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1 INTRODUCTION

A fundamental problem in networking is the allocation of limited resources among the users of the network. In

a traditional layered network architecture, the resource to be allocated at the medium access control (MAC) and

network layers is the use of communication links, viewed as “bit-pipes” that deliver data at a fixed rate with

occasional random errors. This bit pipe is a simple abstraction of the underlying physical and data link layers.

This abstraction has, in some ways, caused the research community to split into two distinct groups, which we

shall refer to as the networking and communication communities. Research in the networking community has

focused on allocating these bit pipes among different streams of randomly arriving traffic using approaches such

as packet scheduling and collision resolution. The goal here is to efficiently utilize the bit pipes while providing

acceptable quality of service (QoS) in terms of delay and throughput to each user. In contrast, the communication

community has focused on building better bit pipes,i.e. improving the transmission rate or spectral efficiency for

a given channel through improved detection, modulation and coding. The random arrivals and departures of traffic

are typically ignored and delay is not addressed. Though this separation has many advantages, both practically and

conceptually, there is growing awareness that this simple bit-pipe view is inadequate, particularly in the context

of modern wireless data networks. Indeed, as highlighted throughout this issue, significant performance gains

can be achieved by variouscross-layerapproaches,i.e. approaches that jointly consider physical layer and higher

networking layer issues in an integrated framework.

In this paper, we consider several basic cross-layer resource allocation problems for wireless fading channels.

Here, the resources to be allocated include the transmission power and rate assigned to each user. In modern
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wireless systems, a variety of link adaptation techniques such as adaptive modulation and coding or variable-rate

spreading are employed which enable a user’s data rate to be adapted over time based in part on time-varying

channel fading. This results in a physical layer that is no longer well modeled as a fixed-rate bit pipe; instead,

a much richer abstraction is required. In this setting, our focus is on characterizing fundamental performance

limits, taking into account both network layer QoS and physical layer performance. We note that at the physical

layer, fundamental communication limits established by information theory are, in many cases, well understood.

However, when higher-layer objectives such as delay are taken into account, much less is known about fundamental

performance trade-offs.The problems surveyed in this paper are attempts to address such basic questions. Their

solutions serve to establish some benchmarks regarding the achievable performance of cross-layer schemes.

There are several reasons why cross-layer approaches are particularly well-suited for wireless data networks.

First, a wireless channel is inherently a shared medium. Efficient resource sharing mechanisms in this setting

depend strongly on both the stochastic nature of user activity as well as the selection of physical-layer coding and

modulation schemes [1, 2]. For instance, consider a multiaccess problem where a group of distributed users are

accessing a common channel. Assuming a simple collision model (i.e. only one user can successfully transmit

at any time) leads naturally to the classic ALOHA and CSMA algorithms [3],whereas a more CDMA-like model

(allowing multiple users to be decoded simultaneously) has very different implications (e.g.[4]). An information-

theoretic multiaccess model implies still another set of conclusions [2, 5–8]. Second, in wireless networks, where

channel quality can vary dramatically in both time and frequency, knowledge of the channel state can be exploited

by the system to significantly improve performance. For example, at the physical layer, in a single user fading

channel, the transmission scheme that maximizes the long-term throughput results in transmitting more information

in good channel states and less in poor conditions [9]. However, when packet delay is taken into account it may

not be feasible to delay transmission until channel conditions improve. In a multi-user setting, another important

characteristic is that channel quality varies across the user population. This results in the phenomenon ofmulti-

user diversity[10],whereby as the number of users in a system increases, the probability that some user has a very

good channel also increases. Exploiting this diversity results in a total system capacity that is increasing with the

number of users. However, once again, this must be balanced with network layer issues such as fairness and delay.

Finally, the efficient use of energy in mobile devices is of paramount concern in wireless networks. This turns

out to be an issue which cuts across almost every protocol layer. In particular, reducing the transmission energy
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used at the physical layer may result in higher error rates or lower transmission rates, which again affects network

layer performance. All of the above coupling effects demonstrate the need to consider network-layer quality of

service issues such as throughput and delay jointly with physical-layer issues such as channel fading, coding, and

modulation.

In this paper, we focus primarily on multiaccess (uplink) models,i.e. communication from mobile users to a

single base-station or access point. We will also point out several issues that apply to broadcast (downlink) models

as well. We consider a situation where randomly arriving data is buffered until it is transmitted and resources are

allocated as a function of each flow’s buffer occupancy and channel state. We are primarily interested in the case

where a centralized controller makes all resource allocation decisions, though some comments about distributed

approaches are also included. In order to characterize fundamental performance limits, we address these problems

within an information theoretic framework. Specifically, when allocating resources, such as rate and power, these

quantities are constrained by the appropriate capacity region, which depends on the current channel state. Since

information theoretic capacity regions characterize asymptotic limits, requiring arbitrary long coding lengths, a

careful reader may argue that such results are not applicable in a setting where delays are important. We address

this issue in two ways. First, no matter what code lengths are used in practice, information theory provides an

upper bound to all achievable rates. For example, for each channel considered here, a corresponding converse

coding theorem [11] establishes that reliable communication is impossible outside the capacity region,for all

coding lengths.Second, the gap between information-theoretic limits and the performance of practical codes with

reasonable complexity has narrowed considerably in recent years, due to rapid advances in coding technology.For

fading channels, as long as the coherence time is reasonably long, as is the case in typical situations1, it is not

unreasonable to assume that powerful codes with manageable block lengths can be employed to approximate

information-theoretic limits. Moreover, channel coherence times are typically much smaller than the relevant

time-scales at the network layer. Hence, there is no need to consider using shorter codes to further reduce delays.

