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Abstract—We consider game theoretic models of wireless Gaussian channels in [8]. For both models of power control
medium access control (MAC) in which each transmitter makes and random access, jamming games have been formulated for
individual decisions regarding their power level or transnission users withknownselfish or malicious types reflected in their

probability. This allows for scalable distributed operation; how- L . . . .
ever, it can also enable users to pursue malicious objectigesuch utilities [9]-[11]. The possible misbehavior of transraits

as jamming other nodes to deny them service. We study games has been studied in [12]-[13] for intrusion detection and in
with two types of players: selfish and malicious transmittes.  [14] for packet forwarding without MAC interactions.

Each type is characterized by a utility function depending @ In this paper, we strip off all the complexities introduced
throughput reward and energy cost. Furthermore, we focus on by multihop operation and analyze the fundamental interac-

the setting where the transmitters have incomplete informéon - . . .
regarding other transmitters’ types, modeled as probabilstic tions of selfish and malicious nodes at the MAC layer. This

beliefs. We first analyze a power-controlled MAC game in Problem has been studied in [9]-[10] under power control
which the nodes select powers for continuous transmissions and random access for the cas&obdwntypes of selfish and

and then extend this to a random access MAC in which nodes malicious nodes (with known utility functions). Howevenet
choose transmission probabilities. For each case, the Bagjan Nash equilibriumstrategies strongly depend on the (selfish

Nash equilibrium strategies are derived for different degees lici ¢ | fi lici des doul
of uncertainty, and the resulting equilibrium throughput of or malicious) user types. In practice, malicious nodes @ou

selfish nodes is characterized. We identify conditions in wibh  likely conceal their intent, i.e., nodes would hamweomplete
the throughput improves with increasing type uncertainty and  information regarding the types of other nodes. Here, we
introduce Bayesian learning mechanisms to update the type study the effects of such incomplete information.
beliefs in repeated games. For unknown types and costs, we oy goal is to develop a framework fdenial of service at-
also specify the equilibrium cut-off thresholds for monotmic - . .
transmission decisions. The analysis provides insights o the tacksas_dynamlc non-cooperative gamasiong se-lf|-sh nodes
optimal defense mechanisms against denial of service attex ~ transmitting to a common receiver and malicious nodes
at the MAC layer in wireless networks. jamming their transmissions. Although our primary focus is
Index Terms—Bayesian games; distributed operation; in- on the case ofwo transmitters, we also extend the analysis
complete information; malicious users; MAC; power control, 4 anarbitrary number of selfish and malicious transmitters.
random access; security; selfish users. . .

The node types are possibly hidden and represented by
probabilistic beliefsat individual nodes. The performance ob-
jectives incorporatei) throughputrewards (based on Signal-

In wireless networks, centralized access control does NQY-Interference-plus-Noise-Ratio (SINR) for power cohtr
scale with the number of nodes. A promising alternativgr success probability for random access), tffansmission
is distributed control in which nodes independently Se|eCTenergycosts, andiij) maliciousjamminginterests.
their transmission strategies to optimize individual perf Malicious nodes do not have any incentive of jamming
mance objectives. Such systems are naturally modeled @gch other’s transmissions and they become less aggressive
non-cooperative games, e.g., [1]-[3] consigewer control in their attack decisions, if they are uncertain about wéeth
games and [4]-[6] consideandom accesgames for single- the opponent nodes are selfish. This suggeddsstibuted
receiver access control. We consider models for both o"ethegecurity paradigm that allows random malicious node be-
situations as well. havior (without external detection) and relies on indiatiu

Non-cooperative nodes may pursue not osgffishbut nodes to hide their types as an inher@efensenechanism to
alsomaliciousobijectives such as interfering with the paCke"mitigate the malicious operation. We evaluate Beyesian
transmissions of other nodes. In this context, the channglsh equilibriumstrategies and present the conditions in
jamming effects of malicious transmitters have been evalyyhich thetype uncertaintynay be beneficial for selfish nodes
ated in terms of the worst-case throughput performance f@s improve their throughput properties.
ALOHA systems in [7] and have been incorporated into a For random access, we also derive the equilibrium set of
zero-sum game of balancing the mutual information ovehresholds for themonotonictransmission decisions under
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approach to intrusion detection is based on externally d#éat without energy costs, a game between one malicious

tecting malicious behavior, e.g., by hypothesis testitheé node and one selfish node will be a zero-sum game of

transmission strategies of selfish and malicious nodes atgoughput balancingHowever, we end up with a non-zero-

fixed and known [16]. Instead, we introduce a distributedum game for the case of non-zero energy costs.

solution to thenetwork securityproblem at the MAC layerin ~ Let ¢, denote the probabilistic belief of nodethat the

which nodes learn each other’s types accordingBagesian other nodej # i is selfish. The parametets, o2, h;, E;

learning mechanism and play thbest-responsestrategies and ¢;, ¢ = 1,2, are known to all nodes. This models the

against their type beliefs that evolve dynamically overetim case when the system is monitored and nodes are notified
The paper is organized as follows. Section Il introducewith the long-term statistics of attack possibilities. Wél w

the game model for power-controlled MAC with two usersconsider the effects of uncertainty on type belief disthiims

The interactions of possibly selfish or malicious users arand energy costs in Sections V and VII.

presented in Sections Ill and IV for two different SINR-base

throughput reward functions. This is followed in Section V

by the analysis of Bayesian learning mechanisms for selfis

and malicious user types with unknown belief distributions We next present results for two transmitters with reward

We outline the generalization to an arbitrary number of sisefunction f;(y;) = ~;, under different assumptions on the type

in Section VI. The game model is extended in Section Viuncertainty. In general, the Nash equilibrium strategitfs

to consider probabilistic transmission decisions for mand for any node: satisfy

access. Finally, we draw conclusions and present thoughts . s ,

for future work in Section VIII. wi(P, P2y 2 wilPy, P2y), i=1,2, ®)

IIl. I NTERACTIONS OFSELFISH AND MALICIOUS
h TRANSMITTERS FORREWARD FUNCTION f;(7i) = v

for any strategyP;, i = 1,2, where P_; is the strategy
of the node(s) other than node such that no node can

Consider aone-stage gameetweentwo transmitters of hjjaterally improve its individual performance beyone th
two possible gelfishor malicioug types. DefineP; > 0 and  N5gh equilibrium.

