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Communication Over Fading Channels
with Delay Constraints

Randall A. Berry and Robert G. Gallager

Abstract
We consider a user communicating over a fading channel with perfect channel state

information. Data is assumed to arrive from some higher layer application and is stored in
a buffer until it is transmitted. We study adapting the user’s transmission rate and power
based on the channel state information as well as the buffer occupancy; the objectives are
to regulate both the long-term average transmission power and the average buffer delay
incurred by the traffic. Two models for this situation are discussed; one corresponding to
fixed-length/variable-rate codewords and one corresponding to variable-length codewords.
The trade-off between the average delay and the average transmission power required for
reliable communication is analyzed. A dynamic programming formulation is given to find all
Pareto optimal power/delay operating points. We then quantify the behavior of this trade-
off in the regime of asymptotically large delay. In this regime we characterize simple buffer
control policies which exhibit optimal characteristics. Connections to the delay-limited
capacity and the expected capacity of fading channels are also discussed.
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I. Introduction

In mobile wireless networks, communication typically takes place over time-varying
channels. This time-variation or fading is due to several effects such as variations in
multi-path interference and shadowing. One technique to compensate for the chan-
nel’s fading is to dynamically allocate communication resources, such as the transmis-
sion power or bit rate, based upon knowledge of the channel’s state. Various methods
for allocating transmission resources are part of most third-generation (3G) cellular
standards (see e.g., [1]). These methods include adjusting the transmission power,
changing the constellation size and coding rate, and varying the spreading gain in
CDMA based systems. In this paper, we are concerned with such resource allocation
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problems. Specifically, we consider the situation depicted in Figure 1. In this situa-
tion, data arrives from some higher layer application and is placed into a transmission
buffer. Periodically the transmitter removes some of the data from the buffer, encodes
it and transmits the encoded data over a fading channel. After sufficient information
is received, the data is decoded and sent to a higher layer application at the receiver.
We assume that the transmitter can allocate communication resources based on both
the buffer occupancy and its knowledge of the channel.

In the above situation, we consider two conflicting objectives. One objective is
to minimize the average transmission power required to reliably transmit the data.
In a wireless network, mobile users often rely on a battery with a limited amount of
energy; minimizing the average transmission power leads to a more efficient utilization
of battery energy. We are interested here in long term average power consumption
rather than short term averages of interest in, say, regulatory constraints. Such short
term considerations may be modeled as a constraint on each codeword sent, while
the long term average power depends on the sequence of codewords that are sent.
The second objective is to minimize the average delay incurred by the data. This
objective can be viewed as arising from the Quality of Service (QoS) desired by the
user. There is a clear trade-off between these objectives - transmitting at a higher
rate requires more power but reduces the average delay. There are many aspects of
the above description that need to be more precisely defined; this will be done in
Section 2.

The delay experienced by data in the system of Fig. 1 is the sum of two components
– the time spent in the buffer and the time from when data is encoded until it is
decoded. The issue of reliably communicating data over a fading channel falls mainly
within the province of information theory. Indeed, there has been much work in this
area; see [2] for a recent survey. Information theoretic treatments typically either
ignore delay completely or only consider the second component of delay. Buffer
delay is usually considered a network layer problem and divorced from physical layer
considerations. Generally it is assumed that when data leaves the buffer it is delivered
with a fixed rate and fixed delay to the destination.

From a practical point of view, the above separation of physical layer coding delay
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and network layer buffer delay is very reasonable in a wired, point-to-point link. We
give two reasons.1 First, one can often send at rates near the information theoretic
limits with an acceptable probability of error and with moderate delay relative to
application requirements. For bursty traffic, the required coding delays are often on
a much smaller time-scale than the traffic variations which are addressed by higher
layer buffer management. Second, in a wired network, there is little reason to consider
varying the transmission rate and power. The channel is typically not time-varying
and users do not rely on a battery. Thus when transmitting, one should always
transmit at the peak rate and power.

For the wireless situations we are interested in, neither of the above arguments need
be true. With fading channels, varying the transmission power or coding rate can be
useful in approaching capacity. Indeed, in many cases it is required. Additionally,
approaching the capacity of a fading channel often requires the use of codewords long
enough to “average over” the fading – the time required for this may be much longer
than the acceptable delay. If such long codewords can not be used, then capacity may
not be “meaningful”. By this we mean that capacity does not give a good indication
of the rate at which data can be sent with acceptable performance. This is the
motivation behind the work on capacity vs. outage [5] and delay-limited capacity [6].
We look at these concepts in the next section and discuss their relation to the model
in this paper. Regarding other related work, situations similar to that in Figure 1
have been looked at in [7] and [8], but not in the information theoretic context we
take here.

The outline of the remainder of the paper is as follows. In Section II, a precise
description of several models for the system in Fig. 1 is given. A model of the channel
as well as two different models of the buffer dynamics are discussed. We also review
several related capacity definitions for the channel model. In Section III, the trade-off
between average power and average delay for these models is analyzed. We view this
as a multi-objective optimization problem and give a Markov decision formulation
for finding Pareto optimal solutions. The “optimal power/delay trade-off curve” for
such problems is also characterized. In Section IV, this trade-off is analyzed in the
asymptotic regime of large delay. In this regime the limiting required power is found
and we provide the rate of convergence to this limit as a function of the average delay.
Simple buffer control strategies are also given, which exhibit the optimal convergence
rates. Section V contains some concluding remarks. Detailed proofs are given in the
appendices.

1These arguments are for a single user channel. In the case of a multi-user channel, there is an additional
coupling between delay and physical layer issues that arises in trying to allocate resources between many
bursty users ([3], [4]).
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II. Model and Problem Description

In this section we describe two different models for the situation in Fig. 1. In
both cases we consider a block-fading model for the channel. This channel model
is described next; we also review several notions of capacity for this channel, such
as capacity vs. outage and delay-limited capacity. We then discuss two different
approaches for modeling how the transmission rate and power are allocated over
time. In the first approach we consider fixed-length, variable-rate codewords, while
in the second approach we consider a fixed number of codewords with a variable
length. Both of these models lead to buffer control problems that can be analyzed in
a common framework.

A. Block-fading Channel

We consider a user communicating over a discrete-time, block-fading channel with
additive Gaussian noise. This channel has been used to model a slowly-varying,
flat-fading channel [5], [9] and is a generalization of the block interference channel
introduced by McEliece and Stark [10]. In such a channel the transmitted signal
is multiplied by a time-varying gain that models the fading. Over each block of
N consecutive channel uses, the gain stays fixed. Let Hm denote the (baseband)
complex channel gain during the mth block. Let Xm = (Xm,1, . . . , Xm,N) and Ym =
(Ym,1, . . . , Ym,N) be vectors in C

N which denote, respectively, the channel inputs and
outputs over the mth block. These are related by:

Ym = HmXm + Zm, (1)

where the additive noise Zm is a complex, circularly symmetric Gaussian random
vector with zero mean and covariance matrix σ2I. Furthermore, the sequence {Zm}
is i.i.d. We assume that the sequence of channel gains, {Hn}, is a stationary ergodic
Markov chain with state space H. Conditioned on the current channel state, the next
state, Hm+1, is independent of previous inputs and outputs, i.e. for all measurable
B ⊂ H, all xm, ym and all m ≥ 1,

Pr(Hm+1 ∈ B|Hm=hm,Xm=xm,Ym=ym)
= Pr(Hm+1 ∈ B|Hm=hm).

Here we have denoted the sequence (x1, . . . , xm) by xm. Let πH denote the steady-
state distribution of {Hm} (by the above assumptions such a distribution exists and
is unique). For technical reasons we also assume that H is a compact subset of C.2

It is worth discussing the appropriateness of a such a model for a wireless channel.
Clearly, if we intend to model a channel in which there are r channel uses per second,
then N/r, the number of seconds per block, must be less than the coherence time of the

2This assumption is used in the proof of Lemma 4.3.
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channel. Since we allow the fading process to have memory, N/r may be strictly less
than the coherence time; for a memoryless fading process N/r must be approximately
equal to the coherence time. If the underlying system we are modeling uses frequency
hopping or TDMA, where the dwell time is N/r seconds, this is a good model for
the channel variation. Otherwise, this model can be considered an approximation of
a more physically motivated continuously-varying channel model as in [11]. A better
approximation of such a model would be to choose N = 1 and account for all of
the channel memory with the underlying Markov chain. We do not rule out such a
choice of N in the above definition, and indeed for the model in Section II-C this
assumption may be appropriate. For the model in Section II-B, having N >> 1 is
more appropriate; using a block fading model also facilitates drawing connections
with previous work on outage capacity and delay-limited capacity.