Finally, we note that the framework presented here is quite general and can accommodate other physical layer

models, such as specific coding and modulation schemes.

1For instance, for a user traveling at urban speeds, the coherence time is typically on the order of tens of milliseconds, while the
bandwidth is on the order of megahertz, implying that the coherence time corresponds to a coding length of at least several thousand
symbols.
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2 MULTIACCESSFADING CHANNELS

We consider the multiaccess (uplink) wireless communication setting, where multiple transmitters send to a single

receiver, in the same time and frequency locality. Consider anM -user slowly-varying, flat-fading2 Gaussian

multiaccess channel with bandwidthW , given by the model

Y (t) =
M∑
i=1

√
Hi(t)Xi(t) + Z(t). (1)

Here,Hi(t) is the fading process of theith user,Xi(t) is the transmitted signal of theith user,Z(t) is white

Gaussian noise with noise densityN0/2, andY (t) is the received signal. Assume that transmitteri has a long-term

average power constraintP i and a short-term peak power constraintP̂i.3 Next, assume that the channel coherence

times are sufficiently long as to allow for long code lengths at a fixed joint fading levelh.

Given that theith transmitter experiences a fixed channel fading levelhi and employs a fixed power levelpi, the

information-theoretic multiaccess capacity regionCMAC(h,p) specifies the set of all transmission ratesr (in bits

per second) at which reliable communication is possibleunder any coding and modulation scheme. This capacity

region [11] is the set of all non-negative vectorsr such that

∑
i∈S

ri ≤ W log
(

1 +
∑

i∈S hipi

N0W

)
for all S ⊆ {1, . . . ,M}. (2)

In the two-user case,CMAC(h,p) is a pentagon, as shown in Figure 1. For theM -user case, it is a bounded convex

polyhedron defined by2M − 1 linear inequalities andM non-negativity constraints.

An important observation is that in order to achieve all rates in the capacity region,joint multi-user coding

techniquesmust be employed. Indeed, CDMA-like strategies, whereby the receiver decodes each user regarding

the transmissions of all other users as noise, and simple time-sharing or scheduling strategies, whereby only one

user transmits to the receiver at a time, can typically achieve only a proper subset of the rates in the information-

theoretic capacity region (see Figure 1) [1]. To achieve all rates inCMAC(h,p), a procedure calledsuccessive

decodingcan be used. For instance, the corner pointrA in Figure 1 is not achievable by pure time-sharing or a

2For a slowly-varying channel, the symbol durationTs is much smaller than the channel coherence timeTcoh, the time interval over
which the fading is roughly constant. Flat fading channels are non-frequency-selective, in the sense that the signal bandwidthW is much
smaller than the channel coherence bandwidthBcoh, the band over which fading is roughly constant.

3The average power constraint may correspond to a battery energy constraint, while the peak power constraint may correspond to a
regulatory constraint.
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Figure 1: Illustration ofCMAC(h,p) for the two-user case. The extreme pointrA can be achieved by decoding the users
successively in the order (1 2), whilerB is achieved by successively decoding in the order (2 1).

CDMA-like strategy, but is achievable by successively decoding user 1 (regarding user 2 as interference in addition

to background noise), and then (after subtracting the estimate for user 1 from the received signal), decoding user 2

(facing, with high probability, only background noise). To achieverB, the receiver implements successive decod-

ing in the opposite order, decoding user 2 first, and then user 1. The successive decoding strategy is generalizable

to M users, and it turns out thatCMAC(h,p) has preciselyM ! extreme points, one corresponding to each possible

permutation of{1, . . . ,M} [11].

2.1 Random Arrivals and Resource Allocation

Our focus in this paper is on systems where packets for each user arrive to be transmitted at random instants

in time. We follow the formulation of [5–8]. Specifically, we model theith data source as generating packets

according to an ergodic counting processAi(t), whereAi(t) is the number of packet arrivals up to timet. The

packet lengths for sourcei are i.i.d. according to distribution functionFZi(·) with E[Zi] < ∞ andE[Z2
i ] < ∞.

Next, assume that each sourcei, i = 1, . . . ,M , has its own (infinite-capacity) buffer into which its packets arrive.

Packets for theith source are stored in theith buffer until they are served by transmitteri. The transmission power

Pi(t) and rateRi(t) used by transmitteri at timet are to be dynamically allocated so as to optimize throughput

and delay. At the physical layer, we assume that at any timet, any set of powers and rates from the instantaneous

multiaccess information-theoretic capacity region can be allocated to the transmitters, as long as average and peak

power constraints are satisfied.

