ri(nΔ) as

(16)

                            =

Notice that this equation for the rate adjustment has an effect very similar to that of Eq. (14) but

it has been modified to be linear in the control parameter pi. There is still an exponential decrease

in rate which can be overcome by an additive increase when there is little congestion, i.e., when pi

is near zero.

Switch Algorithm. The queue length is still given by (1). The switch computes the feedback

parameter p as the output of a linear time invariant operator working on q. The loop contains a

summer and another low frequency pole at γ. The fundamentals of control theory indicate that a

simple controller that feeds back a term proportional to the queue size and another term indicating

the change in the queue size is appropriate for a good, stable system response. Such a controller is

standard in control theory textbooks [7]. It is referred to as a proportional-derivative (PD) or a

lead network controller. This controller can be expressed as

(17)

                                        =

The parameter p is communicated to the source by marking C=1 to all sources with probability

p if 0<p<1. The variable p is allowed to saturate at 0 and 1. If the parameters a and b are chosen

properly, p will not saturate and the effect will be a linear control system where each source

receives a noisy estimate of the variable p. In particular, the parameter b relates the steady-state

pi n 1–( )Δ( )
C1

C0 C1+
--------------------=

Ri nΔ( ) γ Ri n 1–( )Δ( ) 1 pi n 1–( )Δ( )–( )β pi n 1–( )Δ( )α–+=

γ Ri n 1–( )Δ( ) α β+( ) pi n 1–( )Δ( ) β+–

p nΔ( ) a q nΔ( ) q n 1–( )Δ( )–( ) bq nΔ( )+=

a b+( )q nΔ( ) aq n 1–( )Δ( )–
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queue size to p and is important in allowing operation to remain in the linear region.

Notice that if the system operates in the saturation region, the behavior is much the same as the

original system. We have, in effect replaced the hard switching non-linearity of (13) and Fig. 3a

with the softer non-linearity of Fig. 3b. The softer non-linearity allows a region of linear control

which can produce better performance. The remaining non-linearity provides a safety net against

any instability in the linear region as any locally unstable trajectories are trapped in a stable limit

cycle.

Fig.3a The hard non-linearity of the threshold function

Fig.3b  The softer non-linearity of probabilistic feedback

Fig. 3   Comparison of the non-linearities involved in the congestion control loops.
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computed at the sources is represented by additive noise, ni.

(18)

In a representative time interval Δ, a source receives N congestion indicators from the switch.

These congestion indicators can be modeled as N independent indentically distributed binomial

random variables taking on the value 1 with probability p and 0 with probability 1-p. The source

algorithm (15) estimates p by computing the sample mean of these N random variable. The noise,

ni, represents the error made in this estimation. The errors in each interval are assumed

independent so ni can be represented as white noise with a variance given by:

(19)

The total rate that cells are entering the queue is represented as the sum of the rates that each

source is sending at, i.e.

(20)

Cells may be delayed arriving at the switch and RM cells may be delayed returning to the

source. The approach taken here is not to specifically model these delays but to use control theory

to analyze the largest delay for which the simple linear controller remains stable.

Equations (1), (16)-(18), and (20) provide a model with which the control system can be

designed and analyzed.  A block diagram of the model appears in Fig. 4.

Now that the model is specified, linear control theory can be applied.  Linear control theory

provides guidance in choosing the parameters so that design trade-offs are clear through analysis

rather than the trial and error of simulation. The theory offers techniques to use the parameters to

manipulate derived quantities such as bandwidth and phase margin to aid in the understanding of

the following fundamental performance trade-offs:

1.  A stable linearized controller can be designed.

2. The maximal round trip delay for which the linearized controller remains stable can be

determined using the control loop bandwidth and phase margin. The lower the bandwidth

and the larger the phase margin, the more delay can be tolerated.

3. The speed and the shape of the transient response can be determined. The larger the phase

margin, the nicer the shape of the transient. The higher the bandwidth, the faster the

pi nΔ( ) p nΔ( ) ni nΔ( )+=

1
N
---- p 1 p–( )

R nΔ( ) R1 nΔ( ) R2 nΔ( )+=
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transient response.

4.  Steady-state values of variables can be determined in terms of the parameters.

5. The effects of the noise sources on the variables can be analyzed. The smaller the

bandwidth, the less effect the noise sources have on the variables.