The assumption of flat fading is reasonable for a narrow-band system in which
the bandwidth of a user is less than the channel’s coherence bandwidth. The model
we describe can easily be modified for a wide-band system with block-memoryless
fading. Such a model would assume no ISI between blocks, but allow ISI within a
block. This more general model would not provide any additional insights and would
further complicate our notation, so we focus on the narrow-band case in the following.

Assume that both the transmitter and receiver have perfect CSI, meaning that
during the mth block, both the transmitter and receiver know the value of Hm.3

Several different notions of capacity appear in the literature that are applicable to
the block-fading channels with perfect CSI. In the remainder of this section, we review
these capacity definitions and discuss there significance for the problem at hand. Let
C denote the solution to the following optimization problem:

maximize
P :H�→R+

EH log

(
1 +

|H|2P (H)

σ2

)
subject to: EHP (H) ≤ P̄ ,

(2)

where H is a random variable with the steady-state distribution πH and P : H �→ R
+

is a power allocation, i.e. a function which indicates the average power used for each
channel state h ∈ H. In [12] a coding theorem and converse are proved showing that
C is the capacity of this fading channel. We emphasize that in this case the capacity,
C, has the “usual” operational significance that for any rate R < C, there exists a
sequence of rate R codes of increasing block length such that the error probability
goes to zero with increasing block length. This is to be contrasted with other notions
of capacity defined in the following. The optimizing power allocation P in (2) is given

3This is clearly an idealized assumption which will be more appropriate the longer the channel’s coherence
time.
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by

P (h) =

(
1

λ
− σ2

|h|2
)+

for all h ∈ H, (3)

where λ is a constant chosen so that the average power constraint is met. This is the
well-known “water-filling” allocation over the channel state space [13]. It has been
shown that C can be achieved by using either a “single-codebook, variable-power”
transmission scheme [14] or a “multiplexed multi-rate, variable-power” scheme [12].
In either case approaching capacity requires one to use codewords long enough to take
advantage of the ergodic properties of the fading process {Hm}. Delay constraints
can prohibit the use of such long codewords, in which case this capacity does not
provide a useful performance indication in the above operational sense.

While delay considerations may prohibit code-lengths long enough to average over
the fading process, in many cases code-lengths are long enough for sufficient averaging
of the additive noise. For example, suppose that each codeword must be sent in
one block of N channel uses; in other words the delay constraint is less than the
coherence time of the channel. If N >> 1, then reliable communication may still be
possible during that block. In such situations, a composite channel model may be more
appropriate.4 Specifically, consider a family of channels, one channel corresponding
to each possible realization of Hm. Assume that each of these channels occurs with
the steady-state probability πH . A codeword is then sent over one channel from the
family; the channel staying fixed for the entire codeword. In this context, several
notions of capacity have been defined, including capacity vs. outage, delay-limited
capacity and expected capacity. Each of these notions of capacity is intended to
operationally correspond to a different notion of rate. We define these quantities
next.

In [5] the capacity versus outage probability ε or ε-capacity of the composite channel
is defined to be the solution to the optimization problem

maximize
P :H�→R+,R

R

subject to: Pr

(
log

(
1 +

|H|2P (H)

σ2

)
≤ R

)
≤ ε

EP (H) ≤ P̄ .

(4)

The event log
(
1 + |H|2P (H)

σ2

)
< R is referred to as an outage. Capacity versus outage

probability ε, is the maximum mutual information rate that can be transmitted in
every channel realization except a subset whose probability is less than ε. The capacity

4A composite channel is a compound channel where each sub-channel has an a priori probability associated
with it. [15].
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versus outage probability 0 is also referred to as the delay-limited capacity [6]. The
delay-limited capacity can be shown to be given by [14]

log

(
1 +

P̄

E(1/|H|2)
)

for any channel in which E(1/|H|2) is finite; otherwise the delay-limited capacity will
be zero.

Finally the expected capacity of the composite channel is defined to be the solution
to the same optimization problem as in (2) above.5 Now this quantity is given a
different interpretation. A variable rate of mutual information (per codeword) is
transmitted depending on the channel state. The expected capacity is the maximum
expected rate.

The above capacities are all defined to be the maximum mutual information “rate”
per codeword, where rate is interpreted differently in each case. For example, in
the case of delay-limited capacity one is interested in the maximum constant rate
per codeword; in the case of expected capacity, one is interested in the maximum
expected rate per codeword. These quantities are intended to have the synonymous
operational significance, that is they are meant to be the maximum “rate” for which
there exists a sequence of block codes with that rate whose error probability goes
to zero with increasing block length. To prove such a statement, a coding theorem
and converse are needed. Recall we modeled the channel as a composite channel
due to a delay constraint, N , which was assumed to be less than the coherence
time of the channel. The usual type of converse via Fano’s inequality holds with
finite delay, i.e. for arbitrarily small probability of error, the rate must be less than
the corresponding capacity. On the other hand, with finite delay, we can not get
arbitrarily small probability of error and thus prove a coding theorem for the above
capacity definitions. If we consider arbitrarily long codewords, then the assumption
that N is less than the coherence time ceases to hold; thus the composite channel
model is no longer appropriate. One way to prove an achievability result for these
models, as in [14], is to consider the sequence of composite channels indexed by the
block length N = 1, 2, .... As N increases, it is assumed that the coherence time of
the corresponding channel also increases. Letting N → ∞ a coding theorem can be
proved for the limiting channel. Of course, in the actual channel, the coherence time
is fixed; thus this limiting operation has no physical significance, as opposed to the
“usual” cases, such as a Gaussian channel without fading.

From a practical point of view, the above quantities can be useful if N is large
enough relative to the block length required for reliable communication, but is still
small relative to the coherence time of the channel. Again, by useful, we mean that
these quantities give a good indication of the rates that are achievable with acceptably

5For the case where the transmitter has no CSI, approaching the expected capacity requires a broadcast
coding strategy [15], [16]. With perfect CSI at the transmitter, a broadcast approach is not required.
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small probability of error. If N is large enough, then a given probability of error can
be achieved by transmitting at rates near the corresponding capacity. How large N
must be depends on the error exponents for the composite channel.

The above ideas can be extended to delay constraints of more than one channel
block i.e. more than one coherence time. This is done in [14] under the assumption
that the transmitter has non-causal CSI for the entire channel realization over which
each codeword is to be sent; in this case these ideas extend directly. Some discussion
of the case where the transmitter has causal CSI is discussed in [17]; this situation is
somewhat more problematic. In the following we will focus on the single block case,
mainly to simplify notation.

We defined the above capacities as the maximum of a mutual information rate
for a given power constraint. In the following it will be more useful to think of the
inverse problem of finding the minimum power for a given rate of mutual information.
We can define an analogous “power” formulation of both delay limited capacity and
expected capacity for the block fading channel with delay constraint of one block.
Corresponding to delay-limited capacity, the minimum power for rate R is given by:

minimize
P :H�→R+

EP (H)

subject to: log

(
1 +

|h|2P (h)

σ2

)
> R ∀h ∈ H

(5)

Likewise, corresponding to expected capacity, the minimum power for average rate R
is given by:

minimize
P :H�→R+

EHP (H)

subject to: EH log

(
1 +

|H|2P (H)

σ2

)
> R,

(6)

where the solution to (6) corresponds to a water-filling power allocation. These
quantities have an analogous interpretation to the corresponding capacities above.
For a given delay constraint, N , they represent a lower bound on the required power
to achieve arbitrarily small probability of error. Likewise as N → ∞ these bounds
are approachable.

The only difference between (5) and (6) is the constraint set for the minimization;
this set corresponds to the particular mutual information rate of interest. In both
cases, this set is determined by a requirement on the mutual information of a single
codeword. Next, we will consider more complicated constraint sets, which depend
on the entire sequence of codewords. These constraints will involve a buffer as in
Fig. 1. Also note that both of the above formulations depend only on the steady-
state distribution of the fading process; the memory in the fading process has no
effect. This will no longer hold when we consider buffer constraints. Finally, we
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again emphasize that the above quantities are only meaningful if the time-scale of the
delay constraint is small relative to the coherence time, but large relative to the error
exponents of the component channels. In the next section we will consider models
which allow for these assumptions to be relaxed in various degrees.

We will look at two different models of the situation depicted in Fig. 1. In both
cases we consider a discrete-time model of the buffer where a time sample corresponds
to a single block of N channel uses of a block fading channel. In the first case we
will assume that all codewords are sent over the same number of channel uses, but
that the rate, i.e. the number of possible codewords can vary. In the second case
we assume a fixed number of codewords, but allow the number of channel uses over
which a codeword is sent to vary. The first model is closely related to the composite
channel models discussed above; we refer to this as the mutual information model.
The second model is related to a model for multiple access communication introduced
by Telatar in [4].