We now explicitly pose the dynamic resource allocation problem. LetUi(t) be thenumber of untransmitted

bits, or the amount of unfinished workin queuei at timet. Consider a stationary controller which at any timet ≥ 0

takes as inputsH(t) andU(t) and outputs a power allocationP (t), and a rate allocationR(t), to transmitters 1 to

5



����������	�
 �
�������

����������	�
 ���������

����������	�
 ���������

��� ����� ��� � ���

�

�

�
�! �" #%$ &

��'(" #%$ &

��)*"+#%$ &

,()*"+#�$%-/.�)0"+#�$

,1'2"+#%$�-�.3'("+#�$

,3 �"+#%$�-�.4 �"+#�$

&

&

&5  1"+#%$

5 )0"+#�$

5 '3"+#%$

666
666

&78" #%$%-�9:"+#%$

Figure 2:Power and rate allocation for multiaccess fading channels.

M . The controller does this by first choosing apower control policyp = P(h,u) satisfyingE[Pi(H,U)] ≤ P̄i

for all i, where the expectation is taken with respect to the steady-state distribution induced by the controller, and

Pi(h,u) ≤ P̂i for all (h,u), for all i. Here,pi = Pi(h,u) is the power allocated to transmitteri in response

to fading stateh and queue stateu. Next, the controller chooses arate allocation policy4 r = R(h,u) ∈

CMAC(h,p) whereCMAC(h,p) is given by (2). That is, the controller is allowed to adopt stationary power

policiesP which satisfy the average power constraintsP̄ and peak power constraintŝP , and givenP, the controller

is allowed to allocate any rate in the multiaccess capacity region induced by the power policyP. The set-up is

illustrated in Figure 2. Our formulation assumes that all transmitters as well as the receiver have access (possibly

through side communication channels) to global channel and queue state informationH(t) andU(t). As described

in [12], this setting can often be approximated via feedback in practical wireless systems.

2.2 Stability Region and Throughput Optimal Resource Allocation

The first significant question for the multiaccess queueing system concerns thestability region, i.e. the set all bit

arrival rates for which no queue “blows up.” First, some definitions. Letλi = limt→∞ Ai(t)/t denote the packet

arrival rate to queuei, and letρi = λiE[Zi] be the bit arrival rate to queuei. We define stability as in [13]. Consider

the “overflow” functionfi(ξ) = lim supt→∞
1
t

∫ t
0 1[Ui(τ)>ξ]dτ , where1A is the indicator of the eventA. We say

that the multiaccess system isstablefor a particular resource allocation policy iffi(ξ) → 0 asξ → ∞ for all i.

Thestability regionof the multiaccess system is the set of all bit arrival rate vectorsρ for which there exist some

a feasible power control policy and a rate allocation policy under which the system is stable.

4Note that due to the nature of the constraints, there is no loss of optimality in choosingP andR in a two-stage manner.
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It is established in [6] that the stability region is equal to the information-theoretic capacity region under

power control, defined in [14]. This region is given byCMAC(P̄ , P̂ ) =
⋃
P∈F CMAC(P) [14]. Here,P is a

power control policydepending only on the fading stateh (P(h,u) = P(h)), andF is the set of all feasible

power control policies depending only on the fading state which satisfy all peak and average power constraints.

Finally, CMAC(P) is the set of all non-negativer such that
∑

i∈S ri ≤ E
[
W log

(
1 +

P
i∈S HiPi(H)

N0W

)]
for all

S ⊆ {1, . . . ,M}. That is,CMAC(P) is the average capacity region (averaged over all fading states) corresponding

to a particular power policyP ∈ F . Suppose joint arrival process{A(t)} and joint fading process{H(t)} are

modulated by a finite-state ergodic Markov chain. Then, it is shown in [6] that the multiaccess queueing system

can be stabilized by some power control and rate allocation policy ifρ ∈ int(CMAC(P̄ , P̂ )). Conversely, the

multiaccess fading channel cannot be stabilized ifρ /∈ CMAC(P̄ , P̂ ), as long as the average and peak power

constraints are satisfied.

The stability result states that ifρ ∈ int(CMAC(P̄ , P̂ )), then the queues can be stabilized. In general, however,

this may require knowing the value ofρ. In reality, the arrival ratesρ can be learned only over time. One would

prefer to findadaptiveresource allocation policies which can stabilize the systemwithoutknowingρ, as long as

ρ ∈ int(CMAC(P̄ , P̂ )), i.e. the system is stabilizable. Such a resource allocation policy is referred to asthroughput

optimal. Throughput optimal scheduling for fading channels has been examined in [13, 15–19]. These papers,

while offering many valuable insights, do not consider information-theoretic optimal coding at the physical layer,

and do not account for the effect of power control subject to long-term constraints. These important considerations

are taken into account in [7], where it is shown that an adaptive version of the power and rate allocation algorithm

derived by Tse and Hanly [14] is throughput optimal for the multiaccess queueing system.

