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Abstract— We consider game theoretic models of wireless
medium access control (MAC) in which each transmitter makes
individual decisions regarding their power level or transmission
probability. This allows for scalable distributed operation; how-
ever, it can also enable users to pursue malicious objectives such
as jamming other nodes to deny them service. We study games
with two types of players: selfish and malicious transmitters.
Each type is characterized by a utility function depending on
throughput reward and energy cost. Furthermore, we focus on
the setting where the transmitters have incomplete information
regarding other transmitters’ types, modeled as probabilistic
beliefs. We first analyze a power-controlled MAC game in
which the nodes select powers for continuous transmissions
and then extend this to a random access MAC in which nodes
choose transmission probabilities. For each case, the Bayesian
Nash equilibrium strategies are derived for different degrees
of uncertainty, and the resulting equilibrium throughput o f
selfish nodes is characterized. We identify conditions in which
the throughput improves with increasing type uncertainty and
introduce Bayesian learning mechanisms to update the type
beliefs in repeated games. For unknown types and costs, we
also specify the equilibrium cut-off thresholds for monotonic
transmission decisions. The analysis provides insights into the
optimal defense mechanisms against denial of service attacks
at the MAC layer in wireless networks.

Index Terms— Bayesian games; distributed operation; in-
complete information; malicious users; MAC; power control;
random access; security; selfish users.

I. I NTRODUCTION

In wireless networks, centralized access control does not
scale with the number of nodes. A promising alternative
is distributed control in which nodes independently select
their transmission strategies to optimize individual perfor-
mance objectives. Such systems are naturally modeled as
non-cooperative games, e.g., [1]-[3] considerpower control
games and [4]-[6] considerrandom accessgames for single-
receiver access control. We consider models for both of these
situations as well.

Non-cooperative nodes may pursue not onlyselfish but
alsomaliciousobjectives such as interfering with the packet
transmissions of other nodes. In this context, the channel
jamming effects of malicious transmitters have been evalu-
ated in terms of the worst-case throughput performance for
ALOHA systems in [7] and have been incorporated into a
zero-sum game of balancing the mutual information over
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Gaussian channels in [8]. For both models of power control
and random access, jamming games have been formulated for
users withknownselfish or malicious types reflected in their
utilities [9]-[11]. The possible misbehavior of transmitters
has been studied in [12]-[13] for intrusion detection and in
[14] for packet forwarding without MAC interactions.

In this paper, we strip off all the complexities introduced
by multihop operation and analyze the fundamental interac-
tions of selfish and malicious nodes at the MAC layer. This
problem has been studied in [9]-[10] under power control
and random access for the case ofknowntypes of selfish and
malicious nodes (with known utility functions). However, the
Nash equilibriumstrategies strongly depend on the (selfish
or malicious) user types. In practice, malicious nodes would
likely conceal their intent, i.e., nodes would haveincomplete
information regarding the types of other nodes. Here, we
study the effects of such incomplete information.

Our goal is to develop a framework fordenial of service at-
tacksasdynamic non-cooperative gamesamong selfish nodes
transmitting to a common receiver and malicious nodes
jamming their transmissions. Although our primary focus is
on the case oftwo transmitters, we also extend the analysis
to anarbitrary number of selfish and malicious transmitters.
The node types are possibly hidden and represented by
probabilistic beliefsat individual nodes. The performance ob-
jectives incorporate (i) throughputrewards (based on Signal-
to-Interference-plus-Noise-Ratio (SINR) for power control
or success probability for random access), (ii ) transmission
energycosts, and (iii ) maliciousjamminginterests.

Malicious nodes do not have any incentive of jamming
each other’s transmissions and they become less aggressive
in their attack decisions, if they are uncertain about whether
the opponent nodes are selfish. This suggests adistributed
security paradigm that allows random malicious node be-
havior (without external detection) and relies on individual
nodes to hide their types as an inherentdefensemechanism to
mitigate the malicious operation. We evaluate theBayesian
Nash equilibriumstrategies and present the conditions in
which thetype uncertaintymay be beneficial for selfish nodes
to improve their throughput properties.

For random access, we also derive the equilibrium set of
thresholds for themonotonictransmission decisions under
the incomplete information on types and cost parameters. A
similar problem has been considered in [15] for selfish nodes
with known types only. Instead, we formulate the uncertainty
of node types and (energy) costsjointly.

In addition to one-stage Bayesian games, we extended
the results to considerdynamic repeated games. The usual



approach to intrusion detection is based on externally de-
tecting malicious behavior, e.g., by hypothesis testing, if the
transmission strategies of selfish and malicious nodes are
fixed and known [16]. Instead, we introduce a distributed
solution to thenetwork securityproblem at the MAC layer in
which nodes learn each other’s types according to aBayesian
learning mechanism and play thebest-responsestrategies
against their type beliefs that evolve dynamically over time.

The paper is organized as follows. Section II introduces
the game model for power-controlled MAC with two users.
The interactions of possibly selfish or malicious users are
presented in Sections III and IV for two different SINR-based
throughput reward functions. This is followed in Section V
by the analysis of Bayesian learning mechanisms for selfish
and malicious user types with unknown belief distributions.
We outline the generalization to an arbitrary number of users
in Section VI. The game model is extended in Section VII
to consider probabilistic transmission decisions for random
access. Finally, we draw conclusions and present thoughts
for future work in Section VIII.

II. T WO-USERPOWER-CONTROLLED MAC GAME

Consider aone-stage gamebetweentwo transmitters of
two possible (selfishor malicious) types. DefinePi ≥ 0 and
Ei ≥ 0 as the transmission power and the corresponding
energy cost (per unit power) of nodei = 1, 2, respectively.
Assume a synchronous slotted system, in which each packet
transmission takes one time slot. Each nodei = 1, 2 indepen-
dently chooses the powerPi for transmitting to a common
receiver in order to maximize the individual expected utility
ui(P1, P2). The SINR value achievable by selfish nodei is

γi =
hiPi

1
L

∑

j 6=i hjPj + σ2
, (1)

wherehi is the channel gain for nodei, L is the processing
gain andσ2 is the channel noise. The (throughput) reward
for a selfish nodei is fi(γi), which is an increasing function
of the SINR valueγi. We considertwo different reward
functionsfor selfish nodes:

fi(γi) = γi, fi(γi) = log(1 + γi), (2)

namely, the SINR valueγi and the Shannon rate from
transmitteri to the receiver for the SINR valueγi.