B. Mutual information model

As noted above, we use a discrete-time model of the buffer, where the time between
adjacent samples corresponds to a block of N channel uses. Once again, assume that
each codeword is sent in one block of N uses, and thus the length of time to send
a codeword is less than the coherence time of the channel.6 Let {An} be an ergodic
Markov chain with state space A ⊂ R

+ which represents the number of bits arriving
at the buffer input between time n − 1 and n. We assume that {An} is independent
of the channel fading and noise processes. Let Ā = limn→∞ EAn be the average
arrival rate in steady-state. Assume that at the start of the nth block the transmitter
removes Un bits from the buffer and encodes these into a rate Un/N code word which
will be transmitted over the next N channel uses. Let Sn denote the buffer occupancy
at the start of the nth block. The dynamics of the buffer are then given by

Sn+1 = Sn + An+1 − Un. (7)

This is illustrated in Fig. 2. Note as described above, the Un bits to be transmitted
are removed from the buffer before the next An+1 bits arrive. Thus Un ≤ Sn, and
Sn+1 > An+1 for all n. We assume that the transmitter can choose Un based on the
buffer state Sn, the channel gain Hn, and the source state An.7

Let P (h, u) be the required transmission power during a block when the channel
gain is h and the transmitter chooses to transmit u bits. We assume that P (h, u)
is the power required so that the mutual information rate over the N channel uses

6Since a codeword is sent in one channel block, then clearly we must have N >> 1. This assumption may
be relaxed, allowing for codewords that span K > 1 blocks. To do this requires a careful consideration of
how one selects the rate of a codeword[17].

7More generally, Un could be chosen based on the sequence of buffer, channel and source states up to time
n, but for the Markov decision problem considered below there is no benefit in this.
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Fig. 2. Buffer dynamics.

is equal to u/N . We assume that the receiver knows the current buffer state at the
transmitter, and thus knows the current transmission rate and power. Of course this
requires some added overhead (unless the arrival rate is constant, in which case, the
receiver can calculate the current buffer state). In this case we have

log

(
1 +

|h|2P (h, u)

σ2

)
= u/N, (8)

and thus

P (h, u) =
σ2

|h|2 (2u/N − 1). (9)

For all h with |h| > 0, P (h, u) is an increasing and strictly convex function of u ≥ 0.
As with the composite channel model in the previous section, this model is sensible
when N is large enough so that P (h, u) is a reasonable indication of the power required
to transmit at rate u/N with acceptable probability of error. For any N , P (h, u) lower
bounds the required power, for arbitrarily small probability of error. This bound is
approachable as N → ∞. The results in Sections 3 and 4 will only depend on the
strict convexity and monotonicity of P (h, u) and thus apply to any model that allows
for a variable transmission rate and has a required power with these characteristics.
For example, P (h, u) could be the power required to transmit u bits for a particular
modulation scheme such as the variable rate trellis coded M-QAM scheme in [18]. In
this case, an approximation on the amount of transmitted power needed is given by

P (h, u) =
σ2

|h|2
(
2

u+2r
N

)
Kc

where r is related to the rate of the convolutional coder used and Kc is a constant that
depends on the coding gain and the required bit error rate. This is clearly a convex
and increasing function of u. Another possibility is to let P (h, u) be a bound on the
power needed to transmit at a given rate over a fixed number of channel uses with
a given probability of error. For example P (h, u) could be derived from a random
coding bound. This idea will be explored in more detail for the model described in
the next section.
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Recall we are interested in the average total delay8 experienced by a bit in the
system in Fig. 1. The total delay is the sum of the delay in the buffer plus the time
from when a bit leaves the buffer until it is decoded. Once a bit leaves the buffer
it is encoded into a codeword which takes 1 block of N channel uses to transmit.
Assuming that a codeword is not decoded until it is entirely received, the second
component of delay is Dp + 1 blocks, where Dp accounts for the propagation delay
and processing time. We assume that this quantity is fixed for every codeword. From
the above, the overall average delay is the average delay in the buffer plus Dp + 1.
Thus we can ignore this constant factor and focus on the average delay in the buffer.

Let S = [0,∞) denote the buffer state space9. Assume that the transmission rate,
Un at each time n is specified by a stationary policy, μ : S × H × A �→ R

+ which
specifies Un as a function of the channel state Hn, the buffer occupancy Sn and the
source state An. Under such a policy the sequence of combined buffer, channel, and
source states, {(Sn, Hn, An)} forms a Markov chain. The expected long term average
power with such a policy is

lim sup
m→∞

1

m

m∑
n=1

E(P (Hn, μ(Sn, Hn, An))). (10)

We denote this by P̄ μ. Similarly, define D̄μ to be

lim sup
m→∞

1

m

m∑
n=1

E(Sn)

Ā
. (11)

Note that if the Markov chain induced by the policy μ is ergodic then we have
P̄ μ = EP (H,μ(S,H,A)) and D̄μ = ES

Ā
. By Little’s law, D̄μ is the expected time

average delay in the buffer.

C. Telatar Model

Now we look at a different model of the situation in Fig. 1. In the previous model
each codeword took a fixed amount of time to transmit, namely one block. The
number of possible codewords per block varied according to the chosen rate. In this
section we look at a model where one of a fixed number of codewords is chosen, but
the length of time to transmit each codeword is variable. This can be considered a
simple model of a hybrid ARQ situation [19].

We still consider a discrete-time model for the buffer, where each time slot cor-
responds to N channel uses of a block fading channel. As noted earlier, we do not
need to assume that N >> 1 for the model in this section and indeed may assume

8Note we calculate delay for the discrete time model formulated above, if one assumes that this is a
discretized model of a continuous time system, then this will upper bound the delay in the continuous time
system.

9We allow the buffer to be an arbitrary real value. This is done primarily for mathematical convenience.
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that N = 1. In the following, we develop a model in which the buffer occupancy
corresponds to the reliability required by the data in the buffer plus the remaining
reliability required by the data currently being transmitted. We assume that data
arrives in fixed size packets of log M bits.10 In this section we denote the number of
packets that arrive between time n − 1 and n by {Ãn}, where once again {Ãn} is an
ergodic Markov chain.11 The transmitter takes a packet and encodes it into one of
M codewords of infinite length and begins transmitting the message. While trans-
mitting the message, the transmitter can adjust the transmission power by scaling
the input symbol by an adjustable gain. Once the receiver can decode the message
with acceptable probability of error, the transmitter stops transmitting the current
codeword. The transmitter then proceeds to encode and transmit the next packet in
the buffer.

We assume a random coding ensemble in which the codewords are chosen from a
Gaussian ensemble. Each input symbol is chosen independently from a N (0, 1) dis-
tribution. We allow the transmitter to adjust the transmission power at the start of
each block. Let

√
Pi be the gain used during the ith block. Thus the transmitted

signal for each channel use during the ith block appears to be chosen from a N (0, Pi)
distribution. As in the previous section, we assume that the receiver knows the cur-
rent gain used by the transmitter. To model the amount of service time required by
a codeword, we use a model derived from Telatar’s model for multi-access communi-
cation in [4]. Specifically, if a given codeword is decoded after K blocks, there is the
following random coding bound on the probability of error, for any ρ ∈ (0, 1]:

Pe ≤ exp

(
ρ ln M − N

K∑
i=1

Eo(ρ, |hi|2Pi)

)
, (12)

where

Eo(ρ, |hi|2Pi) = ρ ln

(
1 +

|hi|2Pi

σ2(1 + ρ)

)
(13)

and {hi} is the sequence of channel gains during the K blocks. Suppose there is a
maximal allowable error probability of η. This error probability is achieved if the
codeword is decoded after K blocks where

N
K∑

i=1

Eo(ρ, |hi|2Pi) ≥ ρ ln M − ln η (14)

10This assumption is made primarily for mathematical convenience; if we allowed an arbitrary number of
bits to arrive at each time, we would have to deal with the situation where fewer than log M bits remained
in the buffer.

11The reason for this change in notation is that An will now be used to denote the amount of “reliability”
required by the arriving packets.
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for some fixed12 ρ ∈ (0, 1]. Thus once (14) is satisfied, the transmitter can stop
transmitting the current codeword. Since the transmitter has perfect CSI, it will
know when this occurs. Without perfect CSI, some form of feedback from the receiver
is needed to notify the transmitter when to stop transmitting. As in [4], (ρ ln M −
ln η) can be considered the demand of a codeword once it enters the encoder and
NEo(ρ, |hi|2Pi) as the service given to that codeword in the ith time step.