In [14], Tse and Hanly consider the problem of to maximizing a weighted combination of long-term transmis-

sion rates in a multiaccess channel where all transmitters haveinfinite backlogs of bits, and both the transmitters

and receivers have access to the channel state. This problem can be stated as

max
M∑
i=1

µiri subject tor ∈ CMAC(P̄ , P̂ ) (3)

whereµ = (µ1, . . . , µM ) is a vector of nonnegative weights. Using a Lagrangian formulation of (3) and the

underlying polymatroidal structure ofCMAC(h,p), they show that (3) is equivalent to solving a family of opti-

mization problems over parallel Gaussian multiple access channels, one for each fading stateh. Their analysis
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yields a feasible power control policy (satisfying peak and average power constraints) and a rate allocation policy

(satisfying capacity constraints) which solve (3). Notice that for a given directionµ, the Tse-Hanly power control

policyPTH(h,µ) and rate allocation policyRTH(h,µ) arefunctions ofh only.

In [7], it is proved that a throughput optimal resource allocation policy for the multiaccess system withrandom

packet arrivalsis given by the Tse-Hanly solution,with the directionµ chosen to correspond to the queue stateu.

Specifically, the throughput optimal policy is given by

P∗
MAC(h,u) = PTH(h,α ∗ u), R∗

MAC(h,u) = RTH(h,α ∗ u) (4)

whereu is the queue state,α is any vector of positive numbers, andα ∗ u is the vector whoseith component is

αiui. The vectorα can be seen as a set of weights representing the relative priorities of the various users. The

proof of the throughput optimality results in [7] makes use of the Foster-Lyapunov Criterion for the stability of

Markov chains [13].

To interpret the throughput optimal resource allocation policiesP∗
MAC andR∗

MAC , let v = α ∗ u, where

vi = αiui, be the vector of weighted queue sizes. In the case of one user (M = 1), it can be shown [14] that

(P∗
MAC ,R∗

MAC) reduces to the well-known water-filling scheme [9], whereby more power is allocated to favorable

channel states, and less or no power is allocated to unfavorable channel states. In the case of multiple users (M > 1)

where all weighted queue sizes are the same:v1 = v2 = · · · = vM , and the fading conditions are symmetric,

(P∗
MAC ,R∗

MAC) reduces to the “multi-user waterfilling” scheme of Knopp and Humblet [10], whereby when

all channel states are sufficiently unfavorable, no one transmits. Otherwise, only the user with the best channel

condition transmits. In the general case of many users and unequal weighted queue lengths, more than one user

typically transmit. Little in general can be said about the optimal power policyP∗
MAC . The optimal rate allocation

policyR∗
MAC , however, satisfies a general principle we refer to asLongest Weighted Queue Highest Possible Rate

(LWQHPR). This principle holds for any given feasible power control policyP, and is described as follows. Given

P, R∗
MAC(h,P(h,u),u) is given by maximizing

∑
i viri over CMAC(h,P(h,u)). Due to the polymatroidal

nature ofCMAC(h,P(h,u)) [14], the solution is explicitly given as follows. Letv[1] ≥ v[2] ≥ · · · ≥ v[M ] denote
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the components ofv in decreasingorder. Then,r∗ = R∗
MAC(h,P(h,u),u) is given by

r∗[i] = W log

(
1 +

h[i]P[i](h,u)∑
j<i h[j](t)P[j](h,u) + N0W

)
. (5)

It can be verified thatr∗ is the extreme point ofCMAC(h,P(h,u)) corresponding to successively decoding the

users in the order[M ], [M − 1], . . . , [1]. That is, the smallest component ofv being decoded first, and the largest

component ofv being decoded last. Alternatively,r∗ is given by a greedy rate allocation procedure where longer

weighted queues are given preference over shorter weighted queues.5 Hence, the name LWQHPR [7]. To illustrate

the LWQHPR policy, we refer to the two-user example of Figure 1, where LWQHPR assignsrA (corresponding

to decoding order (1 2) ifv1 < v2 and assignsrB (corresponding to decoding order (2 1)) ifv1 ≥ v2.

We now compare the performance of the throughput optimal policies(P∗
MAC ,R∗

MAC) to those of widely-used

alternative resource allocation policies. Consider an example in which there are two users observing i.i.d. fading

processes. For each user,Pr (H = h0) = Pr (H = 1/h0) for some fixedh0 > 0. The fading state remains

constant for a period ofT seconds, and then changes to a new independent fading state. The arrival processes are

independent Poisson withλ1 = λ2 = λ and packets lengths are i.i.d. exponential with parameter 1. We focus

on the parametersh0 = 10, P̄ = P̄1 = P̄2 = 1,6 T = 0.4, N0W = 1, and equal weights (α1 = α2). Figure 3

shows the simulated performance of the throughput optimal strategy(P∗
MAC ,R∗

MAC) relative to those of four other

strategies. The sum of the average queue sizes is plotted versus the arrival rateλ for the five strategies described

below. TheThroughput Optimalstrategy is given by(P∗
MAC ,R∗

MAC). The strategy ofKnopp-Humblet[10]

maximizes the sum rate assuming an infinite backlog, which corresponds to the throughput optimal strategy with

u1 = u2. TheSchedulingalgorithm allocates power2P̄ to the user with the better fade and zero power to the

other user. TheConstant Power LQHPRstrategy uses constant power (Pi(h,u) = P̄ for all i, h andu) and

allocates rates according to (5). TheConstant Power BCHPRstrategy also uses constant power, and (ignoring the

queue size) gives the Best Channel the Highest Possible Rate (BCHPR). The experimental results demonstrate the

superior performance of the throughput optimal resource allocation policy, in that its total average queue size is

considerably smaller than those of the competitors.