Any selfish node i also incurs the energy costEiPi
proportional to powerPi and maximizes the expected utility

ui(P1, P2) = fi(γi) − EiPi. (3)

Any maliciousnodei = 1, 2 incurs as cost the throughput
rewardfj(γj) of selfish opponentj 6= i as well as the energy
costEiPi and so maximizes the expected utility

ui(P1, P2) =















−fj(γj) − EiPi,

if the opponent nodej is selfish,
−EiPi,

if the opponent nodej is malicious,

(4)

for j = 1, 2, j 6= i, i.e., malicious nodes do not have any
incentive of interfering with each other’s transmissions.Note

that without energy costs, a game between one malicious
node and one selfish node will be a zero-sum game of
throughput balancing.1 However, we end up with a non-zero-
sum game for the case of non-zero energy costs.

Let φi denote the probabilistic belief of nodei that the
other nodej 6= i is selfish. The parametersL, σ2, hi, Ei
and φi, i = 1, 2, are known to all nodes. This models the
case when the system is monitored and nodes are notified
with the long-term statistics of attack possibilities. We will
consider the effects of uncertainty on type belief distributions
and energy costs in Sections V and VII.

III. I NTERACTIONS OFSELFISH AND MALICIOUS

TRANSMITTERS FORREWARD FUNCTION fi(γi) = γi

We next present results for two transmitters with reward
functionfi(γi) = γi, under different assumptions on the type
uncertainty. In general, the Nash equilibrium strategiesP ∗

i

for any nodei satisfy

ui(P
∗
i , P

∗
−i) ≥ ui(Pi, P

∗
−i), i = 1, 2, (5)

for any strategyPi, i = 1, 2, whereP−i is the strategy
of the node(s) other than nodei, such that no node can
unilaterally improve its individual performance beyond the
Nash equilibrium.

A. Known Types of Two Transmitters

Theorem 1:For two selfish transmitters, theunique Nash
equilibrium strategies are2:

Pi =
L

hi

( hj

Ej
− σ2

)

, j 6= i, if hi ≥ σ2Ei, i = 1, 2, (6)

Pi = 0, if hi < σ2Ei, i = 1, 2, (7)

Pi = 0, Pj → ∞, if hi < σ2Ei, hj > σ2Ej , j 6= i. (8)

Proof: The individual optimization problem for any
transmitteri = 1, 2 is given by

max
Pi≥0

ui(Pi, P−i), for P−i ≥ 0. (9)

For each user, define the Lagrangian

Li(P1, P2) = ui(P1, P2) + λiPi, i = 1, 2, (10)

whereλi ≥ 0 is a Lagrange multiplier corresponding to the
inequality constraint in (9). The Karush-Kuhn-Tucker (KKT)
conditions for the optimal solutions of (9) are given by

∂Li(P1, P2)

∂Pi
= 0, Pi ≥ 0, λi ≥ 0, λiPi = 0, i = 1, 2. (11)

These necessary conditions are also sufficient for optimal-
ity, since the utilityui(P1, P2) and inequality constraintPi ≥
0 are continuously differentiable and concave functions ofPi.
The equilibrium strategies (6)-(8) follow from applying the
KKT conditions (11) separately to each objective function

1We could also define the malicious utility by using a reward function
K − fj(γj) to be maximized (for a constantK). However, this would not
change the equilibrium strategies of selfish or malicious nodes.

2Similar utility functions have been considered in [1]-[3] for selfish nodes
with throughput and energy efficiency objectives.



ui(P1, P2), i = 1, 2, with constraintPi ≥ 0, where the
utilities ui(P1, P2), i = 1, 2, are given by (3).

For a power-controlled MAC, the performance measure
of interest is the SINR value achievable by selfish nodes.
The SINR value achievable by selfish nodei = 1, 2 in Nash
equilibrium is given by

γi =

{

EiPi, if hj > σ2Ej ,
hiPi

σ2 , otherwise,
j = 1, 2, j 6= i. (12)

Theorem 2:For selfishtransmitter 1 andmalicioustrans-
mitter 2, theunique Nash equilibriumstrategies are

P1 =
L

h2

E2h1

(E1)2
, P2 =

L

h2

( h1

E1
− σ2

)

, if h1 ≥ σ2E1, (13)

P1 = 0, P2 = 0, if h1 < σ2E1. (14)

Proof: The equilibrium strategies (13)-(14) follow from
applying the KKT conditions (11) separately to each objec-
tive function ui(P1, P2), i = 1, 2, with constraintPi ≥ 0,
where the utilitiesu1(P1, P2) andu2(P1, P2) are given by
(3) and (4), respectively.

The equilibrium SINR of selfish node 1 is given by (12)
with P1 from (13)-(14). The malicious attack of node 2
is more successful in reducing the SINR of selfish node 1
compared to the alternative selfish behavior of node 2 (under
the assumption ofhi ≥ σ2Ei, i = 1, 2, for the non-zero
transmission powers), if and only ifh2

E2
> σ2 + E2

h2

(

h1

E1

)2
,

i.e., if h1 is small andE1 is large. Otherwise, we observe the
windfall of malice, i.e., the malicious attack fails compared to
the selfish operation (as noted before for the separate problem
of routing [17]). If both transmitters are malicious, they do
not receive any reward from interfering with each other and
the Nash equilibrium strategies areP1 = 0 andP2 = 0.

The system parameters may not be perfectly known or
may be random. Then, any jamming node randomly chooses
to pursue either selfish or malicious objective functions.
Therefore, each node would face an opponent of random
identity with the degree of uncertainty depending on the
distributions of system parameters.

B. Selfish Transmitter 1 (Known Type) and Transmitter 2 of
Unknown Type

Assume now that selfish node 1 believes that node 2
is selfish with probabilityφ1 (known to node 2). Define
P2,S andP2,M as the power,E2,S andE2,M as the energy
cost, andh2,S andh2,M as the channel gain for selfish and
malicious node 2, respectively.