Let Sn be (ρ ln M − ln η) times the number of packets in the buffer at time n
plus the remaining amount of “service” required by the current codeword. We make
the approximation that when a codeword receives its service, the next codeword
immediately begins service. Practically, one would wait to begin transmitting the
next codeword until the next channel use. If the typical service time of a codeword
is many channel uses this effect will be small. With this approximation, the process
{Sn} evolves according to13:

Sn+1 = Sn + An+1 − Un (15)

where An = (ρ ln M − ln η)Ãn and Un = NEo(ρ, |Hn|2Pn). We think of (15) as the
dynamics of a new buffer with arrival process {An} and departure process {Un}.
Once again this is a discrete time buffer where the buffer occupancy can take on any
nonnegative real value.

As in the previous section, we assume that at each time n, the transmitter can
choose Un based on the current channel state, Hn, buffer state, Sn, and source state
An. Since Un = NEo(ρ, |Hn|2Pn), a given choice of Un = u when Hn = h requires

Pn = σ2(1+ρ)
|h|2

(
e( u

Nρ
) − 1

)
. Motivated by this, we define P (h, u) to be:

P (h, u) =
σ2(1 + ρ)

|h|2
(
e( u

Nρ
) − 1

)
. (16)

As in the previous section we note that this is an increasing and strictly convex
function of u for any h such that |h| > 0.

We again assume that the transmission rate Un is specified by a stationary policy
μ : S × H × A �→ R

+. Under policy μ, the expected long term average power, P̄ μ,
and the expected time average delay in the buffer, D̄μ, are again given by (10) and
(11) respectively.

This completes the description of the two models for the buffer dynamics. In this
next section we begin an analysis of these models.

12The relation in (14) holds for any fixed ρ ∈ (0, 1]. One would naturally like to choose the ρ which is
“optimum”. For the Markov decision problem in the next section, this corresponds to the ρ which yields the
minimum weighted combination of average delay and average power. Note varying ρ changes both the arrival
process and the amount of energy needed; it is not clear that this optimization can be done analytically.

13As in the previous section note that Un ≤ Sn and Sn+1 ≥ An+1 for all n.
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III. Optimal Power/Delay Solutions

In the previous section we formulated two models for the situation in Fig. 1. These
models have many characteristics in common. In both cases, we are interested in
controlling a buffer with dynamics given by (7). At each time n, the transmission
rate u is chosen based on the buffer occupancy Sn, the channel gain Hn and the arrival
state An via a stationary policy μ. The sequences {An} and {Hn} are independent
and both are stationary ergodic Markov chains. The power required to transmit at
rate u when the channel gain is h is denoted by P (h, u); this is a strictly convex and
increasing function of u for all h ∈ H. Finally, we are interested the trade-off between
minimizing the average power and minimizing the average delay, as given by (10)
and (11). In this section we will begin to characterize this trade-off. The following
analysis will only rely on these general characteristics and thus applies to both of the
previous models as well as any other model with these characteristics.

We are interested in two objectives, minimizing the average delay and minimizing
the average power. Both of these criteria can not be minimized at the same time
(except in the degenerate case, where the arrival rate and channel state are fixed for all
time). Consider minimizing a weighted combination of the two criteria. Specifically,
for β > 0, we seek to to find the policy μ which minimizes:14

lim sup
m→∞

1

m

m∑
n=1

E(P (Hn, μ(Sn, Hn, An)) + β
Sn

Ā
). (17)

The weighting factor β indicates the relative importance of the buffer delay over the
average power; larger values of β correspond to more placing more importance on
delay. For the above models, the problem of finding the policy which minimizes (17)
is an average cost Markov decision problem with state space S × H × A. At each
time step the transmitter chooses an action, namely the transmission rate, and incurs
a per stage cost of (P (Hn, μ(Sn, Hn, An)) + β Sn

Ā
). Such problems can be solved via

dynamic programming techniques [20]. For the problem at hand, it can be shown
that there always exists a stationary policy μ which is optimal and satisfies Bellman’s
equation for the average cost problem.15

Assume that μ∗ is an optimal policy for a given β. Let P̄ μ∗
and D̄μ∗

be the
corresponding average power and delay, as given in (10) and (11). Note that P̄ μ∗

must be the minimum average power such that the average delay is less than D̄μ∗
.

For any D ≥ 1, define P ∗(D) to be the minimum average power such that the average
delay is less than D. Thus, by the above argument, P ∗(Dμ) = P̄ μ∗

. We refer to P ∗(D)
as the (optimum) power/delay curve. Varying β and finding the optimal policy for
each value can provide different points on the power/delay curve. It is natural to then

14The weighting factor β can be thought of as a Lagrange multiplier on an average delay constraint.
15One can also show several structural properties of optimal policies for this problem. We refer the reader

to [17] for more details of this line of analysis.
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ask if all values of P ∗(D) can be found in this way, with an appropriate choice of β.
This problem can be viewed as a multi-objective optimization problem [21]. By this we
mean an optimization problem with a vector valued objective function f : X �→ R

n.
In our case f has two components corresponding to the average delay and average
power. For such problems, a feasible solution, x is defined to be Pareto optimal if
there exists no other feasible x̂ such that f(x̂) < f(x), where the inequality is to be
interpreted component-wise. It can be seen that the points {(P ∗(D), D) : D ≥ 1}
are a subset of the Pareto optimal solutions for this problem.16 For a general multi-
objective optimization problem, not every Pareto optimal solution can be found by
considering problems with scalar objectives k′f where k ∈ R

n. For the problem at
hand, except in the degenerate case where the channel and arrival processes are both
constant, every point on P ∗(D) (and thus every interesting Pareto optimal solution)
can be found by solving the minimization in (17) for some choice of β. This also follows
directly from the characterization of P ∗(D) given in the following proposition.

Proposition 3.1: The optimum power/delay curve, P ∗(D), is a non-increasing, con-
vex function of D ≥ 1. Except in the degenerate case where channel and arrival
processes are both constant, it is a decreasing and strictly convex function of D.

Proof: That P ∗(D) is non-increasing is obvious. We show that it is convex. Let
D1 and D2 be two values of delay with corresponding values P ∗(D1) and P ∗(D2). We
want to show that for any λ ∈ [0, 1],

P ∗(λD1 + (1 − λ)D2) ≤ λP ∗(D1) + (1 − λ)P ∗(D2). (18)

We will prove this using sample path arguments. Let {Hn(ω)}∞n=1 and {An(ω)}∞n=1 be
a given sample path of channel states and arrival states. Let {U1

n(ω)} be a sequence
of control actions corresponding to the policy which attains P ∗(D1). Let {S1

n(ω)} be
the corresponding sequence of buffer states. Likewise define {U2

n(ω)} and {S2
n(ω)}

corresponding to P ∗(D2). As noted previously, U i
n(ω) ≤ Si

n(ω) for i = 1, 2, for all ω,
and for all n. Now consider the new sequence of control actions, {Uλ

n (ω)}, where for
all n,

Uλ
n (ω) = λU1

n(ω) + (1 − λ)U2
n(ω).

Let {Sλ
n(ω)} be the sequence of buffer states using this policy. Assume at time

n = 0, Sλ
0 (ω) = S1

0(ω) = S2
0(ω) = 0 for all sample paths, ω. Using that Si

n+1(ω) =
Si

n(ω) + An+1(ω) − U i
n+1(ω) for i = 1, 2 and all n ≥ 0, and recursion, we have

16Assume {(P ∗(D), D) : D ≥ 1} is not the entire set of Pareto optimal solutions. From Prop. 3.1, for any

remaining Pareto optimal point (P̃ , D̃), it must be that P ∗(D̃) ≤ P̃ . Furthermore, inf{D : P ∗(D) < ∞} is
only value of delay such points could have. Thus these other Pareto optimal solutions are not very interesting
to us.



16 TO APPEAR IEEE TRANSACTIONS ON INFORMATION THEORY

Sλ
n(ω) = λS1

n(ω) + (1 − λ)S2
n(ω) for all n. Thus,

lim
m→∞

1

m

m∑
n=1

ESλ
n(ω)

Ā
≤ λD1 + (1 − λ)D2, (19)

where the expectation is taken over all sample paths. From the convexity of P (h, u)
in u, we have for all n

P (Hn(ω), Uλ
n (ω)) ≤λP (Hn(ω), U1

n(ω))

+ (1 − λ)P (Hn(ω), U2
n(ω)).

Again, summing and taking expectations we have

lim
m→∞

1

m

m∑
n=1

EP (Hn(ω), Uλ
n (ω))

≤ λP ∗(D1) + (1 − λ)P ∗(D2).

(20)

Thus we must have P ∗(λD1 + (1 − λ)D2) ≤ λP ∗(D1) + (1 − λ)P ∗(D2) as desired.
The final statement in the proposition follows directly from the above and the

results in the next section.