5Note that the order of decoding is theoppositeof the order of preference.
6For simplicity, we assume the peak power constraints are large enough to be ineffective.
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Figure 3: Total average queue size vs. arrival rate for the multiaccess fading channel under five control strategies.

2.3 Delay Optimal Resource Allocation

We have thus far concentrated on stability and throughput optimality. Stability in a queueing system implies that

the queue sizes do not “blow up,” but it does not indicate how large the queue sizes can be. In order to minimize

the average packet delay/latency and other related QoS measures, it is necessary to keep the queue sizesas short as

possible. The general problem of finding delay optimal joint power control and rate allocation policies to minimize

average delay for multiaccess channels is still open. In [6], the problem of finding the delay optimal rate allocation

policy for a given power control policy is addressed. The main result is that in a symmetric multiaccess queueing

system, the symmetric version of the LWQHPR rate allocation policy given by (5) (withαi = 1 for all i) minimizes

the average packet delay in a very strong sense.

Consider the case where all arrival processes are non-homogeneous Poisson with rate functionλ(t), and all

arriving packets are i.i.d. exponential with common parameterµ > 0. Due to the memoryless nature of the system,

the vectorQ(t) = (Q1(t), . . . , QM (t)), whereQi(t) is thenumber of packetsin queuei at time t, constitutes

a state. Thus, we focus on resource allocation policies of the formP(h, q) andR(h,P(h, q), q), whereq =

(q1, . . . , qM ) is the vector of queue lengths. We assume that the fading processH(t) is symmetric (or exchange-

able) in the following sense: for allt, and alla in the fading state spaceH, Pr (H1(t) = a1, . . . ,HM (t) = aM ) =

Pr
(
H1(t) = aπ(1), . . . ,HM (t) = aπ(M)

)
for any permutationπ on the set{1, . . . ,M}. Beyond this symmetry,

we do not make any other assumptions on the fading process. We focus on power policiesP which are func-

tions of the fading state only,i.e. P(h, q) = P(h). We say a power policy issymmetricif for all a ∈ H,

Pi(a1, . . . , aM ) = Pπ−1(i)

(
aπ(1), . . . , aπ(M)

)
for any permutationπ. That is, under a symmetric power control

policy, the power allocated to a given user is determined by the fading level experienced by that user (and not on
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the identity of that user) relative to the fading levels experienced by all other queues. For instance, supposeM = 2

anda1 > a2, then ifP is symmetric,P1(a1, a2) = P2(a2, a1). An example of a symmetric power control policy

is the “multi-user water-filling” policy given by Knopp and Humblet [10].

Consider the version of the LWQHPR policy whereαi = 1 for all i. We refer to this as theLongest Queue

Highest Possible Rate (LQHPR) policy. The main result on delay optimality from [6] is the following. For an

M -user symmetric multiaccess queueing system, letP : H 7→ RM
+ be a given symmetric power control policy. Let

q0 be the vector of queue sizes at time 0. LetQ(t) be the queue evolution under the LQHPR rate allocation policy,

andQ′(t) be the queue evolution under any feasible rate allocation policy. Then,E [ϕ(Q(t))] ≤ E [ϕ(Q′(t))] for

all t ≥ 0, for all increasing and Schur-convex7 functionsϕ : RM 7→ R. As a main example, the result holds for all

symmetric8, increasing, convex functions onRM . More specific examples includeϕ(x) = maxi1<i2<···<ik(|xi1 |+

· · · + |xik |) for 1 ≤ k ≤ M , ϕ(x) =
∑M

i=1 |xi|r for r ≥ 1 or r ≤ 0, andϕ(x) = (
∑M

i=1 |xi|r)1/r for r ≥ 1.

Thus, the LQHPR policy minimizes the expected value of a large class of functions ofQ(t), of whichE[
∑

i Qi(t)]

is one example. By Little’s Law, this implies that LQHPR minimizes the average system delay of packets. The

main technique used in proving the result of [6] earlier related results in [5] isstochastic coupling, a method

relying directly on probabilistic intuition which is capable of generating powerful and elegant results when given

certain symmetry conditions. Finally, the delay optimality of the LQHPR policy has been partially extended to

the case where arriving packets are i.i.d. according to a general distribution functionFZ(·) with finite first and

second moments [8]. This investigation requires a new analytical technique combining finite-horizon dynamic

programming and renewal process theory.

3 BROADCAST FADING CHANNELS

The analytical framework established in Section 2 for multiaccess networks can be extended to broadcast (down-

link) wireless networks, where a single transmitter sends separateindependentinformation toM receivers, where

the ith receiver has fading processHi(t) and receiver noise power densityN0i/2. For a fixed transmit powerp

and fading statesh1, . . . , hM , the broadcast capacity regionCBC(h, p) [11] is very different from the multiac-

cess regionCMAC(h,p). As in the multiple-access case, however, simple time-sharing (whereby the transmitter

sends to one receiver at a time) cannot achieve all points inCBC(h, p). To accomplish the latter, a process called

7Schur convex functions are functions which preserve an ordering calledmajorization[20].
8A functionϕ is symmetriconA ⊂ RM if ϕ(x) = ϕ(xP) for anyx ∈ A and anyM by M permutation matrixP.
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superposition coding combined with the successive decoding technique discussed in Section 2 can be used [11].