Theorem 3:For selfish transmitter 1 and transmitter 2 of
unknown type, theBayesian Nash equilibriumstrategies for
φ1 ∈ (0, 1) are

P1 =
L

h1

( h2,S

E2,S
− σ2

)

, (15)

P2,S =
L

h2,S

[

h1φ1
(

E1 − (1−φ1)h1
h2,M

L
P2,M +σ2

) − σ2

]+

, (16)

P2,M =

[√

Lh1P1

h2,ME2,M
− Lσ2

h2,M

]+

, (17)

if h2,S ≥ σ2E2,S , where[x]+ = max(x, 0). Otherwise,

P1 =
([

E1 −
φ1h1

σ2

]+)−2 E2,MLh1

h2,M
(1 − φ1)

2, (18)

P2,S = 0 andP2,M is given by (17) withP1 from (18).
Proof: The equilibrium strategies (16)-(18) follow

from applying the KKT conditions separately to the ob-
jective functions u2,S(P1, P2,S) of selfish node 2 and
u2,M (P1, P2,M ) of malicious node 2 with constraintsP1 ≥
0, P2,S ≥ 0 andP2,M ≥ 0, where the utilitiesu2,S andu2,M

are given by (3) and (4), respectively. Then, the equilibrium
strategy (15) follows from applying the KKT conditions (11)
to the expected objective function̄u1(P1, P2,S , P2,M ) =
φ1u1(P1, P2,S) + (1 − φ1)u1(P1, P2,M ) of selfish node 1,
where the utilityu1 is given by (3).

Assumeh2,S ≥ σ2E2,S for the case of non-zero transmis-
sion power of selfish node 2. Selfish node 1 can individually
detect the type of node 2, unlessP2,S = P2,M in (16)-(17). If
node 1 detects the other node as malicious such thatφ1 = 0,
the powerP1 is changed to (13), whereas the power of node
2 is still given by (17).

Consider the case when node 2 isselfish. In Nash equi-
librium, P1 is the same as in the case of two selfish nodes
with known types (independent ofφ1). So, selfish node 2
cannot learn, whether node 1 detects the type of node 2, or
not, and continues to operate with the same value ofφ1 as
before. The uncertainty of the opponent’s type is beneficial
for selfish node 2 (i.e., selfish node 2 can increaseγ2,S by
hiding its type compared to the case with the known types),
if h1

E1
>
(

h2,M

L
P2,M + σ2

)

, whereP2,M follows from (17),
i.e., if h1 is large andE1 is small. Otherwise, selfish node
2 should reveal its type.

On the other hand, the uncertainty on the opponent’s type
is beneficial for selfish node 1, ifh1

E1
<
(

h2,M

L
P2,M + σ2

)

,
i.e., if h1 is small andE1 is large.

Next, consider the case when node 2 ismalicious. Then,
the powerP2,M does not depend onφ1. The attack of node 2
is more successful (in reducing the SINR valueγ1) by hiding
its type (compared to the case of known types of selfish node
1 and malicious node 2), if and only ifE2,M

h2,M

(

h1

E1

)2
>

h2,S

E2,S
−

σ2 (i.e., if h1 is large andE1 is small). As a result, selfish and
malicious nodes choose between revealing and concealing
their identities depending on the system parameters.

The equilibrium SINR value achievable by selfish nodes is
depicted in Figure 1 as function of the type belief probability
φ1, where the expected SINRγ1 of selfish node 1 is averaged
over the type of node 2 under the assumption that the type
belief distributionφ1 is equal to the true distributioñφ that
node 2 is selfish. In Figure 2, we illustrate the case when the
type belief distributionφ1 deviates from the true distribution
φ̃. Note that assuming the true distributioñφ for the type
beliefφ1 does not necessarily optimize the equilibrium SINR
valueγ1 of selfish node 1, i.e., the uncertainty on type belief
distributions may possibly improve the equilibrium SINRγ1.



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

0.75

1

1.25

1.5

1.75

2
E

q
u
il
ib

ri
u
m

S
IN

R
v
a
lu

e

 

 

φ1: Probabilistic belief of selfish node 1 that node 2 is selfish

Expected SINR γ1 of selfish node 1

SINR γ1 of selfish node 1 with selfish opponent 2

SINR γ1 of selfish node 1 with malicious opponent 2

SINR γ2,S of selfish node 2

Fig. 1. The equilibrium SINR values of selfish nodes as function of type
belief probabilityφ1 for hi = 1, Ei = 1, i = 1, 2, L = 1 andσ2 = 0.1.
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φ1: Probabilistic belief of selfish node 1 that node 2 is selfish
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Fig. 2. The equilibrium SINR value of selfish node 1 as function of type
belief probabilityφ1 for different values of true distributioñφ that node 2
is selfish and forhi = 1, Ei = 1, i = 1, 2, L = 1 andσ2 = 0.1.

C. Malicious Transmitter 1 (Known Type) and Transmitter
2 of Unknown Type

Now assume that malicious node 1 believes that node 2 is
selfish with probabilityφ1 (known to node 2).

Theorem 4:For φ1 ∈ (0, 1), the Bayesian Nash equilib-
rium strategies are

P1 =
L

h1

( h2,S

E2,S
− σ2

)

, (19)

P2,S =
L

h1

E1h2,S

(E2,S)2
1

φ1
, (20)

P2,M = 0, (21)

if h2,S ≥ σ2E2,S . Otherwise,P1 = 0, P2,S = 0, P2,M = 0.

Proof: The equilibrium strategies (20)-(21) follow
from applying the KKT conditions (11) separately to the
objective functionsu2,S(P1, P2,S) of selfish node 2 and
u2,M (P1, P2,M ) of malicious node 2, with constraintsP1 ≥
0, P2,S ≥ 0 and P2,M ≥ 0, where u2,S and u2,M are
given by (3) and (4), respectively. The equilibrium strat-
egy (19) follows from applying the KKT conditions (11)
to the expected objective function̄u1(P1, P2,S , P2,M ) =
φ1u1(P1, P2,S)+ (1−φ1)u1(P1, P2,M ) of malicious node 1
with u1(P1, P2,M ) = 0 andu1(P1, P2,S) from (4).

After playing one stage of the game, malicious node 1
would immediately learn the opponent’s type by observing
the interference power (through the SINR feedback), since
P2,S 6= P2,M . For h2,S > σ2E2,S , the equilibrium SINR of
selfish node 2 is given by

γ2,S =
E1h2,SL

E2,Sh1

1

φ1
, (22)

which increases, asφ1 decreases, i.e., a malicious attack
becomes less successful (in reducing the equilibrium SINR
γ2,S of the possibly selfish node 2), as the uncertainty on the
opponent’s type increases. Therefore, node 2 should hide its
type to increaseγ2,S , if it is selfish.