E; > 0 as the transmission power and the corresponding

energy cost (per unit power) of node= 1, 2, respectively. A. Known Types of Two Transmitters

Assume a synchronous slotted system, in which each packetrheorem 1:For two selfish transmitterghe unique Nash
transmission takes one time slot. Each nodel, 2 indepen-  gqyilibrium strategies afe

dently chooses the powd?; for transmitting to a common

II. TWO-USERPOWER-CONTROLLED MAC GAME

receiver in order to maximize the individual expected wtili  p, — L (ﬂ — 02), j#i, if hy >0’E;, i=1,2, (6)
u;(P1, Py). The SINR value achievable by selfish noiis hi \ E;
WP P,=0, if hy <c’E;, i=1,2, (7)
= il , 1 o ) . ) 27 ) 20 .

v %Zj;eih,jpj‘f'UQ @) Py =0, P — oo, if hy <o“E;, hj >0°E;, j#1i. (8)
whereh; is the channel gain for node L is the processing Proof: The individual optimization problem for any
gain ando? is the channel noise. The (throughput) rewardransmitteri = 1,2 is given by
for a selfish nodé is f;(v;), which is an increasing function max ui(Py, P_;), for P_; >0 )
of the SINR valuey;. We considertwo different reward p>o UM e

functionsfor selfish nodes: For each user, define the Lagrangian

fitvi) = v, fi(vi) = log(1 + i), (2 Li(P1, Py) = wi(P1, Po) + NPy, i=1,2, (10)
namely, the SINR valuey; and the Shannon rate from

> ) where\; > 0 is a Lagrange multiplier corresponding to the
transmitteri to the receiver for the SINR valug.

_ i _ inequality constraint in (9). The Karush-Kuhn-Tucker (KKT
Any selfish node i also incurs the energy cost;P;

. . ' conditions for the optimal solutions of (9) are given by
proportional to powelP; and maximizes the expected utility

OL;(Py, Py) )

Any maliciousnodei = 1,2 incurs as cost the throughput  These necessary conditions are also sufficient for optimal-
rewardf;(v;) of selfish opponent # i as well as the energy ity, since the utilityu;(P;, P,) and inequality constrairn; >
cost E; P, and so maximizes the expected utility 0 are continuously differentiable and concave functionB,of

—f(v) — EP The equilibrium strategies (6)-(8) follow from applyingeth
- fiCu) — B, - KKT conditions (11) separately to each objective function
if the opponent nodg is selfish @) P y |
. —Ei B, . . 1We could also define the malicious utility by using a rewardction
if the opponent nodg is malicious K — f;(v;) to be maximized (for a constaitf). However, this would not
. . L. .. change the equilibrium strategies of selfish or malicioudeso
for J = L 2’_ J# b I.e., .mal|c:|ous nodes do n(_)t have any  2gimilar utility functions have been considered in [1]-[8} &elfish nodes
incentive of interfering with each other’s transmissioNete  with throughput and energy efficiency objectives.

ui(Py, P) =



uwi(P, P2), i = 1,2, with constraintP;, > 0, where the if hy g > 0?Es g, where[z]™ = max(z,0). Otherwise,
utilities w; (P, P»), i = 1,2, are given by (3). [ |
For a power-controlled MAC, the performance measure p _ ([ _ P1hi1t\ =2 EgmLhy L— 602 (18
of interest is the SINR value achievable by selfish nodes. ([ ! o? } ) ha ar (1=o)7  (18)
The SINR value achievable by selfish naide 1,2 in Nash o _
equilibrium is given by Py s =0 and P,y is given by (17) withP; from (18).
. 5 Proof: The equilibrium strategies (16)-(18) follow
L Elpz, if hj >0 Ej, C_ . i . . )
Vi hiP otherwis j=1,24+#4. (12) from applying the KKT conditions separately to the ob
ToZ 0 ¢ jective functions ug s(P1, Py s) of selfish node 2 and
Theorem 2:For selfishtransmitter 1 andnalicioustrans- ug.a7(Py, Py ar) of malicious node 2 with constraints, >
mitter 2, theunique Nash equilibriunstrategies are 0, P,.s > 0 and Py s > 0, where the utilitiesiz s andug, s
L Exhy L 2\ it h 9 13 are given by (3) and (4), respectively. Then, the equilioriu
" ho (B1)2 2= h_g(E_l I )’ if hy 2 0%E1, (13) strategy (15) follows from applying the KKT conditions (11)
PL=0, P,=0, if hy < 02E,. (14) to the expected objective functiomn, (P1,P2,s_, Pyy) =
o ) ¢1U1(P1,P275) + (1 — ¢1)u1(P1,P27A,1) of selfish node 1,
Proof: The equilibrium strategies (13)-(14) follow from \yhere the utilityu; is given by (3). m
applying the KKT conditions (11) separately to each objec- assumeh, s > 02E, g for the case of non-zero transmis-
tive function u;(Py, P,), i = 1,2, with constraintP, > 0,  sjon power of selfish node 2. Selfish node 1 can individually
where the ut|I|t|e5u1_(P1, Py) anduy(P1, P,) are given by  getect the type of node 2, unleBs s = Ps 5 in (16)-(17). If
(3) and (4), respectively. B node 1 detects the other node as malicious suchythat 0,

‘The equilibrium SINR of selfish node 1 is given by (12)ie nowerp,; is changed to (13), whereas the power of node
with P, from (13)-(14). The malicious attack of node 2, 5 siill given by (17).

is more successful in reducing the SINR of selfish node 1 ~J cider the case when node 2sisfish In Nash equi-

compared to the alternative selfish behavior of node 2 (und%rium P. is the same as in the case of two selfish nodes
the assumption oh; > o%E;, i = 1,2, for the non-zero !

. ) o o | Ba(hi\2 with known types (independent af;). So, selfish node 2
transmission powers), if and only #* > o + £2(%5)",  cannot learn, whether node 1 detects the type of node 2, or
i.e., if hy is small andF; is large. Otherwise, we observe thenot, and continues to operate with the same value 0&s

windfall of malice i.e., the malicious attack fails compared to,otore  The uncertainty of the opponent's type is beneficial
the selfish operation (as noted before for the separategobl ¢, <aifish node 2 (i.e., selfish node 2 can increase by

of routing [17]). If both transmitters are malicious, they d hiding its type compared to the case with the known types),
not receive any reward from interfering with each other anﬂ by (2w
E,

2
the Nash equilibrium strategies afg = 0 and P, = 0. M > (T P +07), where P, a follgws from (17),
The system parameters may not be perfectly known &€ if hy is Iarg(_a andF; is small. Otherwise, selfish node

may be random. Then, any jamming node randomly choosg'sShOUId reveal its type. .
to pursue either selfish or malicious objective functions. On the other hand, the uncertainty on the opponent's type
Therefore, each node would face an opponent of randoi beneficial for selfish node 1, #+ < (th'M Py + 02),
identity with the degree of uncertainty depending on thee., if h; is small andE; is large.