In [7], a broadcast communication system with random packet arrivals is considered. It is shown that the

queueing system considered in Figure 2 can be directly carried over to the broadcast case, with the following

caveats. First, unlike the multiple-access case, there is only one actual transmitter in a broadcast network with

long-term average power constraintP and short-term peak power constraintP̂ . There are, however, still mul-

tiple arrival processes and queues at the transmitter, corresponding to the information streams of the respective

receivers. Since the transmitter uses superposition coding and allocates separate powers and rates to sub-codes for

the various receivers, we can associate a “virtual transmitter” with each of theM receivers (sub-codes). Second,

in the broadcast case, the power control policyP determines thetotal powerp used by theactual transmitteras

a function ofh andu to satisfyE[P(H,U ] ≤ P . The rate allocation policy then decides what fraction of power

γip (with
∑M

i=1 γi = 1) and rateri to assign to each virtual transmitter or sub-code.

For the broadcast network, we consider the same throughput and delay questions as in the multiaccess case.

The results for stability and throughput optimality are the exact analogues of those for multiaccess channels. In [7],

it is shown that stability region for the broadcast network is the same as the information-theoretic capacity region

CBC(P , P̂ ) under power control defined in [21,22]. Moreover, parallel to the multiaccess case, an adaptive version

of the power and rate allocation policies designed to maximize transmission rates in a broadcast channel with

infinite backlogs of bits, is throughput optimal for a system with random packet arrivals. In [21, 22], Tse, Li,

and Goldsmith use a Lagrangian formulation similar to the multiaccess case to obtain the optimal power policy

PTLG(h,µ) and rate policyRTLG(h,µ) which maximizes
∑

i µiri subject tor ∈ CBC(P̄ , P̂ ), whereµ is a

vector of nonnegative weights.9 In [7], it is shown that a throughput optimal policy for the broadcast channel with

random packet arrivals isP∗
BC(h,u) = PTLG(h,α ∗ u),R∗

BC(h,u) = RTLG(h,α ∗ u), whereα is any vector

of positive numbers,α ∗ u is the vector whoseith component isαiui, andui is the number of untransmitted bits

in the queue for theith receiver. An interesting consequence of this policy is the following: if there exists a user

i such thatαiui ≥ αjuj for all j 6= i, and such thatαiuihi
N0i

≥ αjujhj

N0j
for all j 6= i, then the throughput optimal

policy transmits only to useri. In particular, ifαj = 1 andN0j = N0 for all j, then the throughput optimal

policy transmits to the user with best fading when all queues are equal, and transmits to the user with longest

queue when all fading levels are equal[7]. Numerical experiments indicate that the performance of the policy

9Even though the structure ofCBC(h, p) andCMAC(h, p) are very different, greedy algorithms can be used to solve the family of
optimization problems, one for each fading stateh, in both cases.
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(P∗
BC(h,u),R∗

BC(h,u)) is superior to those of competing resource allocation policies, in that the resulting total

average queue size is substantially lower [7].

Finally, we come to the problem of delay optimal resource allocation for broadcast channels. Here, very

little progress has been made. Even the problem of finding the delay optimal rate allocation policy for a given

power control policy has not been successfully tackled. The delay problem for broadcast channels appears to be

more difficult than that for multiaccess channels, mainly because the regionCBC(h, p) lacks the many desirable

structural properties ofCMAC(h,p). Much more work is needed in this area.

4 ENERGY/DELAY TRADE-OFFS

Energy efficiency is a key concern for mobile wireless devices that must rely on limited battery resources. As

transmission power is one of the main energy consumers in wireless devices, there has been much interest in

approaches for efficiently utilizing this resource. In this context, a fundamental metric is the average energy per

bit used in communication. At the physical layer, the minimum energy per bit needed to reliably communicate at

a given rateR can be related to the channel’s capacity. Specifically, letC(P ) denote the capacity of a single user

channel as a function of the transmission power. Since for reliable communicationR < C(P ), it follows that the

energy per bit,Eb must satisfyEb > C−1(R)
R , whereC−1 denotes the inverse ofC(·). For any channelC

−1(R)
R is

a decreasing convex function ofR; hence, energy can be conserved by transmitting at a lower rate. For example,

if C(P ) = ln(1 + P ) as in a Gaussian noise channel, thenC−1(R)
R = 1

R

(
eR − 1

)
. Asymptotically, asR → 0, the

minimum energy per bit is the reciprocal of a channel’scapacity per unit cost[23], with “cost” given by energy

per channel use.

Transmitting at a lower rate conserves energy, but increases delay at the network layer. This illustrates a

fundamental trade-off between energy efficiency and delay. In fading channels, reducing packet delay may further

increase the required energy by forcing users to transmit when channel conditions are not favorable. The energy-

delay trade-off necessitates resource allocation algorithms which optimally balance these two important concerns.