D. Transmitters 1 and 2 of Unknown Types

Nodes 1 and 2 haveunknownselfish or malicious types.
For each selfish and malicious node, defineES and EM
as the energy cost,hS and hM as the channel gain,φS
and φM as the probabilistic belief that the opponent is
selfish. These parameters are known to both nodes. In this
paper, symmetric strategies are considered for identical nodes
with common type belief distributions, costs and system
parameters. Then, each node assumes that all nodes of the
same type choose the same transmission strategy. DefinePS
andPM as the transmission power of selfish and malicious
node, respectively.

Theorem 5:For φS ∈ (0, 1) and φM ∈ (0, 1), the
symmetricBayesian Nash equilibriumstrategiesPS andPM
of selfish and malicious transmitters are

PS = [P ∗
S ]+, (23)

PM =
L

hM

[

√

PS

√

φMhShM

LEM
− σ2

]+

, (24)

respectively, whereP ∗
S is the solution to

φShSσ
2

(

hS

L
P ∗
S + σ2

)2 +
(1 − φS)

√
hSLEM

√

P ∗
S

√
φMhM

= ES . (25)

Proof: Define ui,j as the utility of selfish nodei = S

or malicious nodei = M with a selfish opponentj = S

or malicious opponentj = M . The equilibrium strategies
(23)-(25) follow from applying the KKT conditions (11)
separately to the objective functionsūS = φSuS,S(PS , PS)+
(1 − φS) uS,M (PS , PM ) of each selfish node and̄uM =
φM uM,S(PS , PM ) + (1 − φM ) uM,M (PM , PM ) of each
malicious node, with constraintPS ≥ 0 andPM ≥ 0, where
the utilitiesuS,S anduS,M are given by (3), and the utilities
uM,S anduM,M are given by (4).



Consider a selfish node with a malicious opponent. The
equilibrium SINR of the selfish node is given by

γS =

{ √
PS

√
hSLEM√

φMhM
, if PS > LEMσ4

φMhShM
,

hSPS

σ2 , otherwise,
(26)

which decreases withφS for fixedφM , with φM for fixedφS
and withφS = φM . The expected SINR valueγS (averaged
over the distribution of the opponent’s type) decreases with
φS = φM , as shown in Figure 3, under the assumption
that the type belief distributions are both equal to the true
distribution φ̃ that any given node is selfish. In Figure 4,
we evaluate the effect of the mismatch between the type
belief distributionφS = φM and true distributioñφ on the
equilibrium SINRγS of any selfish node. The results show
that assuming type beliefs other than the true distribution
may possibly improve the equilibrium SINR valueγS .
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SINR γS as function of φS = φM

SINR γS as function of φS for φM = 0.5

SINR γS as function of φM for φS = 0.5

Fig. 3. The equilibrium SINRγS of any selfish node as function of type
belief probabilities forhi = 1, Ei = 1, i = 1, 2, L = 1 andσ2 = 0.1.

Hence, the type uncertainty is beneficial for the selfish
node and it should hide its type to increaseγS , whereas the
success of any malicious attack increases withφS andφM .

IV. I NTERACTIONS OFSELFISH AND MALICIOUS

TRANSMITTERS FORREWARD FUNCTION

fi(γi) = log(1 + γi)

The analysis for reward functionfi(γi) = log(1 + γi) is
similar to the previous analysis for reward functionfi(γi) =
γi. Here, we outline the equilibrium strategies in Theorems
6-10. The proofs of Theorems 6-10 follow from the same
arguments as in Theorems 1-5, where the reward function
fi(γi) = γi is replaced byfi(γi) = log(1 + γi).

A. Known Types of Two Transmitters

Theorem 6:For two selfish transmitters, theuniqueNash
equilibrium strategies are

Pi =

hiL
Ei

− hj

Ej
− σ2(L − 1)

hi

(

L− 1
L

) , j 6= i, i = 1, 2, (27)
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Fig. 4. The equilibrium SINRγS of any selfish node as function of type
belief probabilities for different values of true distribution φ̃ that a node is
selfish and forhi = 1, Ei = 1, i = 1, 2, L = 1 andσ2 = 0.1.

if hiL
Ei

− hj

Ej
≥ σ2(L− 1), i = 1, 2,

Pi = 0, Pj =
[ 1

Ej
− σ2

hj

]+

, j 6= i, (28)

if hiL
Ei

− hj

Ej
< σ2(L−1) and hjL

Ej
− hi

Ei
> σ2(L−1), j 6= i.

The same utility function has been considered in [3] for
selfish nodes. The equilibrium SINR of a selfish nodei is

γi =







(L2−1)hiPi
hjL

Ej
− hi

Ei
+σ2L(L−1)

, if hiL
Ei

− hj

Ej
≥ σ2(L − 1),

hiPi

σ2 , otherwise.
(29)

Theorem 7:For selfishtransmitter 1 andmalicioustrans-
mitter 2, theuniqueNash equilibrium strategies are

P1 =
LE2h1

E1(E1h2 + LE2h1)
, (30)

P2 =
L

h2

(

h1

( 1

E1
− P1

)

− σ2
)

, (31)

if σ2E1

h1
+ LE2h1

E1h2+LE2h1
≤ 1. Otherwise,

P1 =

[

1

E1
− σ2

h1

]+

, P2 = 0. (32)

The equilibrium SINR of selfish node 1 is

γ1 =

{

LE2h1

E1h2
, if σ2E1

h1
+ LE2h1

E1h2+LE2h1
≤ 1,

[

h1

σ2E1
− 1
]+
, otherwise.

(33)

The malicious attack of node 2 is more successful in
reducingγ1 compared to the alternative selfish behavior, if
the SINR valueγ1 given in (33) is smaller than the SINR
value γi given in (29) for i = 1. This condition strongly
depends on the underlying system parameters.

For two malicious nodes, the Nash equilibrium strategies
are given byP1 = 0 andP2 = 0.



