
Information Theoretic Games on Interference
Channels

Randall Berry
Dept. of EECS

Northwestern University
e-mail: rberry@eecs.northwestern.edu

David Tse
Dept. of EECS

University of California at Berkeley
e-mail: dtse@eecs.berkeley.edu

Abstract—We provide a natural formulation of information
theoretic games on interference channels. We analyze this game
on a class of deterministic interference channels recently intro-
duced to approximate Gaussian channels in the interference-
limited regime. Our main result is a complete and simple
characterization of the subset of the interference channel capacity
region that can be achieved as Nash equilibria. We show that for
all parameter values of the interference channel, there are always
Nash equilibria which are efficient, i.e. on the boundary of the
capacity region.

I. I NTRODUCTION

Interference is a central phenomenon in both wireless and
wireline communication. The canonical information theoretic
model for studying this phenomenon is the two-user Gaussian
interference channel, where two point-to-point communica-
tion links interfere with each other through cross-talk. Each
transmitter has an independent message intended only for the
corresponding receiver. The capacity region of this channel is
the set of all simultaneously achievable rate pairs(R1, R2) in
the two interfering links. This characterizes the fundamental
tradeoff between the performance achievable on the two links
in the face of interference.

Though there has been an extensive literature on this chan-
nel, its capacity region is still unknown. Recently there has
been some progress in this direction. In [1], it is shown that
a very simple version of a scheme due to Han and Kobayashi
[2] results in an achievable region that is within one bit
of the capacity region for all values of channel parameters.
This result is particularly relevant in the high SNR regime,
where the noise is small and the achievable rates are high.
Furthermore, it is shown in [3] that the high SNR behavior of
the two-user Gaussian interference channel is in fact captured
by adeterministicinterference channel, for which the capacity
region can be computed exactly. (This type of deterministic
model was first proposed in [4] for Gaussian relay networks.)

Unlike the classic strategy of treating interference as Gaus-
sian noise, information theoretic optimal or near-optimal
strategies require coordination between the two users. For
example, the Han-Kobayashi scheme requires the users to
split their information into two streams, a common stream
and a private stream. The common stream is encoded so
that it can be decoded at the other user’s receiver and so
reduce the interference seen by that user. A natural question
is: would selfish users, interested only in maximizing their

own rate, have an incentive to implement such a strategy?
We study such a case, where each user individually chooses
an encoding/decoding scheme in order to maximize his own
transmission rate. The two users can then be viewed as playing
a non-cooperative game. We want to determine the set of Nash
equilibria (NE) of this game and compare the performance at
these equilibria to the (cooperative) capacity region. Clearly,
the rates at any NE has to be in the capacity region, but the
question is how many of the points in the capacity region are
Nash equilibria. Our focus is on a “one-shot” game model in
which each player has full information, i.e. both players know
all of the channel gains, and the actions chosen by each player,
as well as their pay-off function.

Other game theoretic approaches for the Gaussian inter-
ference channel have been studied before [5], [6]. However,
there are two key assumptions in these works: 1) the class of
encoding strategies are constrained to use random Gaussian
codebooks; 2) the decoders are restricted to treat the interfer-
ence as Gaussian noise and are hence sub-optimal. Because
of these restrictions, the formulation in these works are not
information-theoretic in nature.

In this paper, we make two contributions. First, we give
an information theoretic formulation of games on general
interference channels, where the users are allowed to use
any encoding and decoding strategies. Second, we take an
intermediate step toward the goal of solving this game for the
Gaussian interference channel, by analyzing the corresponding
problem on the two-user deterministic interference channel
from [3]. Our main result is a simple characterization of
the set of all rates achievable as NE inside the deterministic
channel’s capacity region. We also provide explicit coding
schemes that achieve each rate pair as a NE. Somewhat
surprisingly, we find that in all cases, there are always Nash
equilibria that areefficient, i.e. they lie on the maximum sum-
rate boundary of the capacity region. In particular, for channels
with symmetrical channel gains, the symmetric rate point on
the capacity region boundary is always a NE.

II. PROBLEM FORMULATION

Let us now formally define the communication situation
for general interference channels. Communication starts at
time 0. User i communicates by coding over blocks of
length Ni symbols, i = 1, 2. Transmitteri sends on block
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receiver i generates a guesŝb(k)
i` for each information bit.