distributions of system parameters. Next, consider the case when node 2rialicious Then,

B. Selfish Transmitter 1 (Known Type) and Transmitter 2 '€ POWerF:, s does not depend op . The attack of node 2
Unknown Type is more successful (in reducing the SINR valyé by h|d_|ng

s type (compared to the case of known types of selfish node

[
Assume now that selfish node 1 believes that node% - . gwf hi\2 _ has
is selfish with probability¢; (known to node 2). Define and malicious node 2), if and only 2,M (E_1) Z s

Py and Py ;s as the powerEs s and Es ; as the energy o? (i.e., if hy is large andE; is small). As a result, selfish and
cost. andh ’S andh as the channel éain for selfish angmMalicious nodes choose between revealing and concealing
malié:ious r2170de 2 rQégi)ectively their identities depending on the system parameters.
Theorem 3:For selfish transmitter 1 and transmitter 2 of 1he equilibrium SINR value achievable by selfish nodes is
unknown type, théBayesian Nash equilibriurstrategies for depicted in Figure 1 as function of the type belief proba&pili

1

¢ € (0,1) are ¢1, where the expected SINR of selfish node 1 is averaged
L h over the type of node 2 under the assumption that the type
P = = (2_5 _ 02), (15) Dbelief distribution¢g, is equal to the true distributios that
hi \Ez,s node 2 is selfish. In Figure 2, we illustrate the case when the
L hi1 ) * type belief distributionp; deviates from the true distribution
Ps = has (1—p)hs —o°| ,(16) ¢. Note that assuming the true distributignfor the type
' (El o %) belief »; does not necessarily optimize the equilibrium SINR
’2 + value~; of selfish node 1, i.e., the uncertainty on type belief
Poy = / - LhEEPI _ }f" ] 7 (17) distributions may possibly improve the equilibrium SINR
2, M L2 M 2, M




Proof: The equilibrium strategies (20)-(21) follow

T Expected SINR 71 of selfish node 1 from applying the KKT conditions (11) separately to the
||~ SINR 4, of selfish node 1 with selfish opponent 2 objective functionsus s(Pi, P> 5) of selfish node 2 and
1'751\\ ——SINR 7, of selfish node 1 with malicious opponent 2|] U2, M (P17 PQ,M) of malicious node 2, with constrainfg >
E | | —=—SINR 73,5 of selfish node 2 0, P,s > 0 and P > 0, whereuy g and ug 5 are
g 1.5—§ ] given by (3) and (4), respectively. The equilibrium strat-
§ egy (19) follows from applying the KKT conditions (11)
@ 1 05/ , to the expected objective functiom (Pi, Pos, Povi) =
g (blul(Pl,Pg,s) + (1 — ¢1)U1 (Pl,PQ,]\,j) of malicious node 1
:..Qz 1+ e | with ul(Pl, P27]\,[) =0 and ul(Pl, ngs) from (4) |
% B S S S S After playing one stage of the game, malicious node 1
R el | would immediately learn the opponent’s type by observing
the interference power (through the SINR feedback), since
Pss # Py . FOrha g > 0%Fs g, the equilibrium SINR of
(... 1 selfish node 2 is given by
0.1 0.2. ) 9.3 .0.4 0.5 0.6 0.7 0.8 O.E? 1 Elhg SL 1
¢1: Probabilistic belief of selfish node 1 that node 2 is selfish V2,8 (22)

Es shi ¢1’
Fig. 1. The equilibrium SINR values of selfish nodes as fumcof type ~ which increases, as; decreases, i.e., a malicious attack
belief probability ¢, for h; = 1, B; =1,i=1,2, L=1ando® =0.1.  pecomes less successful (in reducing the equilibrium SINR
~2,s Of the possibly selfish node 2), as the uncertainty on the
opponent’s type increases. Therefore, node 2 should tgde it
type to increasey, g, if it is selfish.

D. Transmitters 1 and 2 of Unknown Types

Nodes 1 and 2 havanknownselfish or malicious types.
For each selfish and malicious node, defilg and E,
as the energy costys and hj; as the channel gainpg
and ¢,; as the probabilistic belief that the opponent is

Equilibrium SINR value 7; of selfish node 1

=0 selfish. These parameters are known to both nodes. In this
- paper, symmetric strategies are considered for identadés
——¢=0.25 : X o
s 8 with common type belief distributions, costs and system
*qf =05 parameters. Then, each node assumes that all nodes of the
=075 same type choose the same transmission strategy. Diéfine
—¢=1 and P, as the transmission power of selfish and malicious
6= o node, respectively.
%01 0z 03 o2 o5 06 07 o8 o8 1 Theorem 5:For ¢s € (0,1) and ¢py € (0,1), the

#1: Probabilistic belief of selfish node 1 that node 2 is selfish ~symmetricBayesian Nash equilibriurstrategiesPs and Py,
of selfish and malicious transmitters are

Ps = [P§]+7 (23)
Py = = [\/— ¢MhShM 02}““’ (24)
M

Em
where?; is the solutlon to

Fig. 2. The equilibrium SINR value of selfish node 1 as functis type
belief probability ¢, for different values of true distributios that node 2
is selfish and foh; =1, E; =1,i=1,2, L=1 ando? = 0.1.

C. Malicious Transmitter 1 (Known Type) and TransmittetrESpecuvely'
2 of Unknown Type dshgo? (1 - ¢s)VhsLEy
Now assume that malicious node 1 believes that node 2is (%2 P + 02) VPsvVomhy

selfish with probabilityp,; (known to node 2). ] - ) .
Theorem 4:For ¢, € (0,1), the Bayesian Nash equilib- Proof: Define u; ; as the utility of selfish node = S

— Bs.  (25)

rium strategies are or malicious nodei = M with a selfish opponenf = S
or malicious opponenj = M. The equilibrium strategies
P = £(h2,5 _02) (19) (23)-(25) follow from applying the KKT conditions (11)

hi\Es s ’ separately to the objective functions = ¢sus s(Ps, Ps)+

P L Eihys 1 20 (1 — ¢g) us m(Ps, Pyr) of each selfish node andy, =
257 (Ba.5)2 ¢1 (20) énr un,s(Ps, Pay) + (1 — éar) une, v (Par, Par) Of each
Poy = 0, (21) malicious node, with constraid®s > 0 and P, > 0, where
' the utilitiesug s andug, ys are given by (3), and the utilities

if ho s > 0?Ey g. Otherwise,P; =0, Po s =0, Popy =0.  up,s anduys s are given by (4). ]