A number of approaches have been applied to this problem including [24–27]. Interestingly, these approaches are

useful even in a single user setting [24,27], and even in a setting with random arrivals but no channel fading [25].

4.1 Optimal Power/Delay Resource Allocation - Single User Case

We first discuss the case where a single user is transmitting data over the fading channel in (1) (withM = 1). Once

again, we assume that data randomly arrives and is buffered until it is transmitted. For simplicity, we consider a
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discrete-timeblock fadingmodel where during thenth time-slot the channel gain is constant with valueH[n], i.e.

H(t) = H[n] for (n − 1)∆ ≤ t < n∆ where∆ is the length of a time-slot. Denote the unfinished work in the

buffer at the start of thenth time-slot byU [n] and letI[n] be the number of bits (amount of work) arriving during

thenth time slot. The unfinished work evolves according to

U [n + 1] = max(U [n] + I[n]−R[n]∆, 0), (6)

whereR[n] is the transmission rate during thenth time slot. At each timen, the rate is again specified by a sta-

tionary rate allocation policyr = R(h, u) that depends on the current queue state and fading state. In this section,

we view the system as first specifying a rate allocation policy and then incurring a “power cost”P (R[n],H[n])

that depends on this policy and the current channel state. Specifically, letP (r, h) represent the minimum power

required such that the rater is less than the corresponding channel capacity. For the channel in (1), this is given by

P (r, h) =
N0W

h

(
2r/W − 1

)
, (7)

which is an increasing convex function of the transmission rate.

For a given policyR, let P̄ (R) = limn→∞ E [P (R(H[n], U [n]),H[n])] denote the steady-state average trans-

mission power consumed. Assuming the system is stable, the average energy per bit is given byP̄ (R)/Ī, whereĪ

indicates the average bit arrival rate per time-slot.10 Also, for a given policyR, let D̄(R) = limn→∞ E
[
U [n]/Ī

]
indicate the steady-state average queueing delay. We define theoptimal power/delaytrade-off curve,P ∗(D), as

P∗(D) = inf{P̄ (R)|R(·) such thatD̄(R) ≤ D}, (8)

i.e. P ∗(D) characterizes the minimum average power required for any policy with an average delay no greater

thanD. Conversely, we also define the delay/power trade-off:

D∗(P ) = inf{D̄(R)|R(·) such thatP̄ (R) ≤ P}. (9)

AssumingP∗(D) is strictly monotonic,D∗(P ) will simply be its inverse. These quantities, like a rate-distortion

10Using our previous notation,̄I = λ∆E[Z], whereE[Z] is the expected length of a packet.
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Figure 4:Example of a power/delay trade-off.

curve in source coding, provide a characterization of the fundamental power delay trade-off that can be achieved

by any scheduling policy.

In [27], it is shown thatP∗(D) is a strictly decreasing, convex function ofD. From this it follows, that any

point on this curve can be found by solving an average cost dynamic programming problem with a per stage cost

given byJ [n] = P (R[n],H[n])+β
(
U [n]/Ī

)
, whereβ corresponds to a Lagrange multiplier for an average delay

constraint. By varyingβ, different points onP∗(D) can be found. An example ofP∗(D) is shown in Fig. 4.

For a givenβ, the optimal rate allocation can be found numerically, and the optimalβ for a given delay

constraint can be found via standard convex programming techniques. General structural properties of the optimal

policy can also be characterized [26,27]. For example, assuming the fading is i.i.d., it can be shown that the optimal

transmission rate is non-decreasing in the unfinished work. In [24], a version of this problem was considered

whereP (r, h) is linear inr for eachh, as would be reasonable in the wide-band limit. This simplifies the dynamic

programming problem and more precise structural results can be shown. In addition to considering average delay

versus the long-term average power, there have been a number of papers which have examined related problems in

a dynamic programming context e.g., [28]. In these papers, the object is again to minimize a cost related to energy,

subject to various delay constraints, such as a deadline by which all packets must be sent.

4.2 Asymptotic Power Delay Trade-offs

The behavior of the power/delay trade-off can be explicitly characterized in various asymptotic regimes. In [27]

it is shown that as the average delay increases,P∗(D) approaches an asymptotic value ofPa(Ī) (see Fig. 4). The

limiting value,Pa(Ī), is the minimum average power needed to support the average arrival rate, which corresponds
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to the average power level required for the channel to have a “long-term” capacity equal toĪ/∆. Additionally, the

rate at whichP∗(D) converges to this asymptotic limit is given by1
D2 under any reasonable fading distribution.