Without loss of generality, we assume that this is done via
maximum-likelihood decoding on each bit.

Note that this communication scenario is more general than
the one usually used in multiuser information theory, as we
allow the two users to code over different block lengths. Such
generality is necessary here, since even though the two users
may agreea priori on a common block length, a selfish user
may unilaterally decide to choose a different block length
during the actual communication process.

A strategysi of useri is defined by its message encoding,
which we assume to be the same on every block and involves:

• the number of information bitsLi and the block length
Ni of the codewords,

• the codebookCi employed by transmitteri,
• the encoderfi : {1, . . . , 2Li} × Ωi → Ci, that maps on
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• the rate of the code,Ri(si) = Li/Ni.

A strategys1 of user1 ands2 of user2 jointly determines
the probabilities of errorp(k)

i := 1
L

∑Li

`=1 P(b̂
(k)
i` 6= b
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i` ), i =

1, 2. Note that if the two users use different block lengths, the
error probability could vary from block to block even though
each user uses the same encoding for all the blocks.

The encoder of each transmitteri may employ a stochastic
mapping from the message to the transmitted codeword;
ω

(k)
i ∈ Ωi represents the randomness in that mapping. We

assume that this randomness is independent between the two
transmitters and across different blocks and is only known at
the respective transmitter and not at any of the receivers.

For a given error probability thresholdε > 0, we define an
ε-interference channel game as follows. Each useri chooses
a strategysi, i = 1, 2, and receives a pay-off ofπi(s1, s2) =

R(si) if p
(k)
i (s1, s2) ≤ ε, for all k; otherwise,πi(s1, s2) = 0.

In other words, a user’s pay-off is equal to the rate of the code
provided that the probability of error is no greater thanε. A
strategy pair(s1, s2) is defined to be(1− ε)-reliable provided
that they result in an error probabilitypk

i (s1, s2) of less than
ε for i = 1, 2 and allk.

For anε-game, a strategy pair(s∗1, s
∗

2) is aNash equilibrium
(NE) if neither user can unilaterally deviate and improve their
pay-off, i.e. if for each useri = 1, 2, there is no other strategy
si such that1 πi(si, s

∗

j ) > πi(s
∗

i , s
∗

j ). If user i attempts to
transmit at a higher rate than what he is receiving in a NE

1We use the convention thatj always denotes the other user fromi.

and userj does not change her strategy, then useri’s error
probability must be greater thanε. Similarly, a strategy pair
(s∗1, s

∗

2) is an η-Nash equilibrium2 (η-NE) of an ε-game if
neither user can unilaterally deviate and improve their pay-off
by more thanη, i.e. if for each useri, there is no other strategy
si such thatπi(si, s

∗

j ) > πi(s
∗

i , s
∗

j )+η. Note that when a user
deviates, it does not care about the reliability of the otheruser
but only its own reliability. So in the above definitions(si, s

∗

j )
is not necessarily(1 − ε)-reliable.

Given anyε̄ > 0, the capacity regionC of the interference
channel is the closure of the set of all rate pairs(R1, R2)
such that for everyε ∈ (0, ε̄), there exists a(1 − ε)-reliable
strategy pair(s1, s2) that achieves the rate pair(R1, R2). The
Nash equilibrium regionCNE of the interference channel is the
closure of the set of rate pairs(R1, R2) such that for everyη >
0, there exists āε > 0 (dependent onη) so that if ε ∈ (0, ε̄),
there exists a(1−ε)-reliable strategy pair(s1, s2) that achieves
the rate-pair(R1, R2) and is aη-NE. Clearly,CNE ⊂ C. The
rest of the paper is devoted to derivingCNE.

First, we make a few comments about the definition ofCNE.
The parameter̄ε is introduced so that(1− ε)-reliable strategy
pairs need only exist for “small enough” values ofε. In the
definition of C this is not needed, i.e. the region is equally
well defined by requiring the given conditions to hold for any
ε > 0 (since, clearly if a pair of strategies are(1− ε)-reliable,
they are also(1 − ε̃)-reliable for all ε̃ > ε). However, when
definingCNE, this condition is important. In particular a pair
of strategies can be anη-NE for an ε-game, but not anη-NE
for an ε̃-game forε̃ > ε, since increasingε enlarges the set of
possible deviations an agent may make.