Define Pd(a) = EHP (H, a) for any a ≥ 0. For the model of Section II-B, Pd(a)
corresponds to the solution of (5) with R = a/N . This is the minimum average power
required to transmit at rate a in every channel state. As formulated, the delay in the
buffer must be at least one time unit. The only way for the average delay to be equal
to one is if Un = An for all n. Thus we have :

P ∗(1) =

∫
A
Pd(a) dπA(a). (21)

For the mutual information model, if we have a constant arrival rate of Ā and an
average delay constraint of 1, then the minimum average power is Pd(Ā), which
corresponds to the delay-limited capacity of the channel. For channels whose delay-
limited capacity is zero, Pd(Ā) must then be infinite for any Ā > 0.

For any a ≥ 0, define Pa(a) to be the solution to

minimize
Ψ:H�→R+

EP (H, Ψ(H))

subject to : E(Ψ(H)) ≥ a.
(22)

We have restricted Ψ to be a function only of the channel state H in this optimization.
For the model of Section II-B, Pa(a) corresponds to the solution to (6), i.e. this
corresponds to the expected capacity of the channel. Note that Pa(a) is an increasing
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Fig. 3. Example of power/delay curve.

and strictly convex function of a; this follows directly from the strict convexity and
monotonicity of P (h, u). Let Ψa(h) be a feasible rate allocation which achieves Pa(a).
It can be seen that this rate allocation will be almost surely unique and is a function
of only |h|. Furthermore, it is a continuous and non-decreasing function of |h| for all
a > 0. Likewise, for any h ∈ H, Ψa(h) is a continuous and non-decreasing function of
a. The quantity Pa(Ā) is the minimum average power needed to transmit at average
rate Ā with no other constraints. Thus Pa(Ā) is a lower bound to P ∗(D) for all
D ≥ 1. If both the channel and arrival processes are constant, then Pa(Ā) = Pd(Ā);
in this case, the power delay curve is a horizontal line. Assuming that the channel and
arrival processes are not both constant, the only way a stationary policy μ can have
P̄ μ = Pa(Ā) is if μ(s, h, a) = ΨĀ(h) for all (s, h, a) ∈ S×H×A, except possibly a set
with measure zero. Such a policy results in D̄μ = ∞. In other words, P ∗(D) > Pa(Ā)
for all finite D. In the next section we shall see that this bound can be approached
as D → ∞.

Example: Figure 3 shows an example of the power/delay curve for a channel with
memoryless fading and two states (|H| = 2); in one state |h|2/σ2 = 0.03 and in
the other state |h|2/σ2 = 0.09. For this example, the sequence of channel states
is i.i.d. and each state is equally likely. The arrival process has a constant rate of
Ā/N = 0.5 and the power needed to transmit u bits is given by P (h, u) in (9),
corresponding to the mutual information model. To calculate the optimal policy,
we discretized the buffer state space and allowable control actions. Using dynamic
programming techniques, P ∗(D) was obtained computationally (within a small error
margin) for various choices of β; the computed values of P ∗(D) are indicated in the
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figure. For this example Pd(Ā) = 14.42 and Pa(Ā) = 9.55. Pa(Ā) is indicated by a
horizontal line in the figure.

IV. Asymptotic Analysis

In this section we characterize the behavior of the tail of the power/delay curve,
P ∗(D), as the buffer delay D → ∞. This corresponds to the solution of (17) as β → 0.
Throughout this section we restrict ourselves to the case of memoryless arrivals and
memoryless fading, i.e. both {An} and {Hn} are sequences of i.i.d. random variables.
This restriction is made primarily to simplify the following exposition. We also assume
that the arrival state space A is a compact subset of R

+. Let Amin = inf A and
Amax = supA. With these assumptions, we show that P ∗(D) → Pa(Ā) as D → ∞.
We look at the rate17 at which this limit is approached and show that P ∗(D)−Pa(Ā) =
Θ( 1

D2 ). First we bound the rate of approach. Then we show that this bound is tight.
Furthermore in proving that the bound is tight we provide a sequence of policies
with a relatively simple structure which exhibit the optimal rate of convergence. The
approach in this section is closely related to Tse’s work [22] on buffer control for
variable-rate lossy compression. In [22] the input rate into a buffer is controlled by
changing the quantizer used to compress blocks of real valued data. The goal is
to optimally trade-off distortion and buffer overflow probability. In the problem at
hand, the buffer is controlled by varying the output rate and we interested in trading
off power and average delay. There are many similarities between the mathematical
structure underlying these problems.

To characterize the behavior of this tail, we will consider a sequence of policies
{μk}, such that as k → ∞, D̄μk → ∞ and P̄ μk → Pa(Ā). Since in this section the
arrival process is assumed to be memoryless, a stationary policy μ will only depend
on the buffer state and the channel state, i.e. μ : S × H �→ R

+. We restrict our
attention to the class of policies that satisfy the following technical assumptions.

Definition: A sequence of buffer control policies {μk} is admissible (for a given
fading process, {Hn} and arrival process {An}) if it satisfies the following assumptions:

1. For all k, D̄μk < ∞, and limk→∞ D̄μk = ∞.

2. Under each policy, μk, {Sn} forms an ergodic Markov chain; we denote the steady-
state distribution under the kth policy by πμk

S .

3. There exists an ε > 0, a δ > 0 and a M > 0 such that for all k > M and for all
s ≤ 2E(Sμk),

Pr(A − μk(S
μk , H) > δ|Sμk=s) > ε

17The following standard notation is used to compare the rates of growth of two real-valued sequences {an}
and {bn}: an = o(bn) if limn→∞ an

bn
= 0; an = O(bn) if lim supn→∞

|an|
|bn| < ∞; an = Ω(bn) if bn = O(an);

and an = Θ(bn) if an = O(bn) and an = Ω(bn).
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where Sμk , A and H are random variables with respective state spaces S, A, and
H and whose joint distribution is the steady-state distribution of (Sn, An, Hn) under
policy μk.

We are interested in sequences of policies which characterize the tail behavior of
P ∗(D) as D → ∞. The first assumption says a sequence of policies is admissible only
if the average delay of these policies has the desired behavior. Under any stationary
policy, the sequence of buffer states is a Markov chain. The policy, along with the
fading process and arrival process, determines the transition kernel for this Markov
chain. By the second assumption, for each policy in an admissible sequence, this
Markov chain is ergodic. This will be true if the transition kernel is “well-behaved”
[23]. The third assumption means that for large k and any buffer state s < 2E(Sμk),
there is a positive steady-state probability that the next buffer state is bigger than
s + δ. If Amin > δ and Pr(H = 0) > ε, then this assumption must be satisfied by any
policy that uses finite power. If this is not the case, then this is a restriction on the
allowable policies.18

We also assume that at a = Ā, the first and second derivatives of Pa(a) exist and
are non zero. Recall, Pa(a) is a strictly convex and increasing function of a. For
such a function, the first and second derivatives of Pa(a) exist and are non-zero at
every point except for a set with measure zero.19 Thus, this is not a very restrictive
assumption.

Let Δμ(s) = E(A−μ(Sμ, H)|Sμ=s) denote the expected drift given that the buffer
is in state s under policy μ. For any admissible sequence of policies {μk}, the average
drift over the tail of the buffer must be negative when k is large enough. This is
stated in the following lemma.

Lemma 4.1: Let M , δ and ε be as given in the definition of an admissible sequence.
For any admissible sequence of buffer control schemes {μk}, for each k > M , there
exists an sk ∈ S such that∫

s>sk

Δμk(s) dπμk

S (s) ≤ −εδ2

16E(Sμk)
Proof: Appendix A.

We use this result to establish the following bound on the rate of convergence:

Proposition 4.2: Any admissible sequence of policies {μk} must satisfy

P̄ μk − Pa(Ā) = Ω((1/D̄μk)2).
Proof: Appendix B.

18It can be argued that for any sequence of policies satisfying the first condition and such that P̄ μk →
Pa(Ā), then provided that both An and Hn are not constant for all n, assumption 3 must hold, except not
necessarily uniformly over s.

19This follows from Lebesgue’s theorem which states that a monotonic function is differentiable almost
everywhere [24].
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Fig. 4. A simple policy with drift υ.

In other words, the “tail” of P ∗(D) converges to Pa(Ā) at least as slowly as 1
D2 .

Next we show that this bound is tight. To do this we give a sequence of policies,
which achieve the rate of convergence given by the bound, i.e. we show that there
exists a sequence of policies μk, such that P̄ μk −Pa(Ā) = O((1/Dμk)2). Moreover, the
sequence of policies that we use have a relatively simple structure to them. First we
describe the type of policies to be used. Then, the convergence rate of these policies
is demonstrated. We are still considering the case where the arrival process and the
fading are memoryless.