ThatP∗(D) can converge no faster than this is shown using drift arguments and the convexity ofP (r, h). This

bound is shown to be tight by showing that a simple “threshold water-filling” policy [27] isorder optimal, i.e. it

converges to the asymptotic limit at the optimal rate of1
D2 . This policy has only a weak dependence on the buffer

occupancy via a threshold rule. When the unfinished work exceeds this threshold, the transmitter uses a water-

filling policy with an average rate that is greater than the arrival rate; when the unfinished work is less than the

threshold, a water-filling policy with an average rate less than the arrival rate is used. The thresholds and the

average rates used in each portion are adjusted depending on the average delay. It can also be shown that some

dependence on the buffer occupancy is required for a policy to be order optimal [27]. In other words, the power

required by any family of policies that do not depend on the buffer occupancy can not converge toPa(Ī) at the

rate of 1
D2 as the average delay increases. This buffer dependence is needed for a policy to maintain a backlog of

packets in the buffer. This backlog enables the transmitter to better exploit good channel conditions and smoothes

out some of the burstiness in the arrival process.

The behavior ofP∗(D) can also be characterized in the regime of asymptotically small delays [29]. From

the buffer dynamics in (6), the minimum possible average delay is 1 time-unit. By the small delay regime we

mean the behavior of ofP∗(D) asD → 1. The asymptotic value ofP ∗(D) in this regime depends on the fading

distribution. Two distinct cases can be identified. The first case corresponds to channels such a Rayleigh fading

channel whereP∗(1) is infinite. This corresponds to a channel having adelay-limited capacityof zero [14]; i.e.

using finite power it is impossible to send at a non-zero rate in every channel state. For these channels,D∗(P ) will

be greater than 1 for all finiteP , but asP →∞, D∗(P ) will approach this value. The second case corresponds to

those channels withP∗(1) < ∞. In this case,P∗(1) corresponds to the minimum average power needed for the

channel to have a delay-limited capacity ofĪ/∆. Once again, the rate at whichD∗(P ) approaches its asymptotic

limit can be characterized [29]. This also depends on the fading distribution, in particular on its behavior near

zero. For example, in the case of Rayleigh fading,D∗(P ) − 1 decreases at a rate ofe−αP , whereα is a constant

depending on the fading distribution near zero. This is much faster than the optimal rate in the large delay regime,

which implies that the reduction in power by a slight increase in tolerable delay is very significant in the small

delay regime. An order optimal policy in this regime is a “channel-threshold policy” which transmits at a fixed
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rate, whenever the channel gain is greater than a threshold. Interestingly, this policy requires no dependence on the

buffer state.

These results are robust to many variations in the model. For example, the power cost in (7), may be replaced

by any convex increasing function; this can be used to reflect the power required for specific modulation and coding

schemes. The results can be extended to models that allow the possibility of packet errors and retransmissions as

well as models with finite buffer sizes [30].

4.3 Multiaccess Model

The above approach can be generalized to a multi-user setting, where a centralized control policy specifies the

transmission rate and power for each user [30]. For example, consider the multiaccess channel withM users as in

(1). In this case, letR(h,u) denote a rate allocation policy that specifies the transmission rate of each user as a

function of the joint fading states and buffer occupancies. Now, the corresponding power cost will be given by

P (r,h) = inf

{
M∑
i=1

wiPi such thatr ∈ CMAC(h,p)

}
, (10)

wherewi are given weights, andCMAC(h,p) denotes the multiaccess capacity region in (2) corresponding to

power allocationp = (p1, . . . , pM ). A solution to the optimization can always be found such that the rate vectorr

lies at one of theM ! extreme points of the capacity region.

In this case, a natural generalization of the optimal power/delay trade-off is to defineP∗(Dsum) to be the

minimum average weighted sum power required for the (possibly weighted) sum of the queueing delays to be no

greater thanDsum. Once again, the power delay trade-off can evaluated via a dynamic programming formulation.

The asymptotic analysis also carries through to this case. For example, as the average weighted sum delay,Dsum

increases,P∗(Dsum) can be shown to decrease to its asymptotic limit at a rate of1
D2

sum
. An order optimal sequence

of polices can again be specified that require only a weak dependence on each user’s queue state. Specifically, a

centralized controller only requires one bit of information about each user’s queue to implement these policies. This

information will again indicate whether the queue size is above or below a threshold. Given this information the

controller can identify one of2M quadrants within which the joint buffer state lies. The controller then implements

a policy for each quadrant that depends only on the channel stateh. This provides insight into the amount of

control information that must be shared among users in a distributed setting to implement an order optimal policy.
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4.4 Off-line and Look-ahead Scheduling Algorithms

We briefly mention another approach for energy efficient scheduling from [25]. A finite horizon problem is con-

sidered with a deadline ofT seconds. During time[0, T ) packets randomly arrive and all packets that arrive in

this interval must be transmitted over a channel without fading by timeT . The goal is to accomplish this using the

minimum energy. This is done by specifying the transmission time per packet,τ . For a given transmission time

τ , the required energy is given bye(τ), wheree(τ) is a decreasing convex function. Again,e(τ) can be related

to the channel capacity. In [25], an optimal “off-line” scheduling algorithm is first considered, where all packet

arrivals times are knowna priori. This results in a convex optimization problem, which admits a simple solution.

Approximate “on-line” algorithms based on a look-ahead buffer are developed which exploit the structure of the

off-line algorithm. These on-line algorithms are shown to require an average energy quite close to the optimal

off-line algorithm via simulations. This approach has the advantage that it does not require detailed knowledge of

the arrival statistics.
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