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Abstract—The FCC in the U.S. has recently increased the
amount of spectrum available for wireless broadband data
services by permitting unlicensed access to television white-
spaces. While this additional unlicensed spectrum allows for
market expansion, it also influences competition among providers
and can increase congestion (interference) among consumers of
wireless services. We study the value (social welfare) obtained by
adding unlicensed spectrum to an existing allocation of licensed
spectrum among incumbent Service Providers (SPs). We assume
a population of customers who choose a provider based on
minimum delivered price. Here, delivered price is the priceof the
service plus a congestion cost, which depends on the number of
subscribers in a band. For the model considered, we find that the
social welfare depends on the amount of additional unlicensed
spectrum, and can actually decrease over a significant rangeof
unlicensed bandwidths.

I. I NTRODUCTION

In response to the accelerating demand for broadband wire-
less data services, the FCC in the U.S. has recently announced
the conversion of television “white-space” to other commer-
cial services [1]. This new spectrum has been designated
an unlicensed “commons”, available for use bysecondary
transmitters that satisfy certain etiquette constraints on trans-
mitted power, including constraints on expected interference
to primary television receivers. This designation has been
motivated in part by the success of the commons model for
supporting WiFi services in the 2.4 GHz band and above.

A general drawback associated with the commons model
is the tragedy of the commons, i.e., a low admission fee
encourages overuse and excessive congestion (interference).
Although this has not been a major problem with WiFi services
so far, the lower frequencies recently designated for com-
mons (secondary) use are associated with longer propagation
distances, increasing the likelihood of interference among
secondary users of white space. Furthermore, from a social
welfare point of view, it is not cleara priori that the commons
model will make the most efficient use of the additional
spectrum, e.g., compared with an exclusive use model (see
[2]–[5]).
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In this paper we study the value (social welfare) obtained
by adding unlicensed spectrum to an existing allocation of
licensed spectrum among incumbent Service Providers (SPs).
A key assumption is that each SP in the unlicensed band
experiences a congestion cost that depends on thetotal traffic
in that band (due to both incumbents and new entrants). This
is motivated by the likelihood that secondary users sharing
white space within a given region will interfere with each other
even if they are associated with different SPs. In contrast,the
interference cost in a licensed band is due only to the traffic
of the associated SP.

Adding unlicensed bandwidth increases the supply of spec-
trum and, importantly, lowers the costs to entrants seekingto
offer wireless services. The existence of additional unlicensed
wireless services alongside services provided via licensed
bands can only increase competition among SPs and thus
lower prices to consumers of wireless services. However, the
lower prices might induce an increase in traffic, which in-
creases interference and congestion, resulting in lower quality
of service (e.g., smaller throughputs and/or larger delays). It
is uncleara priori which of these effects will dominate.

We analyze the preceding tradeoff by building upon the
framework for price competition in markets for congestible
resources developed in the operations and economics litera-
ture [6]–[10]. According to this framework, in a competitive
equilibrium thedeliveredprice, consisting of the price paid to
an SP plus a congestion cost, is the same across all spectrum
resources. Here we assume a homogeneous user population in
that each user exhibits the same preferential tradeoff between
congestion cost (equivalently, quality of service) and price.
With these assumptions we characterize the effects of addi-
tional unlicensed spectrum on prices, congestion, and social
welfare. These effects depend on both the elasticity of demand
for wireless services and the bandwidth of the unlicensed band.

Our main results are summarized as follows:
1) Equilibrium profits for the incumbent SPs with licensed

bands may drop with the introduction of unlicensed
spectrum.

2) Equilibrium profits for services provided in the unli-
censed band will be zero.



3) The incumbent SPs with licensed spectrum may increase
prices to shift part of its traffic (and associated interfer-
ence cost) to the unlicensed band.

4) The value (social welfare) of additional unlicensed spec-
trum depends on the amount added. For a particular
range of additional bandwidth, the social welfare can
actuallydecrease. (This is illustrated in Fig. 5.)

The explanation for these results is that the incumbent
SPs have an incentive to shift traffic to the unlicensed band
since the associated interference externality is then shared with
other SPs. To facilitate this shift, they may raise prices in
the licensed band (depending on the amount of unlicensed
bandwidth), which can result in a decrease in social welfare.

In addition to the previous work mentioned on pricing
congestible resources [6]–[10], there has been other related
work on congestion in networks and selfish routing [11]–
[13], telecommunications [14], [15], and transportation [16],
[17]. Those papers assume that each firm has access to an
exclusive resource and the congestion suffered by customers
depends only on the number of other customers consuming
that resource. Here we introduce an additional non-exclusive
resource that models unlicensed spectrum.1

In the next section we present the model, and in Section
III we show that the equilibrium price in the unlicensed band
is zero, and compare equilibrium social welfare with social
welfare with a monopoly SP for the unlicensed band. Section
IV presents our main results showing how social welfare varies
with the bandwidth of unlicensed spectrum. We conclude in
Section V.