Definition: For a given υ > 0, partition the buffer state space into two distinct
sets: [1/υ,∞) and [0, 1/υ). Recall, Ψa : H �→ R

+ denotes the policy with average
rate a which achieves Pa(a). Such a policy depends only on the channel state. Define
a simple policy with drift υ, to be a policy μ with the form:20

μ(s, h) =

{
ΨĀ+υ(h) if s ∈ [1/υ,∞)

Ψmax(Ā−υ,0)(h) if s ∈ [0, 1/υ).

In other words, with a simple policy the only dependency of the transmission rate
on the buffer occupancy is through a simple threshold rule. Under such a policy, the
drift in any buffer state s ≥ 1/υ will be −υ and the drift in any state s ≤ 1/υ will
be υ provided that υ < Ā (otherwise the drift will be Ā). Thus these policies tend to
regulate the buffer towards the state 1/υ as illustrated in Figure 4. Lemma 4.3 below
gives an upper bound on the average buffer delay under a simple policy. This bound
depends on the semi-invariant moment generating function, γ(r), of A − ΨĀ+υ(H).

This is defined as γ(r) = ln(E[e(A−ΨĀ+υ(H))r]), where the expected value is taken with
respect to both A and H. Since EA−ΨĀ+υ(H) < 0, γ(r) will have a unique positive
r∗ (where r∗ = ∞ when no finite root exists) [25].

Lemma 4.3: For a simple policy μ with drift υ, the average delay satisfies:

D̄μ ≤ 1/υ

Ā
+

er∗(υ)η(υ)

Ār∗(υ)

20More generally, we could partition the buffer into the sets [0, K/υ) and [K/υ,∞) where K > 0. These
sets could then be used in the definition of a simple policy. The following results still hold with such a
generalization.
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where η(υ) is a nonnegative function such that η(υ) → 0 as υ → 0, and r∗(υ) is
the unique positive root of the semi-invariant moment generating function of A −
ΨĀ+υ(H).

The proof of this lemma can be found in Appendix C. There are two key ideas
in this proof. First, Little’s law is used to relate the average delay to the average
buffer occupancy. Second, for the memoryless case, while the buffer process stays in
[1/υ,∞) it behaves as a random walk with a negative drift. Thus the steady-state
probability that the buffer is in state s can be bounded by a function which decays
exponentially, with an exponent given by r∗(υ). To show that simple policies have
the desired convergence rate it is useful to characterize how r∗(υ) changes with υ.
The is given in the following lemma whose proof can be found in Appendix D.

Lemma 4.4: Let r∗(υ) denote the unique nonzero root of the semi-invariant mo-
ment generating function of A − ΨĀ+υ(H) (for υ �= 0). Assume that for all υ in a

neighborhood of 0, that d2

dυ2 Eer∗(υ)(A−ΨĀ+υ(H)) exists and that21

d2

dυ2
Eer∗(υ)(A−ΨĀ+υ(H)) = E

d2

dυ2
er∗(υ)(A−ΨĀ+υ(H)).

Then, r∗(0) = 0 and

dr∗(υ)

dυ

∣∣∣∣
υ=0

=
2

Var(A − ΨĀ(H))
.

Using the above two lemmas it can be shown that a sequence of simple policies can
achieve the bound given in Proposition 4.2.

Proposition 4.5: Let {μk} be a sequence of simple policies with drifts {υk}, where
{υk} is a nonnegative decreasing sequence such that υk → 0 as k → ∞. Then we
have P̄ μk − Pa(Ā) = O(( 1

Dμk
)2).

Proof: Appendix E.

A simple policy as defined above requires splitting the buffer into two regions.
In each region a policy was used that depended only on the current channel state.
We have assumed that in addition to the current channel state, the receiver knows
the current buffer state of the transmitter, so it would know the transmission rate
and power used. Conveying this information to the receiver requires some overhead.
When a simple policy is used, the receiver only needs to know in which region of the
buffer the current buffer state lies; this requires only one bit of overhead. An even

21As an example of when these assumptions will hold, assume that |A| < ∞ and |H| < ∞. In this case

if the second derivative of ΨĀ+υ(h) with respect to υ exists and is continuous at υ = 0 for all h, then the
above assumptions hold. When P (h, u) corresponds to transmitting at capacity as in (9), this will be true
for all but a finite number of values of Ā. These values correspond to those rates Ā for which the “water

level” 1
λ

in some state h is exactly equal to σ2

|h|2 (cf. (3)).
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simpler policy would be one with no dependence on the buffer state, i.e. a policy
which only depended on the channel gain. With such a policy, the receiver would
require no information about the transmitter’s buffer state. Proposition 4.6 below
shows that a sequence of such policies can not achieve the optimal convergence rate.
Before stating this proposition some preliminary notation is established.

We want to consider a sequence of policies {μk} which depend only on the channel
state. Let υk = Ā−Eμk(H); the average transmission rate in every buffer state s ∈ S
is then Ā+υk. For the buffer to be stable under policy μk it must be that υk > 0. To
prove Proposition 4.6, we will use a result similar to Lemma 4.4. However, we do not
want to restrict the policy μk to be a policy of the form Ψx as in Lemma 4.4. Instead
we assume that that each policy μk is determined by an arbitrary parameterized
function Φx. Specifically, for every x ≥ Ā, let Φx : H �→ R

+ be an arbitrary policy
which depends only on the channel gain such that EΦx(H) = x. Assume that each
policy μk is given by μk = ΦĀ+υk . Let r∗(υ) denote the unique nonzero root of the
semi-invariant moment generating function of A − ΦĀ+υ(H). Assume that for all υ

in a neighborhood of 0, that d2

dυ2 Eer∗(υ)(A−ΦĀ+υ(H)) exists and that

d2

dυ2
Eer∗(υ)(A−ΦĀ+υ(H)) = E

d2

dυ2
er∗(υ)(A−ΦĀ+υ(H)).

This is the same set of assumptions used in Lemma 4.4; by examining the proof of
that lemma, it is apparent that the lemma also applies here. Specifically,

dr∗(υ)

dυ

∣∣∣∣
υ=0

=
2

Var(A − ΦĀ(H))
.

Any sequence of policies μk satisfying the above assumptions can not achieve the
optimal convergence rate; this is stated in the following proposition.

Proposition 4.6: Let {υk} be a nonnegative decreasing sequence such that υk → 0
as k → ∞. Let {μk} be a sequence of policies such that for each k μk = ΦĀ+υk , where
Φx satisfies the above assumptions. Then P̄ μk − Pa(Ā) = Ω( 1

Dμk
).

Proof: Appendix F.

Thus using more than one policy allows the rate of convergence to be squared.
Some intuition as to why two policies are needed is given by the following argument.
With two policies we regulate the buffer towards the point 1

υ
, while with one policy

(with finite average delay) the buffer is regulated towards the empty state. When
considering average delay, keeping the buffer empty appears more desirable. However,
when considering the average power, there is a disadvantage to keeping the buffer
nearly empty– when the buffer is nearly empty, one can not take advantage of a good
channel by transmitting at a high rate, which is desirable for minimizing power. By
using two policies and regulating the buffer towards the point 1

υ
, a better balance is

obtained between these two considerations.
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V. Conclusions

In this paper we have looked at several simple models of communication over time-
varying channels that incorporate buffer constraints. These models were chosen to
illustrate the possible trade-offs between average power and average delay. To ac-
complish this we formulated a buffer control problem which was analyzed using ideas
from Markov decision theory. We provided several characteristics of the optimal
power/delay trade-off curve. In particular we characterized the asymptotic behavior
of this trade-off in the regime of large buffer delay. In this asymptotic regime, we
gave simple buffer control policies which exhibit the optimal convergence rate.

In conclusion we mention several directions in which this work can be extended.
Instead of average delay, one can consider other network level quality of service in-
dicators. For example with a finite buffer the probability of buffer overflow could be
considered. If the arrival rate is constant, then the overflow probability corresponds
to the probability of a maximum delay constraint being violated. Similar results can
be shown in this setting. In this work we assumed that the transmitter has perfect
channel state information. One can consider models that relax this assumption. Fi-
nally, we only considered single user channels. Models with multiple users can be
considered. With more than one user, issues of allocating resources between users
becomes important as does the coordination of the users.