Fig. 4  Block diagram of the linear control system

We begin by examining the steady-state values. We analyze the case where the parameters are

chosen so that the closed-loop system is stable and operates in the linear region, i.e., that p

remains between zero and one. Then, except for the noise sources, ni and nq driving the system,

the system reaches a constant steady- state.  With ni=0 and nq = 0, the steady-state values are:

From (1), (20) R = B   and  Ri  = 1/2 B (21)

From (16) (22)

From (17) (23)

From (22), the parameter β/(α+β) must be chosen larger than (1-γ)B/(α+β) to allow a positive

steady-state p. From (16), smaller γ removes the effects of the initial rates more quickly and has

the effect of forcing the two sources toward the same rate more effectively. We chose α=0 and

γ=0.99 initially. To keep the queue size small (less than 100), (23) was used to guide the choice
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of b as b=0.01. Based on the expected steady-state rates of the sources, we chose our sampling

time to be Δ=9*10-4 secs. This allows each source to see on the average 5 RM cells per sampling

period. Increasing Δ reduces the size of the noise from n1 and n2. Increasing Δ also changes the

frequency scale of the system and has effects similar to those produced by lowering the

bandwidth.

Control theory tells us that the bandwidth and phase margin are determined by a transfer

function called the control loop gain. A larger loop gain means a larger bandwidth. The control

loop gain is given by

(24)

The frequency response of a typical loop gain is shown in Fig. 5. Such a pair of plots with the

log magnitude and phase plotted separately versus the log frequency are called the Bode plots of

the loop gain. For simple system such as those of interest here, the phase margin and bandwidth

can be read directly from the Bode plots. The bandwidth is by convention considered to be the

frequency range from zero to the frequency where the magnitude of the loop gain passes through

unity (0 dB). This frequency is also called the crossover frequency. In Fig. 5 the crossover

frequency is 500 rad/sec. The phase margin is the difference between the phase at crossover

frequency and 180 degrees. In Fig. 5 the phase margin is 45 degrees.

Fig. 5 Bode plots of loop gain for γ=0.99, a=0.0685, b=0.01, α=0, and β=2.95*103
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If the loop gain is increased while the phase remains unchanged (by, for example, increasing

β), the magnitude plot is shifted up, the bandwidth is increased and the phase margin is decreased.

The opposite effect occurs if the loop gain is decreased. The phase margin is also influenced (in a

more complex relationship) by the parameter a.

The parameters a and β are used to set the phase margin, the bandwidth and the steady-state

probability p. Choosing a=0.0685 and β=2.95*103 creates the Bode plot of Fig. 5 with an

adequate phase margin of 45 degrees, a bandwidth of 500 rad/sec and a steady-state p=0.4. The

steady-state q is 40.

The amount of delay that can be handled in the linear region of this control system can be

predicted using control theory. A pure delay adds a negative phase shift (a phase lag) to the Bode

plots of the loop gain while leaving the magnitude plot unaffected. The phase lag associated with

a delay of T seconds increases proportional to frequency, i.e., the phase lag is ωT rad. The

linearized system remains stable until the phase lag contributed by the delay at the crossover

frequency exceeds the phase margin of the control system. In our example the phase margin is 45

degrees or π/4 rads at a crossover frequency of 500 rad/sec. The maximum allowable round trip

delay in the loop is T=π/(4*500)=1.5 msec. If the delay were larger than this the linearized system

would be unstable; the system would be controlled by the saturation nonlinearity and it would

behave much as the original non-linear system. Larger delays could be handled by either lowering

the loop gain or increasing Δ.

Linear system theory provides the means to predict the effect the noise sources will have on the

steady state values.  Given the transfer function, H(ejω), between a noise source and a variable of

interest, then the variance in the variable is related to the variance of the white noise source by

(25)

We will call this scale factor the covariance response of the transfer function. There are three

noise sources present in the system, one probabilistic noise, ni, for each data source and the queue

noise, nq. These noise sources are independent and so the total variance seen in a variable is the

sum of the variance in the variable due to each noise source.

The transfer function from each noise source, ni, to the queue length, q, is given by

var variable( ) H e
jω( )

2
ωd

π–

π

∫
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

var noise( )=
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(26)

For the model parameters above, the covariance response from each probability noise, ni, to the

queue length, q, is then 234. Using N=5 and the steady state value of p = 0.4 in (19) estimates the

variance for each ni as 0.048. Multiplying this by the covariance response yields a variance in the

queue of 11.2 cells2 due to each ni. Since the ni’s associated with each source are independent,

the total variance in the queue due to the probabilistic noise is 22.4 cells2. The transfer function

from the queue noise, nq, is

(27)

For the chosen parameters the covariance response from nq to q is 1.6. The variance of nq is

0.292, so the queue will have a variance of 0.47 cells2 due to the queue noise. Thus the total

variance in the queue will be 22.9 cells2. The variance in the rates or any other variable can be

found in the same manner.