II. T HE MODEL

Our model is an extension of the standard model of network
pricing games with congestion effects [19]. The economy con-
sists ofservice providers(SPs) andcustomers. SPs have their
own licensed bands. The investment costs for acquiring these
(e.g. via government auctions) as well as the infrastructure for
exploiting them are considered sunk at this stage. Besides the
licensed bands, there is also an unlicensed band available for
use by all SPs. There is no cost for acquiring such a band as
by design it is open for any provider to freely use. Exploiting
such spectrum does require investment in infrastructure, which
we again consider sunk at this stage.2 Examples of such
unlicensed bands are the WiFi band and the TV white spaces.

Service Providers

Let N be a set ofN SPs. Each SP has her own licensed
band and may also use the unlicensed band. An entrant in the
unlicensed band can be modeled as an SP with a licensed band
of capacity zero.

The SPs compete for customers by simultaneously choosing
prices in the unlicensed band and/or their own licensed bands.

1In this sense unlicensed spectrum is a congestible public good, e.g., see
[18].

2Moreover, these costs for a provider who also operates in licensed
spectrum may be reduced as the provider could reuse parts of the licensed
infrastructure.

SPs are assumed to serve all customers who accept their posted
price. Suppose an SPi sets pricespi for service in its licensed
band andpw

i in the unlicensed band and servesxi and xw
i

customers, respectively. Then,i’s profit πi is given byπi =
pixi + pw

i xw
i .

There is a congestion externality suffered by customers
served by SPs. If SPi’s licensed band serves a massxi

of customers, then each customer served in this band ex-
periences acongestion costli(xi), where the nature of this
loss will depend on the bandwidth of the licensed band and
the technology deployed by SPi. Congestion suffered in the
unlicensed band, however, is a function of thetotal mass of
customers served in the unlicensed band. Specifically, ifxw

i

is the mass of customers served by SPi in the unlicensed
band, the congestion suffered by each customer served in the
unlicensed band isg(Xw) where Xw =

∑

i∈N xw
i

3. The
congestion costg(Xw) also depends on the bandwidth of the
unlicensed band. In Section IV we consider the case whereli
is fixed andg is varied according to the available bandwidth
of the unlicensed spectrum.

Customers

As in many other models of network literature [19], we
assume a unit mass of customers and denote byQ the number
of served customers. Customers choose an SP based on the
delivered price, which is the sum of the price announced by
an SP and the congestion cost she experiences when served
by that SP. For SPi’s customers, the delivered price in her
licensed band ispi + li(xi) and the delivered price in the
unlicensed band ispw

i + g(Xw).
The demand for services is governed by a downward

sloping demand functionD(p) with the inverse functionP (q).
Customers always choose service from the SP with the lowest
delivered price. When facing the same delivered price from
multiple SPs, customers are assumed to randomly choose one
of the SPs. Thus SPs with the same delivered price will draw
the same customer mass in equilibrium.

Pricing Game and Nash Equilibrium

We consider a game in which SPs move first and simulta-
neously announce prices. Then, customers choose SPs based
on the delivered price. Given a price vector(p,pw) the non-
negative demand vector(x,xw) induced by(p,pw) satisfies

pi + li(xi) = P (Q) for i ∈ N with xi > 0

pi + li(xi) ≥ P (Q) ∀i ∈ N (1)

pw
i + g(Xw) = P (Q) for i ∈ N with xw

i > 0

pw
i + g(Xw) ≥ P (Q) ∀i ∈ N ,

3w stands for “white space”. For the white space case, the FCC allows
any type of user to transmit as long as no substantial interference is
caused to primary spectrum users (TV broadcasters and licensed wireless
microphone users) [1]. There are constraints on transmit power, antenna height
and power spectral density. However, there are no additional constraints to
reduce the interference among different white space users.Moreover, due to
the propagation characteristics of the corresponding radio frequencies, such
interference effects will be greater than in the WiFi band.



where Xw =
∑

i∈N xw
i is the total customer mass in the

unlicensed spectrum andQ =
∑

i∈N xi + Xw is the total
customer mass in the whole market. In other words, the
demand for each SP is such that no customer can lower the
delivered price she pays by switching SPs.

Figure 1 shows an example illustrating induced demand for
an instance with two SPs and a band of unlicensed spectrum.
There is a positive price in each of the licensed bands and
the price in the unlicensed band is zero for both SPs. Here,
the congestion costs and service prices are shown under the
inverse demand curveP (q). The delivered price for any
customer isP (Q).

DEFINITION 1: A pair (pNE ,pwNE) and
(xNE ,xwNE) is a pure strategy Nash equilibrium if
(xNE ,xwNE) satisfies equation (1) given(pNE ,pwNE),
and no SP can improve her profit by changing prices.

In general, such a game may not have a Nash equilibrium.
However when congestion costs,li(xi), are linear, existence
and uniqueness of a NE can be shown by a simple extension
of the arguments in [8]. We summarize the results as Lemma
1 in Appendix D. Here we focus on cases such as this where
a unique NE exists.

Social Welfare

Next, we define thesocial welfare in this market which
represents the total surplus of both producers (SPs) and
consumers (customers).

DEFINITION 2: Suppose(x,xw) is the demand vector
induced by some price vector(p,pw) according to (1). Then
social welfareis given by

SW =

∫ Q

0

P (q)dq −
∑

i∈N
xili(xi) − g(Xw)Xw (2)

whereQ =
∑

i∈N xi + Xw.

The shaded areas in Fig. 1 represents the social welfare for
the example. Specifically, the areasπ1 andπ2 are the welfare
of the two SPs and the topmost shaded area represents the
welfare of the consumers.