Consider a selfish node with a malicious opponent. Th
equilibrium SINR of the selfish node is given by

{ VPsvhsLEy if Pg > LEy ot
Vs =

\/W ’ dachshar? (26)
§_2 s otherwise

which decreases withg for fixed ¢,,, with ¢, for fixed ¢
and withggs = ¢,;. The expected SINR valugs (averaged
over the distribution of the opponent’s type) decreaseh wil
os = ¢, as shown in Figure 3, under the assumptiol
that the type belief distributions are both equal to the tru
distribution ¢ that any given node is selfish. In Figure 4,
we evaluate the effect of the mismatch between the tyy
belief distributiongs = ¢, and true distributionj on the
equilibrium SINR~g of any selfish node. The results show
that assuming type beliefs other than the true distributio

may possibly improve the equilibrium SINR valyg. 81 oz Pol?obalgl?lstlcofypc%ihofg (7;55 _ <Z>M 09 1

Equilibrium SINR ~vg of any selfish node

9 . . : : : . . . Fig. 4. The equilibrium SINRys of any selfish node as function of type
——SINR g as function of ¢g = s belief probabilities for different values of true distriimn ¢ that a node is
8 . SINR g as function of ¢ for ér = 0.5 seffish and forh; = 1, E; =1,i=1,2, L = 1 ando? = 0.1.

——SINR ~g as function of ¢, for ¢s = 0.5

] if bk — 2 >0 (L—1),i=1,2,

JF
Pzzoa sz[___} ) 37&27 (28)
if 2L — J<0(L 1)a d“ B> oA L-1),j#1.

7 selfish nodes. The equilibrium SINR of a selfish nade

Equilibrium SINR ~g of any selfish node

1 L2—1)h; P; i hil
T h;iL ( hy )2 ) If E; - E_J Z (L - 1)3
3 e vi=19 o m oLl (29)
1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 hiP; i
Probabilistic type beliefs a2 otherwise

Theorem 7:For selfishtransmitter 1 andnalicioustrans-

Fig. 3. The equilibrium SINRys of any selfish node as function of type mitter 2, theuniqueNash equilibrium strategies are
belief probabilities forh; =1, E; = 1,4 =1,2, L =1 ando? = 0.1.
LFEshq

. . . . P = 30
Hence, the type uncertainty is beneficial for the selfish ! El(Eth + LEshy)’ (30)
node and it should hide its type to increasg whereas the P — L 1 P 9 31
success of any malicious attack increases withand ¢,;. 2T ( ! (E_l N 1) - )’ (31)
IV. INTERACTIONS OFSELFISH AND MALICIOUS if ¢Es + 5 hLi;thé — <1 Otherwise,
TRANSMITTERS FORREWARD FUNCTION th2 2
Ji(vi) = log(1 + ) 1 021"

. . . P=|——-—| , Pb=0. (32)

The analysis for reward functiofi (v;) = log(1 + ;) is E,

similar to the previous analys_,|§ f_or reward fl.mCt.'"ﬁ‘mi) — The equilibrium SINR of selfish node 1 is
~;. Here, we outline the equilibrium strategies in Theorems

6-10. The proofs of Theorems 6-10 follow from the same { LEsh if UZEl 4 LBk

arguments as in Theorems 1-5, where the reward function = hy 1}+7 otﬁlehri/ijiggzm =h (33)
fi(vi) = i is replaced byf;(vy;) = log(1 + ;).
A. Known Types of Two Transmitters

Theorem 6:For two selfish transmitterghe uniqueNash
equilibrium strategies are

hiL _ hj
E; Ej

the SINR valuey; given in (33) is smaller than the SINR
value ~; given in (29) fori = 1. This condition strongly
—o%(L—1) depends on the underlying system parameters.

The same utility function has been considered in [3] for

The malicious attack of node 2 is more successful in
reducing~; compared to the alternative selfish behavior, if

P = , JF G i=1,2, (27) For two malicious nodes, the Nash equilibrium strategies

hi (L — f) are given byP; =0 and P, = 0.



B. Selfish Transmitter 1 (Known Type) and Transmitter 2 of For hg = hyy = 1, Es = Epy = 1, L = 1 ando? = 0,

Unknown Type the equilibrium transmission powers from (41)-(43) aresgiv
Theorem 8:For ¢; € (0, 1), the Bayesian Nash equilib- by Ps % and Py % for selfish and
rium strategies are maI|C|ous nodes, respecuvely If the opponent is malisjou

. . - the equilibrium SINR value of selfish node is givenhy =
Pr=[Pf]", Pys=[Pygl", Pom=I[Pypyl", (34) %, which decreases with botby and¢yy, i.e., any selfish
where Py, P; 4 and P} ,, are solutions to ttode prefers type uncertainty and should hide its type to
' ' increase the SINR valugs.

hy P 9 has

T +hysPyg+o” = By (35) V. BAYESIAN LEARNING OF SELFISH AND MALICIOUS
ho s P by s P ’ USERTYPES INPOWER-CONTROLLED MAC
% = Lo M(% +02) Next, we deviate from the previous focus of fixed and
hoai P o , known type belief distributions and extend the analysis to
X (T +hPf+o ), (36) the dynamic situation in which nodes learn each other’sgype
ha.s P} o ) based on the outcomes of the power-controlled MAC game
$1ha (7 to ) at each time slot. Consider the reward functitins) = s
ha st S 4 by Pro? for unknown types of two transmitters.
R For simplicity, assuméis = hy; = 1, Es = Ey = 1,
(1- ¢1)h1(w +0 ) L =1 ando? = 0. Selfish and malicious nodes play the
+ = E (37)  Nash equilibrium strategie®s(¢s, rr) = 1225 and

h2JWP2*,1W * 2 on
— L ThPi+o Pu(ds,éar) = 1 — ¢ from (23)-(25). Selfish and mali-

In Nash equilibrium, the type uncertainty is better forcious nodes updatés and ¢,;, respectively, based on the
selfish node 1 (i.e., selfish node hides its type},iis small opponent’s power (which can be observed through the SINR
andE; is large, or it is better for malicious node 2, otherwisefeedback sent from the receiver back to the transmitters).