Finally we mention some architectural issues related to this work. The problem
formulation in this paper addresses issues which lie at the boundary of physical layer
issues and higher layer network issues. From an architectural point of view there are
many advantages to separating these layers. But as we have shown, in the context
of mobile wireless communication it is not clear that the boundary between these
layers should have the same characteristics as in a fixed wire-line network. One way
to think about this is to ask what is a good “black box” abstraction for higher layers
to have of the physical layer in such a network. In a wired point-to-point network,
this abstraction is typically that the physical layer is a “packet pipe” that can deliver
packets at a fixed rate, fixed delay, and some small probability of error. In wireless
network, one has the potential to make a pipe with a variable rate, a variable delay
and/or a variable probability or error. Furthermore one may even think of these as
parameters which the next layer can adjust along with the transmission power. In
this context, there are clearly many issues that extend beyond the simple models
addressed here.

Appendices

A. Proof of Lemma 4.1

Proof: Let M , δ and ε be as in the definition of admissibility and assume that
k > M . Let Fn = An − Un−1; this represents the net change in the buffer occupancy
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between time n − 1 and n. Thus, assuming the buffer is empty at time 0, we have

Sn =
n∑

m=1

Fm. (23)

By assumption, the buffer process, Sn, reaches a steady state as n → ∞. Thus the
Markov inequality implies:

lim
n→∞

Pr(Sn ≥ 2E(Sμk)) ≤ 1

2
, (24)

and so

lim
n→∞

Pr(Sn < 2E(Sμk)) >
1

2
. (25)

Let m = 4E(Sμk)/δ where δ divides 2E(Sμk). Consider partitioning [0, 2E(Sμk)) into
the following m segments: [0, δ/2), [δ/2, δ), . . . , [(m − 1)δ/2, 2E(Sμk)), where each
segment has a length of δ/2. Let [(c − 1)δ/2, cδ/2) be one of these segments which
has the maximal probability with respect to πμk . Thus,

πμk

S ([(c − 1)δ/2, cδ/2)) ≥ 1

2m
=

δ

8E(Sμk)
. (26)

Let sk = cδ/2 and define the process {Ŝn} by

Ŝn = max{Sn, sk}. (27)

Thus Ŝn is equal to Sn restricted to [sk,∞). Let F̂n = Ŝn − Ŝn−1 be the net change

in Ŝn, so that

Ŝn =
n∑

m=1

F̂m. (28)

Thus

lim
n→∞

E
1

n
Ŝn = lim

n→∞
E

1

n

n∑
m=1

F̂m. (29)

By assumption D̄μk < ∞; therefore limn→∞ ESn < ∞. Furthermore, Ŝn ≤ Sn + sk

for all n, which implies that E(Ŝn) ≤ E(Sn) + sk < ∞. Thus,

lim
n→∞

E
1

n
Ŝn = 0. (30)
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The quantity F̂n can be considered a reward gained at time n − 1 by the original
ergodic Markov chain {Sn}. Thus we have

lim
n→∞

E
1

n

n∑
m=1

F̂m =

∫
S

lim
l→∞

E(F̂l|Sl−1=s) dπμ
S(s). (31)

Here liml→∞ E(F̂l|Sl−1=s) is the steady-state expected reward in state s. Using (30),
(31), and (28) yields: ∫

S
lim
l→∞

E(F̂l|Sl−1=s) dπμ
S(s) = 0. (32)

Next we relate E(F̂l|Sl−1=s) to expected changes in the original process. We consider
three cases:
1. First when Sl−1 ≥ sk, then F̂l ≥ Fl and thus

lim
l→∞

E(F̂l|Sl−1=s)

≥ lim
l→∞

E(Fl|Sl−1=s) = Δμ(s), ∀ s ≥ sk.
(33)

2. Next when (c − 1)δ/2 ≤ Sl−1 < cδ/2 = sk, F̂l is nonnegative. Thus,

E(F̂l|Sl−1=s) ≥ δ/2 Pr(F̂l > δ/2|Sl−1=s) (34)

≥ δ/2 Pr(Fl > δ|Sl−1=s). (35)

Here (34) follows from the Markov inequality; (35) follows from the the fact that

F̂l ≥ Fl − δ/2 for (c − 1)δ/2 ≤ Sl−1 ≤ cδ/2. Next taking the limit and using the
admissibility of μ, we have:

lim
l→∞

E(F̂l|Sl−1=s) ≥ lim
l→∞

δ/2 Pr(Fl > δ|Sl−1=s)

≥ εδ

2
, ∀ s ∈ [(c − 1)δ/2, cδ/2).

(36)

3. Finally, when Sl−1 < (c − 1)δ/2, F̂l is also non-negative, and thus

lim
l→∞

E(F̂l|Sl−1=s) ≥ 0, ∀ s < (c − 1)δ/2. (37)

Combining (33), (36), and (37) into (32) yields:∫
((c−1)δ/2,cδ/2]

εδ

2
dπμ

S(s) +

∫
s>sk

Δμ(s) dπμ
S(s) ≤ 0. (38)

The first term can be bounded as follows using (26):∫
((c−1)δ/2,cδ/2]

εδ

2
dπμ

S(s) ≥ εδ2

16E(Sμk)
. (39)

Substituting this into (38) yields the desired result.
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B. Proof of Proposition 4.2

Proof: For the kth policy, let Δμk(s) denote the expected drift in state s. Thus
the average transmission rate conditioned on being in state s is E(μk(S

μk , H)|Sμk=s) =
Ā − Δμk(s). Recall that Pa(x) is the minimum average power required to transmit
at average rate x. Thus the average power used when the buffer is in state s is lower
bounded by Pa(Ā − Δμk(s)). Averaging over the buffer state space we have:

P̄ μk ≥
∫
S
Pa(Ā − Δμk(s)) dπS(s) (40)

Via a first order Taylor expansion around x = Ā, Pa(x) can be written as:

Pa(x) = Pa(Ā) + P ′
a(Ā)(x − Ā) + G(x − Ā) (41)

where the remainder term G(x) has the following properties: (i) G(x) is strictly
convex, (ii) for x �= 0, G(x) > 0 and G(0) = 0, and (iii) G′(x) > 0 for x > 0
and G′(0) = 0. These all follow from the strict convexity and monotonicity of Pa.
Substituting this into (40) yields:

P̄ μk − Pa(Ā) ≥ P ′
a(Ā)

∫
S
(−Δμk(s)) dπS(s)

+

∫
S

G(−Δμk(s)) dπS(s)

(42)

=

∫
S

G(−Δμk(s)) dπS(s). (43)

Here we have used that

∫
S

Δμk(s) dπS(s) = 0 (44)

for any policy μk which has ES < ∞. This follows from the fact that the buffer size
is infinite and thus no bits are lost due to overflow. Let sk be as defined in Lemma
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4.1 and assume that k > M so that the lemma applies. Then we have

P̄ μk − Pa(Ā)

≥
∫

s>sk

G (−Δμk(s)) dπS(s)
(45)

=

∫
s>sk

G (−Δμk(s)) dπS(s) + πS([0, sk))G(0) (46)

≥ G

(∫
s>sk

−Δμk(s) dπS(s) + πS([0, sk))G(0)

)
(47)

= G

(∫
s>sk

−Δμk(s) dπS(s)

)
(48)

≥ G

(
εδ2

16ESμk

)
. (49)

In (45), (46) and (48) we have used that G(x) ≥ 0 and G(0) = 0. Eq. (47) follows
from Jensen’s inequality and (49) follows from Lemma 4.1. Finally, expanding G in
a Taylor series around 0, and using that G′(0) = 0 we have:

P̄ μk − Pa(Ā) ≥ 1

2
G′′(0)

(
εδ2

16ESμk

)2

+ o

((
εδ2

16ESμk

)2
)

. (50)

That G′′(0) exists and is non-zero follows from the assumption that the second deriva-
tive of Pa(x) exists and is non-zero at x = Ā. Thus we have P̄ μk − Pa(Ā) =
Ω(( 1

E(Sμk )
)2). Using Little’s law, this gives us P̄ μk − Pa(Ā) = Ω((1/Dμk)2) as de-

sired.

C. Proof of Lemma 4.3

Proof: From Little’s law we have:

D̄μ =
E(S)

Ā
, (51)

where E(S) is the expected buffer occupancy in steady-state. This can be written as
the integral of the complimentary distribution function of S, i.e.

E(S) =

∫ ∞

0

Pr(S > s) ds. (52)

Upper bounding Pr(S > s) by 1 for s ≤ 1/υ, yields:

E(S) ≤ 1/υ +

∫ ∞

0

Pr(S > s + 1/υ) ds. (53)
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For all υ ≥ 0, let

η(υ) = sup{ΨĀ+υ(h) − ΨĀ−υ(h) : h ∈ H}.