Since the congestion cost is the same for every SP in the
unlicensed band, the total cost only depends on the total
customer mass in the unlicensed band. The social planner’s
problem is to allocate the customers to SPs to maximize social
welfare defined in (2). We call this solution thesocial optimal
solution.

Limitations

There are three important limitations of our model. First,
we assume that price and congestion cost are perfectly sub-
stitutable for all customers. This means that customers can
tolerate arbitrarily high congestion delay as long as the price of
service is low enough. Second, all customers value congestion
in the same way. This may not be true when some customers
are more sensitive to congestion delay while others are more

price

x1 x2
qXw

p1

p2

P (q)

Q

π1
π2

l1(x)
l2(x)

g(x)

Fig. 1. Illustration of pricing game with two SPs and unlicensed spectrum.

sensitive to service price. Third, SPs are not permitted to
impose capacity controls, that is to ration customers or limit
the number of customers they choose to serve at a given price.

III. M ARKET FOR UNLICENSED SPECTRUM

A. Equilibrium Price

We first characterize equilibrium prices in the unlicensed
band. The result serves as a building block for the analysis
in the succeeding sections. Letp∗ and x∗ denote the Nash
equilibrium price vector and demand vector in the licensed
bands, whilepw∗ andxw∗ denote the corresponding equilib-
rium prices and demands in the unlicensed band.

THEOREM 1: If (p∗,pw∗) and (x∗,xw∗) form an NE,
thenpw∗ = 0.

Proof: For simplicity, we prove the theorem for the case
where li(0) = 0 for all i ∈ N and g(0) = 0. Nevertheless,
the result can be extended to the case whereli(0) ≥ 0 and
g(0) ≥ 0.

Assume for a contradiction, that in equilibriumpw∗ 6= 0.
Call an SPactiveif in equilibrium she sets a positive price that
results in a strictly positive quantity of customers. First, it is
easy to see that in equilibrium all active SPs in the unlicensed
band must charge the same price,pw∗ > 0. This is a direct
result of the conditions in (1).

Second, in equilibrium all SPs must be active in the
unlicensed band. If not, an inactive SP earns zero profit in
the unlicensed band. However, since there is at least one SP
charging a positive price, she can always raise her price to
slightly underpw∗ and draw a positive mass of customers,
thus increasing profit.

Given all SPs chargepw∗ > 0 in the unlicensed band, let
Xw∗ be the mass of customers served in that band. Since the
SPs charge the same price in the unlicensed band, each of
them serves a mass ofXw∗/N. Next, we show an SP has a
profitable deviation by setting a price in the unlicensed band
below pw∗.



Consider SPi and let its equilibrium price in the licensed
band bep∗i . Fix all the other SPs’ prices, but decrease SPi’s
price in the unlicensed band byǫ > 0 and keep her price
in licensed band the same. This reduction will affect traffic
in both the licensed and unlicensed band. In the unlicensed
band, all customers will switch to SPi sincei has the lowest
delivered price. In addition, some additional customers may be
‘pulled’ into the unlicensed band. Ini’s licensed band, suppose
the customer mass is reduced by∆xi

. Thus, the overall change
in i’s profit πi is given by

∆πi
≥ (pw∗ − ǫ)Xw∗ − pw∗Xw∗/N − ∆xi

p∗i
= pw∗(1 − 1/N)− ǫXw∗ − ∆xi

p∗i .

Sincelimǫ→0 ∆xi
= 0, there exists a sufficiently smallǫ > 0

such that∆πi
is strictly positive. Thus, decreasing price in

the unlicensed band is a profitable deviation for SPi. This
contradicts the initial assumption. Therefore, the equilibrium
price in the unlicensed band,pw∗

i must be zero for every SP
i ∈ N .

Theorem 1 suggests that in the unlicensed band, competition
will force the prices to be zero and SPs will earn zero profit in
that band (see Fig. 1). Competition in the unlicensed band can
also reduce prices in the unlicensed band and decrease SPs’
profits there. We shall see examples of this in later sections.
Moreover, since all SPs have zero profit in the unlicensed band,
the volume of customers each SP serves there does not affect
her profit or the equilibrium. Thus, we only focus on the total
customer massXw in the unlicensed spectrum hereafter.

B. Social Welfare

According to Theorem 1 because of the competition and the
structure of the congestion cost the equilibrium price in the
unlicensed band is zero. In this subsection, we study the effect
of such a price on the social welfare. Here we restrict attention
to the case where there is only an unlicensed band, which
we refer to as an open spectrum market. We will compare
the social welfare of such an open market compared with the
case where the same spectrum is given to an SP who charges
a monopoly price.

THEOREM 2: Let Sopen and Smonopoly be the social
welfare of the outcomes of the open spectrum market and the
monopoly scenario, respectively. LetSopt be the optimal social
welfare. Assume that the congestion costg(x) is convex and
the inverse demand functionP (x) is concave, then

Smonopoly ≥ 1

3
Sopt.

Furthermore, given anyǫ > 0, there existg(x) andP (x) such
that

Sopen ≤ ǫ · Smonopoly.