As long as the variables remain in the linearized region, the entire response can be determined

analytically. Simulations of the actual congestion control system were run to verify performance.

The results of a simulation are in given in Fig. 6. The rates of the two sources are displayed in Fig

6a, where it is seen that the rates converge to near their steady-state values. The queue is well

behaved as in steady-state it moves slightly around its steady-state value. The computed sample

variance in the steady state queue during the simulation run is 22.2 cells2, corresponding to a

standard deviation of 4.7 cells, very close to that predicted above. The presence of the noise

which enters the system in communicating p to the sources prevents a completely quiescent

steady-state. Notice, however, as a general benchmark that the queue is kept to an order of

magnitude smaller than the non-linear simulation of Fig. 2 and that the small remaining deviations

from a constant steady-state are due to noise and not to systematic oscillations.
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Fig 6a.  The rates of the sources

Fig. 6b.  The size of the queue.

Fig. 6 Simulation of the probabilistic system with γ=0.99, a=0.0685, b=0.01, α=0, and

β=2.95*103.

To demonstrate the trade-offs that are achievable using linear control theory the system was

redesigned with the goal of reducing the effect of the noise from the communication of p. To

achieve this goal we must reduce the bandwidth and accept the accompanying slowing of the

transient response. The important point is that because the system can be analyzed we know the

precise nature of the trade-offs involved. To decrease the bandwidth, the loop gain of (24) is

lowered by decreasing β. The parameter a must be increased to protect the phase margin. Finally,

in order to keep the steady state p in (22) at p=0.4, the value of γ must be increased making the

rates of the two sources converge more sluggishly. We set γ=0.9998, a=0.4, b=0.01, α=0, and

β=59.

The bandwidth of the resulting system is now 50 rad/sec with a 60 degree phase margin

resulting in robustness to delays in the loop up to 19 msecs. The covariance response from nq to

q, (26), is now 1.04 and the covariance response from each ni to q, (27), is now 31.9. The noise

variances are still the same, so the resulting variance of the queue is now predicted to be 3.36

cells2, corresponding to a standard deviation of 1.8 cells. The simulation was run starting the
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rates near their steady-state values to avoid excessive simulation through the longer transient. The

simulation results appear in Fig. 7. The most noticeable difference is the much reduced effect of

the noise on the rates and the queue as predicted from the smaller closed-loop bandwidth.

Fig 7a.  The rates of the sources.

Fig 7b.  The size of the queue.

Fig. 7  Simulation of the probabilistic system with γ=0.9998, a=0.4, b=0.01, α=0, and
β=59.

There are a number of issues connected with this algorithm that remain unaddressed at this

point. In order to properly set the gain of the controller, the number of active circuits using the

same switch output must be known. This can be done either by the switch keeping a tally of the

number of active users for each of its output ports or it can be addressed more directly using the

advanced techniques of adaptive control. We leave this for further study. Also, the binary

algorithm presented here suffers from the so called beat down problem [5] that was discovered in

the ATM Forum’s binary algorithm. The response to this problem in the ATM Forum was to

create the class of multivalued algorithms. We believe that this is a useful approach and we are

currently studying applying linear control techniques to multivalued algorithms. The availability

of a multivalued feedback mechanism removes the noise sources, pi, associated with the
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communication of the feedback parameter. We believe that linear control techniques are very

useful tools for the design of these algorithms.

V.  CONCLUSIONS

Probabilistic feedback has been used to create a congestion control algorithm which can be

designed and analyzed using linear control theory. The viability of such an approach has been

demonstrated in simulations that match theoretical predictions. The linear control technique can

be used to eliminate the large steady-state oscillations from the results of the non-linear

algorithms. The ability to understand the effects of parameters in this new system has also been

demonstrated so that design trade-offs can be understood and enacted. The linear control

techniques employed here apply a fortiori to the case where multivalued feedback is provided for

directly.

Only a single simple case has been investigated to date. Much work is yet to be done before

the approach given here is demonstrated as a viable alternative design. However, we feel the

promise is clear. If the design can be achieved using analyzable linear systems, then a great deal

more can be understood about the behavior of large interconnections of such systems.
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