Nodes assume that the belief of the opponent with the

opposite type isuniformly distributed over[0, 1], whereas
nodes of the same type have the same belief distribution and
Theorem 9:For ¢1 € (0,1), the Bayesian Nash equilib- ypdate their beliefs accordir;ti to the same rule. Defjd

C. Malicious Transmitter 1 (Known Type) and Transmitter
2 of Unknown Type

rium strategies”; > 0, P, s > 0 and %y > 0 are as the opponent's power and’”’ as the value ofs at the
hs s 1+ kth iteration.Selfishandmaliciousnodes update their beliefs
Poo= n Ez’s —hesPas—o”| . (38) 4 and gy, respectively, on the opponent's type according
' Eyhy oL to the Bayes’ rule:
Pys = : , (39
>8 Es s(LE1hg,s + ¢1E2 gh1) (39) (b(kﬂ) B gb(sk) a(sk) (Pék)) (44)
P = 0. 40 S - )
2M (40) 08 ag’ (PV) + (1 - o) b (PY)
As ¢, decreasesP; decreases anfk s increases from the (k41) _ (k) ag\]})(Po(k))
equilibrium strategies (38)-(39). Consequently, the Bowi ~ ?ar ~ = 5 @ piF )) (1) 5P (F)’ (45)
rium SINR ¢ of selfish node 2 increases, as decreases, M On MM AT
i.e., the type uncertainty is beneficial for the selfish nofle Q/vherea(k)( My = P(P{M| the opponent of nodeis selfish
unknown type. andb! (P(k)) P(P¥| the opponent of nodeis malicious
D. Transmitters 1 and 2 of Unknown Types for i € {5, M} can be computed as
. k k
Theorem 10.Fer os € (O,t? atnd OMm € (0,1), the a(k)(P(k)) _Jo P < <(1- ¢(S)) ’ (45)
symmetricBayesian Nash equilibriurstrategies are s \Wo 1. P > (1 ¢(Sk))
PS = [P§]+a PM = [PIT[]-’_? (41) (k) (k) (k) (k)\ _ 07 Po(k) > 1,
. b  (Po™) = by (Po) = (k) (47)
where P§ and Py, are solutions to L, P <1,
P LEy m——
, (42) k) p(k)y _ 3(p™)”’ ’
(hZ\IPM+ )(hMPM +hSP*+02) ¢Mh h Qpr (PO )— ( 1 ) P()<1 (48)
3v/ P’
pshso? , ’ .
hsPg 5\ [ hsPg . o A selfish node eventually detects the type of the selfish
( O )( = +hsPso ) opponent with poweP ), wheneverP{" > 1 is observed,
(1 —¢s)hs _ Bs. (43) or it detects the type of the malicious opponent, whenever
hMPM + hgP% + 02 s Po(k) gb(k )2 is observed. From (44)-(45), we have

qb(sk“) = (0) , until the type of the opponent is detected. The



number of iterations to detect the opponent as a selfish ofilities of selfish and malicious nodes are given by
malicious node is geometricrandom variable with success

probability (1 — ¢))2. us(Po,Pur) = 33 ns(nns) f (hsps)

On the other hand, a malicious node eventually detects the n=1 ny,=1 ¥ (ns)
type of selfish opponent, whenevak) > 1 is observed or —PgEyg, (49)
whenever the selfish node detects the type of malicious op- Nmax n—1 hs P
ponent at the previous iteration (and updated its trangomiss v (Ps, Py) = — Z Z nu(n,ns) ns f ( )
power accordingly). Then, the expected number of iteration n=1 nys=0 ¥(ns)
to detect the opponent as a selfish node can be computed as —PyEn, (50)

P+ 15 [ — (1— (1=p)?)], wherep = (1 - ¢¢")?,
and the average detection time grows vvj:tiq). - ) . .
However, a malicious node cannot detect the type cﬁ)hMPM) +o°. Any malicious node minimizes the sum of
a malicious opponent with probability one at a particulafhroughput rewards of alk, possibly selfish nodes subject
iteration, but the probabilityﬁg(}) asymptotically approaches to the additional objective of_m|n|m|2|_ng the energy (_:ost.
0 according to the Bayesian update mechanism (45), as thelh€orem 11:The symmetric Bayesian Nash equilibrium
number of time iterationg increases. Figure 5 shows theStrategiesPs and P, of selfish and malicious transmitters
updates of the malicious node’s type belief probabifitf) ~ a'€
averaged over the di.s'Frib(Lit)ion of the opp-onent’s poweEr . . Ps = [P]T, Py =[Py, (51)
Note that the probability,, converges with smaller rate, if

the malicious node selects a larger value for the initiaktyp

. . (0) . . - .
belief probabilitys;, that the opponent is selfish. <%(n — ne)har Pl + 02>7 52)

2= Y ston)

respectively, wherey(n) = %((ﬁ — 1)hgPs + (n —

where P}, and P} are solutions to

n=1 n,=1 Y(ns)(P(ns) + )
Nmax N—1

0 _o1 Y no(n — ng) P

e O — _ 53
- Mool T 2 2 )<w<ns><w<ns> 1) &9

—— ¢y =0.25] | s
o8 +¢?g> — 05 for perfect information of type beliefs, where)(n) =
o i(b?g) o] %((ﬁ — DhsPs + (n — ﬁ)hMPj\}) + 02, ¢ = 0 for
o - Z’I) 1 f(vs) =~s and( = hsPs for f(vs) = log(1l + vs).

ou =09 Proof: The equilibrium strategies (51)-(53) follow

I
3

——'%) = 0.99 from applying the KKT conditions (generalized to arbi-
trary number of nodes) separately to the objective funstion
i ug(Ps, Pyr) of selfish nodes andy, (Ps, Pys) of malicious
nodes, with constraint®®s > 0 and P,; > 0, where the
utilities ug anduy, are given by (49)-(50), respectivelym
8 The equilibrium SINR of any selfish node is given by

I
IS

o
w

¢>S\]}): Type belief probability of malicious node

e S vg = Zf . s. AssumeEshy = Earhs and L = 1. For both
o oA 1218141516 17 18 18 20 reward functionsf(ys) = ~vs and f(ys) = log(1 + vs),

the equilibrium value ofys for givenn decreases first with
Fig. 5. The type belief probabilityﬁgé}') of a malicious node with a .the Smal.l values Ohs’ then.reaCh.eS the mlmmum for the
malicious opponent forf (vs) — s, hs = har = 1, Es = Ear — 1, Intermediate values,, and finally increases with the large
L=1ando? = 0. values ofn,. There exists a critical value for the number
of malicious nodes beyond whichs increases again, i.e.,
a malicious attack is more successful, if it is accompanied
with the selfish behavior of other nodes. The total throughpu

reward n,ys increases monotonically with the number of
Let n andn, denote the total number of nodes and theelfish nodes:,, as shown in Figure 6.