B. Selfish Transmitter 1 (Known Type) and Transmitter 2 of
Unknown Type

Theorem 8:For φ1 ∈ (0, 1), the Bayesian Nash equilib-
rium strategies are

P1 = [P ∗
1 ]+, P2,S = [P ∗

2,S ]+, P2,M = [P ∗
2,M ]+, (34)

whereP ∗
1 , P ∗

2,S andP ∗
2,M are solutions to

h1P
∗
1

L
+ h2,SP

∗
2,S + σ2 =

h2,S

E2,S
, (35)

h2,Mh1P
∗
1

L
= E2,M

(h2,MP
∗
2,M

L
+ σ2

)

×
(h2,MP

∗
2,M

L
+ h1P

∗
1 + σ2

)

, (36)

φ1h1

(

h2,SP
∗

2,S

L
+ σ2

)

h2,SP
∗

2,S

L
+ h1P

∗
1 σ

2

+
(1 − φ1)h1

(

h2,MP∗

2,M

L
+ σ2

)

h2,MP∗

2,M

L
+ h1P

∗
1 + σ2

= E1. (37)

In Nash equilibrium, the type uncertainty is better for
selfish node 1 (i.e., selfish node hides its type), ifh1 is small
andE1 is large, or it is better for malicious node 2, otherwise.

C. Malicious Transmitter 1 (Known Type) and Transmitter
2 of Unknown Type

Theorem 9:For φ1 ∈ (0, 1), the Bayesian Nash equilib-
rium strategiesP1 ≥ 0, P2,S ≥ 0 andP2,M ≥ 0 are

P1 =
L

h1

[ h2,S

E2,S
− h2,SP2,S − σ2

]+

, (38)

P2,S =
E1h2,SL

E2,S(LE1h2,S + φ1E2,Sh1)
, (39)

P2,M = 0. (40)

As φ1 decreases,P1 decreases andP2,S increases from the
equilibrium strategies (38)-(39). Consequently, the equilib-
rium SINRγ2,S of selfish node 2 increases, asφ1 decreases,
i.e., the type uncertainty is beneficial for the selfish node of
unknown type.

D. Transmitters 1 and 2 of Unknown Types

Theorem 10:For φS ∈ (0, 1) and φM ∈ (0, 1), the
symmetricBayesian Nash equilibriumstrategies are

PS = [P ∗
S ]+, PM = [P ∗

M ]+, (41)

whereP ∗
S andP ∗

M are solutions to

P ∗
S

(

hMP∗

M

L
+ σ2

)(

hMP∗

M

L
+ hSP

∗
S + σ2

) =
LEM

φMhMhS
, (42)

φShSσ
2

(

hSP
∗

S

L
+ σ2

)(

hSP
∗

S

L
+ hSP

∗
Sσ

2
)

+
(1 − φS)hS

hMP∗

M

L
+ hSP

∗
S + σ2

= ES . (43)

For hS = hM = 1, ES = EM = 1, L = 1 andσ2 = 0,
the equilibrium transmission powers from (41)-(43) are given
by PS = (1−φS)2

1−φS+φM
and PM = (1−φS)φM

1−φS+φM
for selfish and

malicious nodes, respectively. If the opponent is malicious,
the equilibrium SINR value of selfish node is given byγS =
1−φS

φM
, which decreases with bothφS andφM , i.e., any selfish

node prefers type uncertainty and should hide its type to
increase the SINR valueγS .

V. BAYESIAN LEARNING OF SELFISH AND MALICIOUS

USERTYPES IN POWER-CONTROLLED MAC

Next, we deviate from the previous focus of fixed and
known type belief distributions and extend the analysis to
the dynamic situation in which nodes learn each other’s types
based on the outcomes of the power-controlled MAC game
at each time slot. Consider the reward functionf(γS) = γS
for unknown types of two transmitters.

For simplicity, assumehS = hM = 1, ES = EM = 1,
L = 1 and σ2 = 0. Selfish and malicious nodes play the
Nash equilibrium strategiesPS(φS , φM ) = (1−φS)2

φM
and

PM (φS , φM ) = 1 − φS from (23)-(25). Selfish and mali-
cious nodes updateφS andφM , respectively, based on the
opponent’s power (which can be observed through the SINR
feedback sent from the receiver back to the transmitters).

Nodes assume that the belief of the opponent with the
opposite type isuniformly distributed over[0, 1], whereas
nodes of the same type have the same belief distribution and
update their beliefs according to the same rule. DefineP

(k)
o

as the opponent’s power andφ(k)
S as the value ofφS at the

kth iteration.Selfishandmaliciousnodes update their beliefs
φS andφM , respectively, on the opponent’s type according
to the Bayes’ rule:

φ
(k+1)
S =

φ
(k)
S a

(k)
S (P

(k)
o )

φ
(k)
S a

(k)
S (P

(k)
o ) + (1 − φ

(k)
S ) b

(k)
S (P

(k)
o )

, (44)

φ
(k+1)
M =

φ
(k)
M a

(k)
M (P

(k)
o )

φ
(k)
M a

(k)
M (P

(k)
o ) + (1 − φ

(k)
M ) b

(k)
M (P

(k)
o )

, (45)

wherea(k)
i (P

(k)
o ) = P (P

(k)
o | the opponent of nodei is selfish)

andb(k)i (P
(k)
o ) = P (P

(k)
o | the opponent of nodei is malicious)

for i ∈ {S,M} can be computed as

a
(k)
S (P (k)

o ) =

{

0, P
(k)
o < (1 − φ

(k)
S )2,

1, P
(k)
o ≥ (1 − φ

(k)
S )2,

(46)

b
(k)
S (P (k)

o ) = b
(k)
M (P (k)

o ) =

{

0, P
(k)
o > 1,

1, P
(k)
o ≤ 1,

(47)

a
(k)
M (P (k)

o ) =











1

3
(

P
(k)
o

)2 , P
(k)
o > 1,

1

3
√
P

(k)
o

, P
(k)
o ≤ 1.

(48)

A selfish node eventually detects the type of the selfish
opponent with powerP (k)

o , wheneverP (k)
o > 1 is observed,

or it detects the type of the malicious opponent, whenever
P

(k)
o < (1 − φ

(k)
S )2 is observed. From (44)-(45), we have

φ
(k+1)
S = φ

(0)
S , until the type of the opponent is detected. The



number of iterations to detect the opponent as a selfish or
malicious node is ageometricrandom variable with success
probability (1 − φ

(0)
S )2.