Remark This theorem shows that the ratio of the social
welfare obtained by an open spectrum market to that obtained
by a monopolist can be arbitrarily bad. Because the social

welfare obtained by a monopolist is always less than the
optimal social welfare, the ratio of the welfare in an open
spectrum market can be an arbitrary small multiple ofSopt. On
the other hand, giving the spectrum to a monopoly isalways
guaranteed to achieve at least 1/3 of the optimal social welfare.

Proof: We first prove the second inequality stated in
the theorem. To see that the social welfare of the open
market can be arbitrarily bad, we consider a simple case of
linear congestion cost and and linear demand functions. To
be specific, Letg(x) = αx and P (q) = 1 − βq, where
α, β ∈ [0,∞).

In the open market, the price is0 and so the number of
customersx∗ satisfies1 − βx∗ = αx∗. Thus,x∗ = 1

α+β , and
the social welfare is

Sopen =

∫ x∗

0

(1 − βq)dq − α(x∗)2 =
β

2(α + β)2
. (3)

While the monopoly pricep that maximizes revenue is the
optimal solution of

max px such thatp + αx = 1 − βx.

This gives the valuep = 1/2 and x = 1
2(α+β) . By a

straightforward calculation, the social welfare in this case is

Smonopoly =
2α + 3β

8(α + β)2
.

Thus
Sopen

Smonopoly
=

4β

2α + 3β
.

Therefore if α >> β, that is the slope of the congestion
cost is much larger than the slope of the inverse demand then

Sopen

Smonopoly
can be arbitrarily bad.

x∗x

p

A

B
D

C

E
L

g(x)

P (x)

Fig. 2. Illustration of pricing in unlicensed band

We now prove thatSmonopoly ≥ 1
3Sopt. For this we refer to

Fig. 2, which shows the inverse demand curveP (x) and the
congestion costg(x). Let L be the line parallel with thex-axis
that goes through the point whereP (x) andg(x) intersect. Let



D be the point whereL meets they-axis. It follows thatSopen

is the area below the curveP (x) and aboveL.
Let C be a point on theP (x) curve such that the tangent line

at C intersects with they-axis andL at A andB, respectively,
so that the length of the segmentAC is the same as that of
the segmentCB. See Figure 2.

Let E be the area of the rectangle with one corner atC and
with two sides onL and they-axis. This corresponds to the
shaded area in Fig. 2. This area is1/2 the area of the triangle
ABD. On the other hand, the monopoly maximizes revenue
px, which is the area of the dashed rectangle in Fig. 2 lying
betweeng(x) and P (x). Thus,px ≥ E . But because social
welfare is always larger than the revenue, therefore

Smonopoly ≥ E =
area(ABD)

2
. (4)

xopt

A

B
D

F

H

L

g(x)

P (x)

Fig. 3. Optimal social welfare

Now, consider the optimal social welfare. For this we refer
to Fig. 3, wherexopt is the total traffic in an optimal solution.
Let F be the area of the rectangle determined by they-axis
and a vertical line atxopt, with two corners onP (x) andg(x),
also letH be the area of between this rectangle and the curve
P (x). (See Fig. 3.)

The optimal social welfare is

Sopt = F + H. (5)

The monopoly maximizespx and thusF ≤ px. Therefore,

F ≤ px ≤ Smonopoly. (6)

Furthermore,H is inside the triangleABD, and thusH ≤
area(ABD). Because of (4) we then have

H ≤ area(ABD) ≤ 2Smonopoly. (7)

From (5), (6) and (7) we obtainSopt ≤ 3Smonopoly, which
concludes the proof of the theorem.

IV. SOCIAL WELFARE WITH ADDITIONAL UNLICENSED

SPECTRUM

In this section we investigate the impact of an unlicensed
band on the prices set by incumbents in the licensed band and

the effect on social welfare. Suppose an incumbent (monopoly)
operates on a licensed band before the unlicensed band is open.
One or more entrants can then enter the market using the
unlicensed band only. The incumbent can also offer services
on the unlicensed band.

In this section we consider a particular demand function,
which corresponds to a unit mass of customers with a common
valuation ofW for receiving service. This corresponds toP (x)
having a constant value ofW for 0 ≤ x ≤ 1 and then dropping
to zero forx > 1. Customers choose an SP based on delivered
price as long as it is at mostW . W is chosen so that prior
to entry, not all customers are served by the incumbent. First,
the incumbent is a monopolist and so has an incentive to limit
supply to extract a higher price and, second, the congestion
cost is too high for all customer to be served. For simplicity,
we assume that congestion costs are linear. Similar resultshold
for a wider class of congestion cost functions.

The incumbent operates on the licensed band with the
congestion cost

l(x) = T1 + bx, whereb > 0 and0 ≤ T1 ≤ W.

The bandwidth of the unlicensed band isC ≥ 0. The
congestion cost in the unlicensed band is

g(x) = T2 + αCx, 0 ≤ T2 ≤ W.

Here we assume thatαC is decreasing inC; and when no
unlicensed spectrum is open thenα0 = ∞. T1, T2 can be
interpreted as the fixed costs of connecting to the SP. We also
assume

g(1) > l(0) and l(1) > g(0),

that is, the congestion cost of serving the whole market in one
band exceeds the fixed cost of connecting in the other.