number of selfish nodes, respectively, where< mnp.x

and nuax is the maximum possible number of nodes in V!l RANDOM ACCESSGAMES FORSELFISH AND

the system. Letjs(n,n,) and ny(n, n,) denote the joint MALICIOUS TRANSMITTERS OFUNKNOWN TYPES
probability mass function of. and n,, as believed by a  The results for power control game with incomplete type
selfish and malicious node, respectively. Consider commanformation generalize to other MAC models. Next, consider
parameters (known by all nodes), as defined in Section lll-Dandom accesgames, where nodes choose between trans-
and assume symmetric strategiBs or P,; depending on mitting and waiting. Assume a synchronous slotted system
whether the node is selfish or malicious. For the commowith collision channelsuch that more than one simultaneous
reward functionf;(y) = f(y) of any selfish node, the transmission fails. The primary focus is again on the case

V1. POWER-CONTROLLED MAC GAME FOR ARBITRARY
NUMBER OF SELFISH AND MALICIOUS TRANSMITTERS



by transmitting, if¢y; > Ey. However,us(ps, 1) is not

L3 — maximized byps = 1 (therefore the strategy pajrs = 1
1.2 —n=>5 | . N
g e =10 and py; = 1 does not yield a Nash equilibrium), whereas
:'él'l’ ‘T —n=20]] us(ps,0) is maximized byps = 1, if 1 — ¢5 > Eg such
= 1 “‘ that the Nash equilibrium strategy (56) follows.
& 0.9F / The utility of a selfish node:s(ps, par) is maximized by
o8 *“ waiting, i.e.,ps = 0, if (1—¢s5)(1—pur) < Es. Givenpg =
330.77 / / 0, the utility of a malicious node ,; (ps, pas) is maximized
< 0.6t / by waiting only, i.e.,pys = 0. However,us(ps,0) cannot
; 055 ’ be maximized bys = 0, and therefore the strategy = 0
Z 04 does not yield a Nash equilibrium.
@ 03l (b) Givenpy, = 0, the utility of a selfish nodes(ps, par)
8 is maximized by transmitting, i.eps = 1, if 1 — Fg —
02
= 0'12/6%*% J%/%/k/w”/ ¢s > 0. This corresponds to Nash equilibrium strategy (56).
' H+~jﬁfjﬁ"f’f”w The strategyps = 1 cannot yield Nash equilibrium, since
it violates the condition®s < 1. The utility us(ps,pa) iS

01 2 3456 7 8 91011121314151617 1819 20

ng: Number of selfish nodes

Fig. 6.
function ofns for Eghy; = Epfhg and L = 1.

The total SINRnsys of selfish nodes in Nash equilibrium as

indifferent to pg, if ps = 1;55. Given pg = 1;55, the

utility of a malicious nodeus(ps,par) is maximized by
waiting, i.e.,pys = 0, if Eyods > op(1 — Eg) such that
the Nash equilibrium strategy (57) follows. Fps = 1;55,

py = 1 cannot yield any Nash equilibrium, sineg (ps, 1)

of two transmitters. Definep; € [0,1] as transmission IS maximized only byps = 0 provided thatEs > ¢s and

probability andE; € (0,1) as energy cost (per transmission)uM(Ova) cannot be maX|m|_zed by = 1. _ _
of nodei = 1,2. Any selfishnodei receives unithroughput ~ (€) Consider mixed strategies such that selfish and mali-
reward for successful transmission. The expected utiity ¢i0US nodes are indifferent tos and pys, respectively, to
selfish node is given by maximizeug and uys. Fromugs(1, pas) = us(0,par) and
up(ps, 1) = up(ps,0), we obtain the equilibrium strategy
ui(pr,p2) = pi [-Ei +1—p;] + (1 (58) subject to) < ps < 1 and0 < py; < 1. n

If the type belief distributiong)s = ¢, are equal to the

for i = 1,2. Any maliciousnodei incurs a unit cost, if the
opponent is selfiskand successfully transmits at the given
time slot. The expected utility of malicious nodes given

by
; ﬁl (B + (1 _Ig) ['_pj]’lf' h
_ B if the opponent nodg is selfis
ui(p1p2) = pi —Ei] + (1—p) [0],

if the opponent nodg is malicious

forj #£4,i=1,2.

Theorem 12:The symmetricBayesian Nash equilibrium

true probability that a node is selfish, the resulting thirqug
rates are\s = 1 — ¢, Ag = w and\s = Ey(1+
%) for the strategies (56)-(58), respectively.

Consider a selfish node with malicious opponent. The

throughput rates ares = 1, A\g = 1;‘;35 and \s =
b5 _
By (BstBugy —9s for the strategies (56)-(58), respec-

[ 1-¢s
tively. If the types are known, the equilibrium strategies a

ps = Ey andpy, = 1 — Eg with throughputh\s = Ej; Es.
Then, the strategy (56) achieves higher throughput. Itiebe
ficial for the selfish node to hide its type such that the sipate

strategiesps and p,; of selfish and malicious transmitters (57) is more throughput-efficient, iis(1 + Eaés) < 1,

, PM = 07

are
ps=1,pm =0, if 5 <1—FEg, op < Epnr,
1— Eg
ps = —(—
¢s

if ¢s >1— Es, Exgs > ¢m(l — Es),

which holds for small energy costs, and the strategy (58)
is more throughput-efficient, i?s(1 — ¢ (1 — ¢g)) >
$s(1 — L2y which holds for large energy costs.

Selfish ‘and malicious nodes can further chogseand
¢, respectively, to maximize and minimize the throughput

Ag of a selfish node. The resulting equilibrium probabilities

_ _ s
D = EM’ D = 1= Bs — BEvgy ’ are¢;, =1 andol =0, if Eg+ Ey < 1, with throughput
o3s 1—¢s As = EsEpy, or ¢ = 2B if Eg + Ey > 1, with

. Ps throughputAs = FEjs. Hence, the equilibrium throughput
if < Es+ Ey— <1, > By s M- , q gnp
¢s s+ Eu bm bu M Ag can be improved, it’s + Fj; < 1, compared to the case

Proof: (a) The expected utility of a given selfish node©f known types with equilibrium throughputs = EsEx.®

_US(pSa pM) =ps(—FEs +_¢_S(1 - ps)+(1 - ¢s)(1—pr)) 3The receiver can identify the type of any node (i.e., whethemreceived
is maximized by transmitting, i.eps = 1, if (1 — gbs)(l — packet carries real data or constitutes to a jamming sigifiat)is the only

PM) > Fg. Givenps =1, the expected utility of a malicious one transmitti_ng at the given time slot. Then, we can comsziadMarkov

d - E . gameformulation such that the strategy of a node depends on s and
no eUM(ﬁSE)pM) : pM_(_ M) + % _.fp(;\f)(_@%ps) IS the state of the game that is updated, whenever the type ohadg is
maximize y waitling, L.e.pypy = 0, | < M, Or

(58)

detected by the receiver.