On the other hand, a malicious node eventually detects the
type of selfish opponent, wheneverP (k)

o > 1 is observed or
whenever the selfish node detects the type of malicious op-
ponent at the previous iteration (and updated its transmission
power accordingly). Then, the expected number of iterations
to detect the opponent as a selfish node can be computed as
p+ 1

1−p
[

1
1−(1−p)2 − (1− (1− p)2)

]

, wherep = (1−φ
(0)
S )2,

and the average detection time grows withφ(0)
S .

However, a malicious node cannot detect the type of
a malicious opponent with probability one at a particular
iteration, but the probabilityφ(k)

M asymptotically approaches
0 according to the Bayesian update mechanism (45), as the
number of time iterationsk increases. Figure 5 shows the
updates of the malicious node’s type belief probabilityφ(k)

M

averaged over the distribution of the opponent’s powerP
(k)
o .

Note that the probabilityφ(k)
M converges with smaller rate, if

the malicious node selects a larger value for the initial type
belief probabilityφ(0)

M that the opponent is selfish.
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Fig. 5. The type belief probabilityφ(k)
M

of a malicious node with a
malicious opponent forf(γS) = γS , hS = hM = 1, ES = EM = 1,
L = 1 andσ2 = 0.

VI. POWER-CONTROLLED MAC GAME FOR ARBITRARY

NUMBER OF SELFISH AND MALICIOUS TRANSMITTERS

Let n and ns denote the total number of nodes and the
number of selfish nodes, respectively, wheren ≤ nmax

and nmax is the maximum possible number of nodes in
the system. LetηS(n, ns) and ηM (n, ns) denote the joint
probability mass function ofn and ns, as believed by a
selfish and malicious node, respectively. Consider common
parameters (known by all nodes), as defined in Section III-D,
and assume symmetric strategiesPS or PM depending on
whether the node is selfish or malicious. For the common
reward functionfi(γ) = f(γ) of any selfish nodei, the

utilities of selfish and malicious nodes are given by

uS(PS , PM ) =

nmax
∑

n=1

n
∑

ns=1

ηS(n, ns) f

(

hSPS

ψ(ns)

)

−PSES , (49)

uM (PS , PM ) = −
nmax
∑

n=1

n−1
∑

ns=0

ηM (n, ns) ns f

(

hSPS

ψ(ns)

)

−PMEM , (50)

respectively, whereψ(ñ) = 1
L

(

(ñ − 1)hSPS + (n −
ñ)hMPM

)

+σ2. Any malicious node minimizes the sum of
throughput rewards of allns possibly selfish nodes subject
to the additional objective of minimizing the energy cost.

Theorem 11:The symmetric Bayesian Nash equilibrium
strategiesPS andPM of selfish and malicious transmitters
are

PS = [P ∗
S ]+, PM = [P ∗

M ]+, (51)

whereP ∗
M andP ∗

S are solutions to

ES

hS
=

nmax
∑

n=1

n
∑

ns=1

ηS(n, ns)

(

1
L

(n− ns)hMP
∗
M + σ2

ψ(ns)(ψ(ns) + ζ)

)

, (52)

EML

hShM
=

nmax
∑

n=1

n−1
∑

ns=0

ηM (n, ns)

(

ns(n− ns)P
∗
S

ψ(ns)(ψ(ns) + ζ)

)

(53)

for perfect information of type beliefs, whereψ(ñ) =
1
L

(

(ñ − 1)hSP
∗
S + (n − ñ)hMP

∗
M

)

+ σ2, ζ = 0 for

f(γS) = γS andζ = hSPS for f(γS) = log(1 + γS).
Proof: The equilibrium strategies (51)-(53) follow

from applying the KKT conditions (generalized to arbi-
trary number of nodes) separately to the objective functions
uS(PS , PM ) of selfish nodes anduM (PS , PM ) of malicious
nodes, with constraintsPS ≥ 0 and PM ≥ 0, where the
utilities uS anduM are given by (49)-(50), respectively.

The equilibrium SINR of any selfish node is given by
γS = hSPS

ψ(ns) . AssumeEShM = EMhS andL = 1. For both
reward functionsf(γS) = γS and f(γS) = log(1 + γS),
the equilibrium value ofγS for givenn decreases first with
the small values ofns, then reaches the minimum for the
intermediate valuesns, and finally increases with the large
values ofns. There exists a critical value for the number
of malicious nodes beyond whichγS increases again, i.e.,
a malicious attack is more successful, if it is accompanied
with the selfish behavior of other nodes. The total throughput
reward nsγS increases monotonically with the number of
selfish nodesns, as shown in Figure 6.

VII. R ANDOM ACCESSGAMES FORSELFISH AND

MALICIOUS TRANSMITTERS OFUNKNOWN TYPES

The results for power control game with incomplete type
information generalize to other MAC models. Next, consider
random accessgames, where nodes choose between trans-
mitting and waiting. Assume a synchronous slotted system
with collision channelssuch that more than one simultaneous
transmission fails. The primary focus is again on the case
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Fig. 6. The total SINRnsγS of selfish nodes in Nash equilibrium as
function of ns for EShM = EMhS andL = 1.

of two transmitters. Definepi ∈ [0, 1] as transmission
probability andEi ∈ (0, 1) as energy cost (per transmission)
of nodei = 1, 2. Any selfishnodei receives unitthroughput
reward for successful transmission. The expected utility of
selfish nodei is given by

ui(p1, p2) = pi [−Ei + 1 − pj] + (1 − pi) [0], j 6= i, (54)

for i = 1, 2. Any maliciousnodei incurs a unit cost, if the
opponent is selfishand successfully transmits at the given
time slot. The expected utility of malicious nodei is given
by

ui(p1, p2) =















pi [−Ei] + (1 − pi) [−pj],
if the opponent nodej is selfish,

pi [−Ei] + (1 − pi) [0],
if the opponent nodej is malicious,

(55)

for j 6= i, i = 1, 2.
Theorem 12:The symmetricBayesian Nash equilibrium

strategiespS and pM of selfish and malicious transmitters
are

pS = 1, pM = 0, if φS < 1 − ES , φM < EM , (56)

pS =
1 − ES

φS
, pM = 0,

if φS > 1 − ES , EMφS > φM (1 − ES), (57)

pS =
EM

φM
, pM =

1 − ES − EM
φS

φM

1 − φS
,

if φS < ES + EM
φS

φM
< 1, φM > EM . (58)

Proof: (a) The expected utility of a given selfish node
uS(pS , pM ) = pS(−ES + φS(1− pS) + (1− φS)(1− pM ))
is maximized by transmitting, i.e.,pS = 1, if (1 − φS)(1 −
pM ) > ES . GivenpS = 1, the expected utility of a malicious
nodeuM (pS , pM ) = pM (−EM ) + (1 − pM )(−φMpS) is
maximized by waiting, i.e.,pM = 0, if φM < EM , or

by transmitting, ifφM > EM . However,uS(pS , 1) is not
maximized bypS = 1 (therefore the strategy pairpS = 1
and pM = 1 does not yield a Nash equilibrium), whereas
uS(pS , 0) is maximized bypS = 1, if 1 − φS > ES such
that the Nash equilibrium strategy (56) follows.