In this section we examine what happens when the incum-
bent’s bandwidth, which can be translated to the coefficientb
of the congestion cost, is fixed and we varyC, the bandwidth
allocated to the unlicensed band.

Examples: In Figure 4 we illustrate two cases. One (left
hand side) is whereC is relatively small compared with the
number of unserved customers. This results in an congestion
cost with a steep slope. In this case the unlicensed band can
only serve a fraction of the customers currently not served by
the incumbent. Therefore, the unlicensed band does not create
competition with the incumbent SP. The second case (right
hand side) is whereC is large. Here, service on the unlicensed
band is good enough to attract the incumbent’s customers. As
a result, the incumbent looses some customers. Recall that in
both cases, by Theorem 1, the price in the unlicensed band is
always zero.

There is an interesting transition between the two examples
exhibited in Figure 4 asC increases. LetC1 be the minimum
value such that the congestion cost is low enough for service
in the unlicensed band to be attractive to all customers
not presently served by the incumbent. Observe that for all
0 ≤ C ≤ C1, the congestion cost in the unlicensed band is
equal toW . Thus, even though the unlicensed band allows for
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Fig. 4. Impact of adding an unlicensed band

a market expansion, because of high congestion cost, social
surplus remains unchanged.

If we increase the bandwidth of the unlicensed band, it
seems that congestion costs should decline and social welfare
increase. Now, better service in the unlicensed band will attract
the incumbent’s customers. However, the incumbent need not
respond to this erosion in share with a price cut. In fact, the
incumbent might benefit from a price increase. This would
drive even more customers into the unlicensed band, so worsen
the service quality there. Customers that remain in the licensed
band now have to pay more but they do get a higher quality
service and have no incentive to use the unlicensed band.
Because of this, the number of customers consuming lower
quality service increases, which makes the over all congestion
cost increase and reduces social surplus.

This counterintuitive phenomenon is reminiscent of the
well known Braess’s paradoxin the literature [20]: adding
more resources can decrease the efficiency of a system. The
difference here is that the paradox is caused by the service
providers rather than by the users as in [20].

In our model, an increase in bandwidth in the unlicensed
band results in lower social welfare untilC reaches a value
C2. Beyond this point, the quality of the unlicensed band is
good enough that if the incumbent keeps raising his price, he
will loose too many customers. Because of more intense com-
petition between the two types of services, the delivered price
starts to decline. Falling delivered prices benefit customers and
social welfare starts to increase.

Our main theorem can be stated as follows.

THEOREM 3: Consider an incumbent SP with licensed
spectrum that does not serve all of the demand. If an amount
of unlicensed spectrumC is added then:

(i) For everyC ≥ 0 there is a unique equilibrium.
(ii) The social welfare at an equilibrium,S(C), can be

described as follows. There exist0 < C1 < C2 ≤ ∞

such thatS(0) = S(C1) > S(C2) and

S(C) = S(0) for 0 ≤ C ≤ C1

monotone decreasing forC1 ≤ C ≤ C2

monotone increasing forC ≥ C2.

(See Figure 5 for an illustration).

S(C)

S

C1 C2 C

Fig. 5. Social welfare as a function of unlicensed band’s capacity

Sketch of the Proof The formal proof of this theorem is
provided in Appendix A. The main idea can be sketched as
follows.

We consider the incumbent as SP 1. Before the unlicensed
band is introduced letp∗1 be the price charged by the incumbent
andx∗

1 < 1 the mass of customers served. After opening the
unlicensed band with bandwidthC, let x1 and Xw be the
number of customers using the licensed and unlicensed band
respectively. Letp1 be the price charged in the licensed band
andP be the new delivered price. (See Fig. 4.)

Given bandwidthC in the unlicensed band, which translates
to a congestion costg(x) = T2 +αCx, we have the following
condition for(p1, x1, X

w) to be an equilibrium. The delivered
prices in both unlicensed and licensed bands must be the
same and at mostW . Under this constraint the incumbent
maximizes his revenueπ1 = p1x1. It can be shown thatπ1 is



a concave function ofp1, therefore it has a unique solution.
Furthermore, depending onC, the solution either satisfies
π′

1(p1) = 0 or the constraint that the delivered price isW . It
turns out as we increaseC, the unique solution first satisfies
the delivered price constraint, and there exists a uniqueC2

such thatπ′
1(p1) = 0 only whenC ≥ C2. This transition in

the structure of the solution results in the behavior ofS(C)
as described in Theorem 3.

Examples of Theorem 3: To illustrate Theorem 3, consider
the case whereT1 = T2 = 0, that is l(x) = x, g(x) = x

C , i.e,
αC = 1

C .
Consider the case where before unlicensed spectrum is

introduced, only half of the demand is met by a licensed SP
with bandwidth 1, which corresponds to the caseW = 1.
Adding C2 =

√
2/2 ∼ 0.7 capacity of unlicensed spectrum

will create a new service that can serveall the demand.
However, because of the increase in congestion cost, the
efficiency goes down toS(C2)

S(0) ∼ 82.8%.

The worst case example is whenW = 2 and C2 =
√

5−1
4

bandwidth of unlicensed spectrum is added. The efficiency
then decreases toS(C2)

S(0) ∼ 62%.
A precise analysis of this example is given in Appendix B.