A. Unknown Type Belief Distributions and Energy Costs B. Arbitrary Number of Selfish and Malicious Users

Assume that nodédoes not know the exact values of type Consider the probabilistic belief distributions;(n,n)
belief probability ¢, and energy cost; of the opponent andnas(n,ns) of selfish and malicious nodes to represent
node j, but knows their distributions. The uncertainties orthe total number of nodes and the number of selfish nodes
node types and energy costs @mtly formulated as proba- n, (as defined in Section VI for power control). Assume
bilistic beliefs. Defineu; as the subjective belief (namely a symmetricgame model with transmission probabilipy
the probability distribution) of node = 1,2 about the and p,, for any selfish and malicious node, respectively.
parametersp; and £; of the opponenyi # i. Consider the Any malicious node wishes to minimize the sum of selfish
symmetric game model such that any selfish node has beltefoughput rewards and incurs a unit cost for each suc-

s and any malicious node has beljef;. cessfully transmitting selfish node. The expected utilify o
Theorem 13:The Nash equilibriumstrategy of aselfish a selfish node is
or maliciousnode is to transmit, respectively, if and only if Nmax N
E us(ps,pm) = ns(n,ns)(ps [~ Es
s = 1 _ZS <05=1—pug(@n < 0y), or (59) 7; nszzjl (
E . . +(1=ps)™= "1 —par)™ ] +(1— 0 62
Op = ¢_]j\\/[4 < ojw _ /LM(GS < 95) (60) ( pS) ( pM) ] ( pS) [ ]) ( )

and the expected utility of a malicious node is
Proof: Each node assumes that the opponent node of

the same type would make the same decision to transmit or to
wait. Any selfish node transmits, ifs (1, pas) > us(0, par),
whereug is given by (54), i.e., ifEs < (1 — ¢s)(1 — par),

or waits, if Eg > (1— ¢s)(1— par). In the case of equality, +(1 — par)[—nsps(l —ps)™ (1 — PM)"_""‘_l])- (63)
the selfish node either transmits or waits. This leads to

monotonic transmission decision of selfish node such that ) . Ny
na (n, ng), the symmetridayesian Nash equilibriurstrate-

Nmax N—1

um(ps,pa) = D Y 77M(n7ns)(pM [—Ewm]

n=1 ns=0

Theorem 14:For perfect information of ns(n,ns) and

0s = £ < 0%, where s = 1 — py. Selfish node _ N _
—¢ s

does not know the transmission probabifity, of malicious 9'€3Ps andpar of selfish and malicious transmitters are

node but has subjective belief distribution fpjs,, if the ps = min([p*s]+’1)7 Par = min([p}‘w]*,l), (64)

transmission decision of any malicious node also satisﬁesh

* * H
the monotonicity property in terms of type belief and cost'€M€Ps andpg are solutions to

parameters. Tamax 1
Any malicious node transmits, ify; (ps, 1) > uas(ps, 0), Es=>_ > ns(nny)
wherew,, is given by (55), i.e., ifEy < énps, OF waits, . 751 ns=1 o
if Exy > éups. In the case of equality, the malicious x[(1 = nsps)(1 —ps)™ (1 —pm)" ™1, (65)
node either transmits or waits. This also leads to monotonic Nmax N1
transmission decisions of malicious node such that = En = Z Z N (n, ns) ns (n—ns)
Bu < g%, where#t, = ps. Malicious node does not n=1mn,=0
DM .. M - . ng—1 n—mg—1
know the transmission probabilitys of selfish node but has xps(l—ps)™ " (1 —pu)" " (66)

subjective belief distribution fopg, since the transmission Proof: The equilibrium strategiegs and py; from
deC|5|on_s of selfish node are also monotonic in terms %4)-(66) follow from applying the KKT conditions sepa-
type belief and_cost parameters. The threshold param_eters fately to the objective functionss(ps, par) of any selfish
Gf = 1= pjy with Py = ps (O < 03) andOy, = plg with e anduys(ps, par) of any malicious node with con-
P _:-MM(HS < 6%) such t_hat the mor?c_)to.mc transmissiongrzints 0 < ps < 1and0 < py < 1, whereus(ps, par)
decisions (59)-(60) follow in Nash equilibrium. anduy; (ps, pas) are given by (62)-(63), respectively. m

If the opponent's beliefs on type probabilitiess and  the throughput of any selfish node in Nash equilibrium
¢ar and costsEs and E) are independenand uniformly g civen by g — ps(1 = ps)™ (1 — par)"~". Figure 7

distributed over(0, 1] };Osr each selflsgﬂfnd maI|C|ou_s node’evaluatesks as function ofn, wheren, = 1, and shows that
thg paramete_rés = T-¢s andfy = P follow a uniform A\s decreases as the number of malicious nodes increases
ratio distribution (except for small values of energy codty and E); and

%7 0<o<1, total number of nodes).
PO;=0)=q 5= 021 ie{S M} (61) Assumepartial informationon the probabilistic belief of
0, otherwise the opponent on the values of and n,. Let n(i) and

From (59)-(60), there exisiniqueequilibrium thresholds n,(:) denote the total number of nodes and the number
0% = % andd;, = % A selfish node with malicious opponentof selfish nodes believed by any selfish node= S or
achieves equilibrium throughpwis = % which is greater by any malicious nodé = M. Let P;(n,n,) denote the
than the throughputs = % averaged over cost distributions probability distribution function that selfish or malici®u
for known types. Hence, the type uncertainty is beneficialode: € {S, M} believes to represent the belief of node

for selfish nodes to increase the equilibrium throughput j € {S, M}, j # i, on the values ofi andn.