The utility of a selfish nodeuS(pS , pM ) is maximized by
waiting, i.e.,pS = 0, if (1−φS)(1−pM) < ES . GivenpS =
0, the utility of a malicious nodeuM (pS , pM ) is maximized
by waiting only, i.e.,pM = 0. However,uS(pS , 0) cannot
be maximized bypS = 0, and therefore the strategypS = 0
does not yield a Nash equilibrium.

(b) GivenpM = 0, the utility of a selfish nodeuS(pS , pM )
is maximized by transmitting, i.e.,pS = 1, if 1 − ES −
φS > 0. This corresponds to Nash equilibrium strategy (56).
The strategypS = 1 cannot yield Nash equilibrium, since
it violates the conditionES < 1. The utility uS(pS , pM ) is
indifferent to pS , if pS = 1−ES

φS
. Given pS = 1−ES

φS
, the

utility of a malicious nodeuM (pS , pM ) is maximized by
waiting, i.e.,pM = 0, if EMφS > φM (1 − ES) such that
the Nash equilibrium strategy (57) follows. ForpS = 1−ES

φS
,

pM = 1 cannot yield any Nash equilibrium, sinceuS(pS , 1)
is maximized only bypS = 0 provided thatES > φS and
uM (0, pM ) cannot be maximized bypM = 1.

(c) Consider mixed strategies such that selfish and mali-
cious nodes are indifferent topS and pM , respectively, to
maximizeuS and uM . From uS(1, pM ) = uS(0, pM ) and
uM (pS , 1) = uM (pS , 0), we obtain the equilibrium strategy
(58) subject to0 ≤ pS ≤ 1 and0 ≤ pM ≤ 1.

If the type belief distributionsφS = φM are equal to the
true probability that a node is selfish, the resulting throughput
rates areλS = 1 − φS , λS = ES(1−ES)

φS
andλS = EM

(

1 +
ES

φS

)

for the strategies (56)-(58), respectively.
Consider a selfish node with malicious opponent. The

throughput rates areλS = 1, λS = 1−ES

φS
and λS =

EM

φM

(

ES+EM
φS
φM

−φS

1−φS

)

for the strategies (56)-(58), respec-
tively. If the types are known, the equilibrium strategies are
pS = EM andpM = 1−ES with throughputλS = EMES .
Then, the strategy (56) achieves higher throughput. It is bene-
ficial for the selfish node to hide its type such that the strategy
(57) is more throughput-efficient, ifES(1 + EMφS) < 1,
which holds for small energy costs, and the strategy (58)
is more throughput-efficient, ifES(1 − φM (1 − φS)) >

φS(1 − EM

φM
), which holds for large energy costs.

Selfish and malicious nodes can further chooseφS and
φM , respectively, to maximize and minimize the throughput
λS of a selfish node. The resulting equilibrium probabilities
areφ∗M = 1 andφ∗S = 0, if ES +EM < 1, with throughput
λS = ESEM , or φ∗S = 1−ES

EM
, if ES + EM > 1, with

throughputλS = EM . Hence, the equilibrium throughput
λS can be improved, ifES +EM < 1, compared to the case
of known types with equilibrium throughputλS = ESEM .3

3The receiver can identify the type of any node (i.e., whetherthe received
packet carries real data or constitutes to a jamming signal), if it is the only
one transmitting at the given time slot. Then, we can consider a Markov
gameformulation such that the strategy of a node depends on its type and
the state of the game that is updated, whenever the type of anynode is
detected by the receiver.



A. Unknown Type Belief Distributions and Energy Costs

Assume that nodei does not know the exact values of type
belief probabilityφj and energy costEj of the opponent
nodej, but knows their distributions. The uncertainties on
node types and energy costs arejointly formulated as proba-
bilistic beliefs. Defineµi as the subjective belief (namely
the probability distribution) of nodei = 1, 2 about the
parametersφj andEj of the opponentj 6= i. Consider the
symmetric game model such that any selfish node has belief
µS and any malicious node has beliefµM .

Theorem 13:The Nash equilibriumstrategy of aselfish
or maliciousnode is to transmit, respectively, if and only if

θS =
ES

1 − φS
< θ∗S = 1 − µS(θM < θ∗M ), or (59)

θM =
EM

φM
< θ∗M = µM (θS < θ∗S). (60)

Proof: Each node assumes that the opponent node of
the same type would make the same decision to transmit or to
wait. Any selfish node transmits, ifuS(1, pM ) > uS(0, pM ),
whereuS is given by (54), i.e., ifES < (1− φS)(1 − pM ),
or waits, ifES > (1−φS)(1− pM ). In the case of equality,
the selfish node either transmits or waits. This leads to
monotonic transmission decision of selfish node such that
θS = ES

1−φS
< θ∗S , where θ∗S = 1 − pM . Selfish node

does not know the transmission probabilitypM of malicious
node but has subjective belief distribution forpM , if the
transmission decision of any malicious node also satisfies
the monotonicity property in terms of type belief and cost
parameters.

Any malicious node transmits, ifuM (pS , 1) > uM (pS , 0),
whereuM is given by (55), i.e., ifEM < φMpS, or waits,
if EM > φMpS . In the case of equality, the malicious
node either transmits or waits. This also leads to monotonic
transmission decisions of malicious node such thatθM =
EM

φM
< θ∗M , where θ∗M = pS . Malicious node does not

know the transmission probabilitypS of selfish node but has
subjective belief distribution forpS , since the transmission
decisions of selfish node are also monotonic in terms of
type belief and cost parameters. The threshold parameters are
θ∗S = 1− p∗M with p∗M = µS(θM < θ∗M ) andθ∗M = p∗S with
p∗S = µM (θS < θ∗S) such that the monotonic transmission
decisions (59)-(60) follow in Nash equilibrium.