Symmetric linear models: Next we give an example to show
that the conclusions from Theorem 3 apply in more general
settings. Specifically, we consider a scenario in which there
is more than one incumbent SP. Additionally, we consider a
linear inverse demand given byP (q) = 1 − βq, where β
represents the elasticity of demand. Each SP has the same
congestion cost in her licensed spectrum, withli(x) = l(x) =
x for all i ∈ N . The congestion cost in the unlicensed band
is given byg(x) = x

C .
As shown in Appendix D, for such a model a unique NE

exists and is symmetric. For this model, we can extend the
results in [8] to explicitly write down the social welfare with
there areN SPs either with or without an additional band
of unlicensed spectrum. The specific welfare expressions are
given in Appendix C. Using these we can numerically compare
the welfare with and without additional unlicensed spectrum.
For certain choices of parameters, we once again find that the
social welfare may decrease when additional capacity is added,
i.e., Braess’s paradox occurs. An example of this is shown in
Fig. 6, where the solid curve is the welfare with additional
unlicensed spectrum as a function of the amount of additional
spectrum.

We can also determine the social welfare for a scenario
where instead of making theC units of capacity freely
available, we divide this capacity evenly among the existing
N SPs. Details are again provided in Appendix C. We model
this by again assuming thatl(x) is given by the customer
mass per unit capacity for each licensed band, where initially
the capacity is normalized to one. Hence, after giving each SP
C/N additional units of capacity, the new congestion function
is l̃(x) = 1

1+C/N x. This quantity is also shown in Fig. 6. In
this case dividing up the spectrum in this manner improves the
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Fig. 6. The social welfare in different scenarios as a function of additional
capacityC in a symmetric linear network withN = 2 andβ = 4.

welfare for all values ofC. This suggests that in cases where
Braess’s paradox occurs, licensing the spectrum to existing
SPs can be socially more efficient.

V. CONCLUSION

We have studied a model for the adding unlicensed spectrum
to a market for wireless services in which incumbents have
licensed spectrum. We have shown that if the amount of
unlicensed spectrum is not sufficient, a type of Braess’s
paradox may occur in which the social welfare decreases. This
effect is partly due to the assumption that any SP can freely
use the unlicensed spectrum. In such settings a better policy
may be one which limits the number of users in the unlicensed
spectrum. This could be done by simply licensing the spectrum
to one provider. Alternative models, such as establishing a
market for a limited number of device permits [2] might also
increase social welfare.

We focused on a simple linear model for the congestion cost
in the unlicensed band. Generalizing this is one direction for
future work. Moreover, a more accurate model for relating
such costs to the underlying technology may give insights
into “spectrum etiquette” that may lead to more efficient
outcomes. In our model we assumed that all spectrum was
used to offer the same type of service to customers and that
all customers value congestion in the same way. In practice,
unlicensed spectrum may be used to offer different services,
which customers value in different ways. Generalizing our
analysis to such a setting is again a direction for future work.
Finally, our model has not accounted for investment decisions.
If SPs receive zero profits in a unlicensed band, studying their
incentive to invest would be of interest.
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APPENDIX

A. Proof of Theorem 3

In this proof we consider the incumbent as SP 1. Before the
unlicensed band is introduced letp∗1 be the price charged by
the incumbent andx∗

1 < 1 the mass of customers served. After
opening the unlicensed band with bandwidthC, let x1 andXw

be the number of customers using the licensed and unlicensed
band respectively. Letp1 be the price charged in the licensed
band andP be the new delivered price. (See Figure 4).

Let C1 is the value such that the corresponding congestion
cost for1 − x∗

1 customers is equal toW . That is

g(1 − x∗
1) = T2 + αC1

(1 − x∗
1) = W. (8)

Proof of (i)

When C ≤ C1 the unlicensed band will not affect the price

charged by the incumbent. Thus whenC ≤ C1 the equilibrium
is p = p∗1, x1 = x∗

1, X
w = g−1(W ).

Next we establish uniqueness of the equilibrium and its
structure forC > C1. First we prove that whenC > C1, at
any equilibrium, all the customers will be served. To see this,
assume thatx1 + Xw < 1. We then know that the delivered
price must beW , thus

g(Xw) = T2 + αCXw = W.

BecauseC > C1 we haveXw > 1 − x∗
1. This shows that

x1 < 1 − Xw < x∗
1. Therefore the price

p1 = W − l(x1) > W − l(x∗
1) = p∗1.

The incumbent, however, can charge a lower price to attract
customers, who are currently unserved. Moreover, total rev-
enue is a concave function4, and it is maximized atp∗1, thus
by loweringp1, which is greater thanp∗1, the incumbent can
gain more revenue. This leads to a contradiction.

We now show there is a unique equilibrium by considering
the condition for an equilibrium(p1, x1, X

w) assumingC >
C1.

x1 + Xw = 1

l(x1 + p1) = T1 + bx1 + p1 = P ≤ W (9)

g(Xw) = T2 + αCXw = P ≤ W

From this one can derive a revenue maximization problem
for the incumbent. Givenp1, x1(p1) satisfying the above
equations is a linear function ofp1, thusπ1(p1) = p1x1(p1)
is a quadratic function ofp1 and therefore the incumbent’s
problem is

max
p1

π1(p1) subject top1 + T1 + bx1(p1) ≤ W. (10)

This problem always has an unique solution which yields
uniqueness of the equilibrium.