We show that η(υ) is non-negative and converges to zero as υ → 0. As noted in
Sect. III, Ψa(h) is a continuous function of |h| for all a ≥ 0. Recall H is assumed to
be compact; thus Ψa(h) will be bounded for all a. Therefore, η(υ) is also bounded.
Likewise, since Ψa(h) is non-decreasing in a for all h, η(υ) will be non-negative.
Finally, for all h, Ψa(h) is continuous in a; thus, for all h, {ΨĀ+υ(h) − ΨĀ−υ(h)}
converges monotonically to 0 as υ → 0. Thus, by Dini’s theorem [26], limυ→0 η(υ) = 0.

Next we bound Pr(S > s + 1/υ). Consider a second buffer process {S̆n} defined
as follows. This second process only uses the policy ΨĀ+υ and is restricted to stay
in [1/υ,∞) for all time. Specifically, let Ŭn = ΨĀ+υ(Hn) and let S̆n+1 = max{S̆n +

An+1 − Ŭn, An+1, 1/υ}. We assume that this buffer process and the original buffer
process observe the same sequence of channel and source states. Furthermore assume
that at time 0, S̆0 = max{S0, 1/υ}. We claim that for all n ≥ 0, S̆n ≥ Sn − η(υ).

This will be shown by induction on n. By assumption S̆0 ≥ S0 ≥ S0 − η(υ). Assume

at time n, S̆n ≥ Sn − η(υ), we will show that this holds for time n + 1. Consider the
following two cases:
Case 1: Sn > 1/υ. In this case Ŭn = Un, and thus,

S̆n+1 ≥ max{S̆n − Ŭn + An+1, An+1}
≥ max{Sn − η(υ) − Un + An+1, An+1}
≥ max{Sn − Un + An+1, An+1} − η(υ)

= Sn+1 − η(υ)

Case 2: Sn ≤ 1/υ. In this case S̆n ≥ 1/υ ≥ Sn and Ŭn ≤ Un + η(υ). Thus

S̆n+1 ≥ max{S̆n − Ŭn + An+1, An+1}
≥ max{Sn − (Un + η(υ)) + An+1, An+1}
≥ max{Sn − Un + An+1, An+1} − η(υ)

= Sn+1 − η(υ).

Thus we have S̆n ≥ Sn − η(υ) for all n ≥ 0. From this it follows that for all n ≥ 0

and all s, Pr(Sn > 1/υ + s) ≤ Pr(S̆n > 1/υ + s − η(υ)). Letting n → ∞ we have

Pr(S > 1/υ + s) ≤ Pr(S̆ > 1/υ + s − η(υ))

where S and S̆ are random variables with the steady-state distributions for the re-
spective processes. Note, the process {S̆n} is a random walk restricted to [1/υ,∞).



BERRY & GALLAGER: COMMUN. OVER FADING CHANNELS WITH DELAY CONSTRAINTS 29

Therefore22.

Pr(S̆ > 1/υ + s − η(υ)) ≤ e−r∗(υ)(s−η(υ))

and thus,

Pr(S > 1/υ + s) ≤ e−r∗(υ)(s−η(υ)).

Substituting this into (53) and carrying out the integration yields:

E(S) ≤ 1/υ +

∫ ∞

0

e−r∗(υ)(s−η(υ)) ds (54)

= 1/υ +
er∗(υ)η(υ)

r∗(υ)
(55)

Finally, substituting this into (51) gives the desired result.

D. Proof of Lemma 4.4

Proof: From the definition of r∗(υ) we have, for all υ,

Eer∗(υ)(A−ΨĀ+υ(H)) = 1. (56)

Differentiating this equation twice with respect to υ, and using the assumption in the
lemma, we have, for all υ in a neighborhood of 0,

E
d2

dυ2
er∗(υ)(A−ΨĀ+υ(H)) = 0.

Letting S(υ) = dr∗(υ)
dυ

then,

E
d2

dυ2
er∗(υ)(A−ΨĀ+υ(H))

= Eer∗(υ)(A−ΨĀ+υ(H))

{(
(A − ΨĀ+υ(H))S(υ) − r∗(υ)

·
(

d

dυ
ΨĀ+υ(H)

))2

+ (A − ΨĀ+υ(H))

(
d

dυ
S(υ)

)

− 2S(υ)

(
d

dυ
ΨĀ+υ(H)

)
− r∗(υ)

(
d2

dυ2
ΨĀ+υ(H)

)}

= 0

22This inequality is referred to as the Kingman bound when applied to G/G/1 queues [25]
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Next we evaluate this at υ = 0. In doing this, note that for υ = 0, the random
variable A − ΨĀ(H) is zero mean, and thus r∗(0) = 0. Additionally note that since

EΨĀ+υ(H) = Ā + υ

then d
dυ

ΨĀ+υ(H) = 1 and d2

dυ2 Ψ
Ā+υ(H) = 0. Thus we have

S(0)2Var(A − ΨĀ(H)) − 2S(0) = 0. (57)

This equation has two roots, corresponding to the two roots of ln(Eer(A−ΨĀ(H))) = 0.
The root S(0) = 0 corresponds to the root of the log moment generating function
that is always at zero, and the root at 2

Var(A−ΨĀ(H))
corresponds to the non-zero root,

as desired.

E. Proof of Proposition 4.5

Proof: Let {μk} be a sequence of simple policies with drifts {υk} as in the
statement of the proposition. We show that D̄μk = O( 1

υk
) and P̄ μk − Pa(Ā) =

O((υk)
2). The desired result then follows directly.

First we show that D̄μk = O( 1
υk

). From Lemma 4.3 we have

D̄μk ≤ 1/υk

Ā
+

er∗(υk)η(υk)

Ār∗(υk)
(58)

The first term on the right hand side of this bound is clearly O(1/υk). We focus on
the second term of (58).

Taking the Taylor series of r∗(υ) around υ = 0 and using Lemma 4.4 we have

r∗(υ) = 0 + Λυ + o(|υ|) (59)

where Λ = 2
Var(A−ΨĀ(H))

. Recall in Lemma 4.3 it was shown that η(υ) → 0 as υ → 0.

From this it follows that r∗(υ)η(υ) = Λη(υ)υ+o(|υ|). With these expansions we have

er∗(υk)η(υk)

Ār∗(υk)
=

eΛη(υk)υk+o(υk)

Ā(Λυk + o(υk))
. (60)

Now since:

lim
k→∞

υke
Λη(υk)υk+o(υk)

Ā(Λυk + o(υk))
=

1

ĀΛ
(61)

it follows that:

er∗(υk)η(υk)

Ār∗(υk)
= O(1/υk) (62)
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and therefore D̄μk = O(1/υk) as desired.
Next we show that P̄ μk −Pa(Ā) = O((υk)

2). For the simple policy μk, the average
power is

P̄ μk = πμk

S ((1/υk,∞))Pa(Ā + υk)

+ πμk

S ([0, 1/υk])Pa(Ā − υk)
(63)

Taking the Taylor series of P(x) around x = Ā we have

P̄ μk = Pa(Ā) + P ′
a(Ā)(πμk

S ((1/υ,∞))υk

− πμk

S ([0, 1/υ])υk) + O((υk)
2)

(64)

Now πμk

S ((1/υ,∞))υk − πμk

S ([0, 1/υ])υk ≥ 0 and thus P̄ μk − Pa(Ā) = O((υk)
2) as

desired.

I. F. Proof of Proposition 4.6

Proof: The average power under the kth policy, P̄ μk is lower bounded by Pa(Ā+
υk) thus

P̄ μk − Pa(Ā) ≥ Pa(Ā + υk) − Pa(Ā) (65)

≥ υkP ′
a(Ā) (66)

where the last step follows from the convexity of Pa.
Now we show that EDμk = Ω( 1

υk
). As in the proof of Lemma 4.3, using Little’s law

we have D̄μ = E(Sμk)/Ā where ESμk is the expected buffer occupancy in steady-state
under policy μk. This can be written as

E(Sμk) =

∫ ∞

0

Pr(Sμk > s) ds

Since the transmission rate depends only on the channel state and the sequence of
channel states are i.i.d., the buffer process is a random walk restricted to [0,∞).
Therefore, Pr(Sμk > s) can be lower bounded as follows:

Pr(Sμk > s) ≥ e−r∗(υk)(s−Amax).

Here r∗(υ) is the unique nonzero root of the semi-invariant moment generating func-
tion of A − μk(H). A proof of this bound can be found in [13, Appendix 6B]. Thus

Dμk ≥ er∗υkAmax

Ār∗υk

By assumption, Lemma 4.4 still applies to r∗(υ). Thus we have r∗(υk) = Λυk + o(υk)
where Λ = 2

V ar(A−ΦĀ(H))
. It follows that DμK = Ω(1/υ). Combining this with the

above bound for P̄ μk − Pa(Ā) we have P̄ μk − Pa(Ā) = Ω(1/DμK ) as desired.
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