If the opponent’s beliefs on type probabilitiesφS and
φM and costsES andEM are independentand uniformly
distributed over[0, 1] for each selfish and malicious node,
the parametersθS = ES

1−φS
andθM = EM

φM
follow a uniform

ratio distribution

P (θi = θ) =







1
2 , 0 < θ < 1,
1

2θ2 , θ ≥ 1,
0, otherwise,

i ∈ {S,M}. (61)

From (59)-(60), there existuniqueequilibrium thresholds
θ∗S = 4

5 andθ∗M = 2
5 . A selfish node with malicious opponent

achieves equilibrium throughputλS = 8
25 , which is greater

than the throughputλS = 1
4 averaged over cost distributions

for known types. Hence, the type uncertainty is beneficial
for selfish nodes to increase the equilibrium throughputλS .

B. Arbitrary Number of Selfish and Malicious Users

Consider the probabilistic belief distributionsηS(n, ns)
and ηM (n, ns) of selfish and malicious nodes to represent
the total number of nodesn and the number of selfish nodes
ns (as defined in Section VI for power control). Assume
a symmetricgame model with transmission probabilitypS
and pM for any selfish and malicious node, respectively.
Any malicious node wishes to minimize the sum of selfish
throughput rewards and incurs a unit cost for each suc-
cessfully transmitting selfish node. The expected utility of
a selfish node is

uS(pS , pM ) =

nmax
∑

n=1

n
∑

ns=1

ηS(n, ns)
(

pS [−ES

+(1 − pS)ns−1(1 − pM )n−ns ] + (1 − pS) [0]
)

(62)

and the expected utility of a malicious node is

uM (pS , pM ) =

nmax
∑

n=1

n−1
∑

ns=0

ηM (n, ns)
(

pM [−EM ]

+(1 − pM )[−nspS(1 − pS)ns−1(1 − pM )n−ns−1]
)

. (63)

Theorem 14:For perfect information of ηS(n, ns) and
ηM (n, ns), the symmetricBayesian Nash equilibriumstrate-
giespS andpM of selfish and malicious transmitters are

pS = min
(

[p∗S ]+, 1
)

, pM = min
(

[p∗M ]+, 1
)

, (64)

wherep∗S andp∗S are solutions to

ES =

nmax
∑

n=1

n
∑

ns=1

ηS(n, ns)

×[(1 − nSpS)(1 − pS)ns−2(1 − pM )n−ns ], (65)

EM =

nmax
∑

n=1

n−1
∑

ns=0

ηM (n, ns) ns (n− ns)

×pS(1 − pS)ns−1 (1 − pM )n−ns−1. (66)

Proof: The equilibrium strategiespS and pM from
(64)-(66) follow from applying the KKT conditions sepa-
rately to the objective functionsuS(pS , pM ) of any selfish
node anduM (pS , pM ) of any malicious node with con-
straints0 ≤ pS ≤ 1 and 0 ≤ pM ≤ 1, whereuS(pS , pM )
anduM (pS , pM ) are given by (62)-(63), respectively.

The throughput of any selfish node in Nash equilibrium
is given byλS = pS(1 − pS)ns−1(1 − pM )n−ns . Figure 7
evaluatesλS as function ofn, wherens = 1, and shows that
λS decreases as the number of malicious nodes increases
(except for small values of energy costsES andEM and
total number of nodesn).

Assumepartial informationon the probabilistic belief of
the opponent on the values ofn and ns. Let n(i) and
ns(i) denote the total number of nodes and the number
of selfish nodes believed by any selfish nodei = S or
by any malicious nodei = M . Let Pi(n, ns) denote the
probability distribution function that selfish or malicious
node i ∈ {S,M} believes to represent the belief of node
j ∈ {S,M}, j 6= i, on the values ofn andns.
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Fig. 7. The throughputλS achievable by one selfish node in Nash
equilibrium as function ofn for ns = 1.

Each node assumes that any other node of the same type
would make the same transmission decision. Any selfish
node transmits (i.e.,pS = 1), if uS(1, pM ) > uS(0, pM )
in Eq. (62), i.e., if (1 − pM )n−1 > ES and ns = 1. On
the other hand, any malicious node transmits (i.e.,pS = 1),
if uM (pS , 1) ≥ uM (pS , 0) in Eq. (63), i.e., ifnspS(1 −
pS)ns−1 > EM . For incompleteinformation on node types,
the transmission decisions in Nash equilibrium satisfy the
following monotonicity properties:

Any selfishnode transmits, if and only if

n(S) < n∗(S), ns(S) = 1, (67)

and anymaliciousnode transmits, if and only if

n∗
s,1(M) < ns(M) < n∗

s,2(M), (68)

provided that the non-negative cut-off thresholdsn∗(S) and
n∗
s,2(M) are the largest solutions and the non-negative cut-

off thresholdn∗
s,1(M) is the smallest solution to
(

1 − ϕM
)n∗(S)−1 ≥ ES , (69)

n∗
s,i(M) ϕS

(

1 − ϕS
)n∗

s,i(M) ≥ EM , i = 1, 2, (70)

where

ϕS =
∑

1≤n<n∗(S)

PM (n, 1), (71)

ϕM =
∑

n∗

s,2(M)≤n

∑

n∗

s,1(M)<ns<n
∗

s,2(M)

PS(n, ns). (72)

VIII. C ONCLUSIONS

We presented game-theoretic models to establish a security
paradigm at the MAC layer of wireless networks. For selfish
and malicious users of unknown types, we considered differ-
ent MAC models based on power control and random access,
and derived the Nash equilibrium strategies depending on the
degree of type uncertainty. The performance is measured in

terms of throughput rewards, transmission energy costs and
malicious attack incentives. The analysis showed under what
conditions the type identities should be concealed or revealed
to improve the individual performance as a selfish user or to
reduce the system performance as a malicious user.

We also extended the results to incorporate different
degrees of uncertainty in type distributions and cost param-
eters, and presented Bayesian learning mechanisms for the
type belief updates. The analysis provides new insights into
using the type uncertainty as an inherent defense mechanism
against the denial of service attacks in wireless networks.

Future work should generalize the game model to multi-
hop wireless networks. This would extend the denial of
service attack possibilities to the network layer operations
and require cross-layer design with the attack and defense
mechanisms that have been established for the MAC layer.
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