Proof of (ii)
In the remainder of the proof we derive the behavior ofS(C).
Observe that in optimization problem (10), depending on the
parametersT1, T2, b, W, C the solution can be one of the
following types.

Either π′
1(p1) = 0 or p1 + T1 + bx1(p1) = W.

Now consider the solution of the unconstrained problem
π′

1(p1) = 0. From (9), we have

(b + αC)x1 + p1 = (T2 − T1) + αC .

Thusπ′
1(p1) = (p1 · x1(p1))

′ = 0 gives

p1(C) =
(T2 − T1) + αC

2
; x1(C) =

(T2 − T1) + αC

2(b + αC)
(11)

4One can visualize the revenue of the incumbentp∗
1
x∗
1

as the area of the
dashed rectangle on the left picture of Figure 4, where its lower-right corner
runs on the linel(x). It is straight forward to see that the revenue function
is a concave function.



Becausel(1) > g(0), we haveT2 −T1 < b, which shows that

x1 =
(T2 − T1) + αC

2(b + αC)
is increasing inαC .

Therefore,p1 + l(x1) is increasing inαC . However,αC is a
decreasing function ofC, thus

p1(C) + l(x1(C)) is decreaing inC.

Furthermore, it is straightforward to see that whenC → ∞,

p1(∞)+l(x1(∞)) =
(T2 − T1)

2
+T1+b

(T2 − T1)

2b
= T2 < W

and whenC → 0 both p1(C) and l(x1(C)) tend to infinity
becauseα0 = ∞. Therefore there exists an uniqueC∗ such
that p1(C

∗) + l(x1(C
∗)) = W .

Now, if C∗ ≤ C1, then we defineC2 = ∞, otherwise we
define C2 = C∗. In both cases becausep1(C) + l(x1(C))
decreases inC, we have for allC ∈ [C1, C2]

p1(C) + l(x1(C)) > p1(C2) + l(x1(C2)) = W.

Therefore the unique equilibrium determined by (10) needs to
satisfy the condition that the delivered price isW .

Now, when the delivered price isW , observe that

g(Xw) = W ⇒ Xw = C(W − T2).

Thus Xw increases inC and x1 = 1 − Xw decreases inC
and by the same amount asXw increases. However,l(x1) <
W , which means that whenC increases the total mass of
customers does not increase but some customers switch from
a service with congestion costl(x1) to a worse one (congestion
cost ofW ) and thus the congestion cost increases and social
welfare decreases.

Last, we consider the caseC > C2. We know that when
C > C2, the unique Nash equilibrium will satisfyπ′

1(p1) = 0
and we can use (11). In this case we know that the delivered
price P = p1 + l(x1) < W , and all customers are served.
Therefore, social welfare is

S(C) = p1x1 + (W − p1 − l(x1)), herel(x1) = T1 + bx1.

One can take the derivative ofS(C) with respect toC. Here,
we simplify the formulation by a change of variables. Namely,
let z = b + αC anda = b + T1 − T2 > 0. We havez′(C) =
α′(C) < 0 and

p1(C) =
z − a

2
; x1(C) =

z − a

2z
.

A simple calculation yields

S′(C) = z′(C)S′(z) = −α′(C)

(

1

4
+

ab

2z2
+

a2

4z2

)

.

From this we see thatS′(C) > 0, thereforeS(C) is an
increasing function. This concludes the proof.

B. An Example of Theorem 3

Consider the case whereT1 = T2 = 0, that is l(x) =
x, g(x) = x

C . That is αC = 1
C . We will calculate

C1, C2, S(0) = S(C1) andS(C2) as functions ofW .
First we know that at the optimal monopoly pricep∗1, we

have
W − l(0) = 2p∗1 andW = x∗

1 + p∗1

Thusx∗
1 = p∗1 = W/2, and according to (8), we have

C1 =
1 − W/2

W
.

Note that because we assume that before unlicensed spectrum
is introduced, the incumbent did not serve all customer, this
can only happen whenW < 2. Now,

S(0) = S(C1) =
W 2

4
.

Next to calculateC2 , we have

p1(C2) + l(x1(C2)) =
1

2C2
+

1

2(C2 + 1)
= W,

which implies

C2 =

√
W 2 + 1 + 1 − W

2W
> C1.

Thus,

S(C2) =
W 2

2(
√

W 2 + 1 + 1)
.

For example if we considerW = 1, then before unlicensed
spectrum is introduced, only half of the demand is met by a li-
censed spectrum with bandwidth 1. AddingC2 =

√
2/2 ∼ 0.7

capacity of unlicensed spectrum will create a new service that
can serve all the demand. However, because of the congestion
cost, the efficiency goes down toS(C2)

S(C1)
∼ 82.8%.

The worst example is whenW = 2 then if C2 =
√

5−1
4

bandwidth of unlicensed spectrum is open then the efficiency
can go down toS(C2)

S(C1)
∼ 62%.

C. Welfare calculations for a linear symmetric model

In this section we derive the social welfare for a linear
symmetric model withN > 1 SPs in the following three
scenarios:
i.) No additional spectrum;

ii.) Additional C units of unlicensed spectrum;
iii. ) Additional C/N units of licensed spectrum per provider.