terms of throughput rewards, transmission energy costs and

o
©

+E5 = EM —01 malicious attack incentives. The analysis showed undet wha
o7l g =Ey =025 conditions the type identities should be concealed or tedea
—Eg=Ey =05 to improve the individual performance as a selfish user or to
0.6" ——Eg = Epn =0.75 | reduce the system performance as a malicious user.
\ ——Eg=Ey =09 We also extended the results to incorporate different

o
4
T

degrees of uncertainty in type distributions and cost param
eters, and presented Bayesian learning mechanisms for the
type belief updates. The analysis provides new insights int
using the type uncertainty as an inherent defense mechanism

Equilibrium throughput A4
o
B

0.3-
against the denial of service attacks in wireless networks.
0.2 Future work should generalize the game model to multi-
hop wireless networks. This would extend the denial of
s service attack possibilities to the network layer operetio
OM,_HF_,_F; S S —— and require cross-layer design with the attack and defense
2 345 6 7 8 910111213 141516 17 18 19 20 mechanisms that have been established for the MAC layer.
n: Total number of nodes
REFERENCES
Fig. 7. The throughput\s achievable by one selfish node in Nash [1] H. Ji and C. Huang, “Non-cooperative Uplink Power Cohtm
equilibrium as function ofr for ng = 1. Cellular Radio SystemsWireless Networksvol. 4, no. 3, pp. 233-

240, Mar. 1998.

C. Saraydar, N. B. Mandayam, and D. J. Goodman, “Efficient
Power Control via Pricing in Wireless Data Network$EEE Trans.
Each node assumes that any other node of the same type commun, vol. 50, no. 2, pp. 291-303, Feb. 2002.

would make the same transmission decision. Any selfish3] T.Alpcan, T. Basar, R. Srikant, and E. Altman, “CDMA Upk Power

; ; _ ; Control as a Noncooperative Gam#ireless Networksvol. 8, no. 6,
node transmits (i.eps = 1), if us(1l,pap) > us(0,prr) op. 659-670, Nov. 2002,

in Eq. (62), i.e., if(1 — py)"' > Eg andn, = 1. On [4] A.B. MacKenzie and S. B. Wicker, “Game Theory and the Basif
the other hand, any malicious node transmits (pe.= 1), Self-Configuring, Adaptive Wireless Network$ZEE Commun. Mag.

; ; ; ; _ vol. 39, no. 11, pp. 126-131, Nov. 2001.
if uM(pS’ 1) =z uM(pS’O) in Eq. (63)’ €., Ifnsps(l 5] Y. Jin and G. Kesidis, “Equilibria of a Non-cooperativeaf@e for

ps)™ ' > E). Forincompleteinformation on node types, Heterogeneous Users of an Aloha NetworlEEE Communications
the transmission decisions in Nash equilibrium satisfy the[ Letters vol. 6, no. 7, pp. 282-284, July 2002.

; i e 6] J.-W Lee, M. Chiang, and R. A. Calderbank, “Utility-Omtal
following monOtonICIty pro_per'qes. . Random-Access Controlf[EEE Trans. Wireless Commuyvol. 6, no.
Any selfishnode transmits, if and only if 7, pp. 2741-2751, July 2007.
[7]1 J. Zander, “Jamming in Slotted ALOHA Multihop Packet Rad
n(S) < n*(S), ns(S) =1, (67) Networks,” IEEE Trans. Commun.yol. 39, no. 10, pp. 1525-1531,
Oct. 1991.
and anymaliciousnode transmits, if and only if [8] A.Kashyap, T. Basar, and R. Srikant, “Correlated Jangnin MIMO
Gaussian Fading Channeld$EEE Trans. Inf. Theoryvol. 50, no. 9,
ni (M) < ng(M) <nl,(M), (68) pp. 2119-2123, Sept. 2004.
’ ' [9] Y. E. Sagduyu and A. Ephremides, “SINR-Based MAC Games fo
provided that the non-negative cut-off threshojﬁ$s) and Selfish and Malicious UsersProc. Information Theory and Applica-

* ; _ ; _ tions WorkshopSan Diego, CA, Jan. 2007.
n* (M) are the largest solutions and the non-negative cuho] Y. E. Sagduyu and A. Ephremides, “A Game-Theoretic fasl

off thresholdny , (M) is the smallest solution to of Denial of Service Attacks in Wireless Random AccesBfoc.
. WiOpt07 Limassol, Cyprus, Apr. 2007.
(1 _ (pM)n (S)—1

Eg (69) [11] E. Altman, K. Avratchenkov, and A. Garnaev, “A Jammingr@e
- o) ’ in Wireless Networks with Transmission CostProc. Net-Coop
nz Z_(]V[) ©s (1 _ SOS)nS'i > EM, i=1,2, (70) AV|g_non, France,_J_une 2007. _
’ [12] Y. Liu, C. Comaniciu, and H. Man, “A Bayesian Game Appché&or
where Intrusion Detection in Wireless Ad Hoc Networkd$ltoc. GameNets
Pisa, Italy, Oct. 2006.
_ [13] S. Radosavac, A. A. Cardenas, J. S. Baras, and G. V. ldkidss,
ps = Z PM(”’ 1)’ (71) “Detecting IEEE 802.11 MAC Layer Misbehavior in Ad Hoc Net-
1<n<n*(S) works: Robust Strategies Against Individual and Colludkittackers,”
o Journal of Computer Securitywol. 15, no. 1, pp. 103-128, Jan. 2007.
YM = Z Z Ps(n,ns).  (72) [14] G. Theodorakopoulos and J. Baras, “Game Theoretic Nituglef
nio(M)<n  ni (M)<ns<n} ,(M) Malicious Users in Collaborative NetworksfEEE J. Sel. Areas
Commun. vol. 26, no. 7, pp. 1317-1327, Sept. 2008.
VIII. CONCLUSIONS [15] H. Inaltekin and S. B. Wicker, “Random Access GamesfiSieNodes
. . . with Incomplete Information,”Proc. IEEE MILCOM Orlando, FL,
We presented game-theoretic models to establish a security o 2907, P M
paradigm at the MAC layer of wireless networks. For selfisiii6] Mingyan Li, I. Koutsopoulos, and R. Poovendran, “Omindamming

and malicious users of unknown types, we considered differ- Attack and Network Defense Policies in Wireless Sensor Weksy’
Proc. IEEE INFOCOM Anchorage, AK, May 2007.

ent MAC models based on power control and random acCesss) M. Babaiof, R. Kleinberg, and C. H. Papadimitriou, “Ggestion

and derived the Nash equilibrium strategies depending@en th ~ Games with Malicious PlayersProc. ACM Conf. Electronic Com-

degree of type uncertainty. The performance is measured in Merce San Diego, CA, June 2007.

2

—

Y