Scenario (i): In this scenario, we obtain the NE outcomes
by applying Proposition 1 in [8].5 The equilibrium outcomes
for the SPs are given by

x1
i =

N + 1/β − 1

β(N + 1/β)(N + 2/β − 1)

p1
i =

1

β(N + 2/β − 1)

5In [8] the congestion function also depends on an investmentdecision
made by each firm, Here, we do not consider investment decisions. Thus the
congestion functionl(·) only depends on the demand.



for every i ∈ N . Using Definition 2, the resulting social
welfare is

SW1 =
Nx1

i

2
(1 + p1

i − x1
i ).

Scenario (ii): In this case, the equilibrium price in the
unlicensed spectrum is zero by Theorem 1. Using this fact,
Proposition 1 in [8] can be extended to establish a similar
characterization of the NE in this scenario. We then obtain
the following NE outcome

x2
i =

N + C + 1/β − 1

β(N + C + 1/β)(N + 2C + 2/β − 1)

p2
i =

1

β(N + 2C + 2/β − 1)

Xw =
C(2N + 2C + 2/β − 1)

β(N + C + 1/β)(N + 2C + 2/β − 1)

for every i ∈ N . The resulting social welfare is

SW2 =
Nx2

i

2
(1 + p2

i − x2
i ) +

Xw

2
(1 − 1

C
Xw).

Scenario (iii): If we let β̃ = β(1 + C/N), it can be seen
that the resulting problem is equivalent to scenario (i) with a
modified inverse demand functioñP (q) = 1 − β̃q. Therefore,
the NE in this scenario is given by

x3
i =

(1 + C/N)(N + 1/β̃ − 1)

β̃(N + 1/β̃)(N + 2/β̃ − 1)

p3
i =

1

(N + 2/β̃ − 1)
.

The social welfare in this case is

SW3 =
Nx3

i

2
[1 + p3

i −
1

1 + C/N
x3

i ].

D. Existence and Uniqueness of Nash Equilibrium

To further characterize the NE of the pricing game, we
extend the results in [8] to get the following results.

Lemma 1 ( [8] ): Suppose the inverse demand function
P (q) is concave, strictly decreasing,li(x) is linear for all
i ∈ N , and g(·) is convex, increasing and has an inverse
function denoted byg−1(·). Then ifD(p)−g−1(p) is concave,
there exists a NE. Furthermore, ifD(p) − g−1(p) is log-
concave, the NE is unique.

If the SPs are symmetric, i.e.,li(x) = l(x) ∀i ∈ N , then
the unique NE is also symmetric, i.e., all SPs will announce
the same price and serve the same number of customers in
each of their own licensed spectrum bands.

Proof: Here, we only prove the existence of a NE
by applying Kakutani’s fixed point theorem. SinceP (q) is
concave and strictly decreasing, we have thatP (0) < ∞ and
so there must exist some large enoughq̄ such thatP (q) = 0
for q ≥ q̄. Therefore, we can restrict our attention to this
convex and compact strategy space[0, P (0)].

Let Br(p−i) be the best response in price given the other
SPs prices. Letpf be the equalized delivered price in the
market, and letA be the set of SPs which are active in

their licensed spectrum in equilibrium. Thus,Br(p−i) is the
value ofpi given by the solution to the following optimization
problem:

max
pi∈[0,p̄],

x>0,Xw≥0

pixi

s.t. pf = pk + lk(xk) ∀k ∈ A (12)

pf = g(Xw) (13)
∑

k∈A

xk + Xw = D(pf )

whereD(·) is the concave decreasing demand function. By
Berge’s maximum theorem, the best response correspondence
Br is non-empty and upper-hemicontinuous. Therefore, to
complete the proof, we only need to showBr is convex, i.e.,
Br(p−i) is a convex set for allp−i.

Given SPj’s pricepj , let xj(pf ) be the unique solution to
(12). Sincelj(·) is assumed to be linear increasing,xj(pf )
must by a linear nondecreasing function ofpf . On the other
hand, we haveXw = g−1(pf ) by (13). SinceD(pf ) is the
total customer mass in the market, we havexi(pf ), wherexi

as a function ofpf that must satisfy

xi(pf ) = D(pf ) − g−1(pf ) −
∑

j 6=i

xj(pf ).

D(p) is strictly decreasing and only positive on the interval
[0, P (0)], thus we only focus on this region. SinceD(·) −
g−1(·) is decreasing and assumed to be concave,xi(pf ) is a
concave inpf on [0, P (0)]. Thus,xi(pf ) must have a concave
decreasing inverse functionδ(xi) over the domain[0, D(0)],
whereD(0) is the total number of customers in the market.
Then by (12), the profit of SPi can be written as the following
function of xi:

πi(xi) = pixi = pfxi − xili(xi) = δi(xi)xi − xili(xi).

Therefore, it can be seen thati’s profit πi is concave decreasing
in xi. Thus the set of maximizersxi of πi must be convex.
Furthermore, sincepi = δi(xi) − li(xi) implies the mapping
betweenpi andxi is continuous. Hence, the set of maximizers
in price, i.e.,Br(p−i) must be a convex set.

Therefore, the existence of NE follows by Kakutani’s fixed
point theorem.