Next, we turn to our use ofη-NE. A more natural approach
would be to defineCNE to be the closure of the rate pairs
(R1, R2) such that for anyε small enough, that there exists a
(1− ε)-reliable strategy pair(s1, s2) which achieves the rate-
pair (R1, R2) and is aNE of a ε-game. The difficulty with
this is that to determine such a NE requires one to find a
particular scheme that achieves the optimal rate for a given
error probability. Finding such a scheme is extremely difficult
and in general an open problem.3 By introducing the slackη,
these difficulties are removed.

Finally, we comment on the use of different block lengths.
It can argued that if there is a(1 − ε)-reliable strategy pair
(s1, s2) that achieves a rate pair(R1, R2) using codes of block
lengthsN1, N2, then there exists a(1 − ε) strategy pair that
achieves the same rate pair but with each user using the same
block length. This follows by considering using “super-blocks”
of length N , whereN is the least common multiple ofN1

and N2. Over these super-blocks the users can be viewed as
using two equal-length codes. The error probabilities, being
the average bit error probabilities now across longer blocks,
remain less thanε. This means that in computing the capacity
regionC, we can without loss of generality assume both users

2In the game theoretic literature, this is often referred to asan ε-Nash
equilibrium or simply anε-equilibrium for a game [7, page 143].

3Moreover, it is not even clear if there exists such a scheme, i.e. a scheme
that achieves the supremum of the rates over all1 − ε reliable schemes.
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Fig. 1. The deterministic model for the point-to-point Gaussian channel.
Each bit of the input occupies a signal level. Bits of lower significance are
lost due to noise.

use the same block lengths. Likewise, in aη-NE, we can make
this assumption (although each user is allowed to deviate using
a strategy of a different block length).

III. D ETERMINISTIC CHANNEL MODEL

Let us now focus on a specific interference channel model:
a deterministic channel model analogous to the Gaussian
channel, introduced in [4]. We first describe the deterministic
channel model for the point-to-point AWGN channel (see
Figure 1). The real-valued channel input is written in base
2; the signal—a vector of bits—is interpreted as occupying a
succession of levels:x = 0.b1b2b3b4b5 . . . . The most signifi-
cant bit coincides with the highest level, the least significant
bit with the lowest level. The levels attempt to capture the
notion of signal scale; a level corresponds to a unit of power
in the Gaussian channel, measured on the dB scale. Noise is
modeled by truncation. Bits of smaller order than the noise
are lost. Note that the number of bits above the noise floor
correspond tolog2 SNR, whereSNR is the signal-to-noise ratio
of the corresponding Gaussian channel.

We proceed with the deterministic interference channel
model (Fig. 2). There are two transmitter-receiver pairs (links),
and as in the Gaussian case, each transmitter wants to com-
municate only with its corresponding receiver. The signal
from transmitteri, as observed at receiverj, is scaled by a
nonnegative integer gainaji = 2nji (equivalently, the input
column vector is shifted up bynji). At each timet, the input
and output, respectively, at linki are xi(t),yi(t) ∈ {0, 1}q,
whereq = maxij nij . Note thatnii corresponds tolog2 SNRi

andnji corresponds tolog2 INRji, whereSNRi is the signal-
to-noise ratio of linki and INRji is the interference-to-noise
ratio at receiverj from transmitteri in the corresponding
Gaussian interference channel. To model the super-position
of signals at each receiver, the bits received on each level are
addedmodulo two. The channel output at receiveri is then
given by

yi(t) = Sq−ni1x1(t) + Sq−ni2x2(t), (1)

where summation and multiplication are in the binary field
andS is a q × q shift matrix (e.g. see [4]).

In our analysis, it will be helpful to consult a different style
of figure, as shown on the right-hand side of Fig. 2. This
shows only the perspective of each receiver. Each incoming
signal is shown as a column vector, with the highest element
corresponding to the most significant bit and the portion below

Tx2 Rx2

Tx1 Rx1

1 2 1 2

α11

α12

α21

α22

Rx1 Rx2

Fig. 2. At left is a deterministic interference channel. The more compact
figure at right shows only the signals as observed at the receivers.

the noise floor truncated. The observed signal at each receiver
is the modulo 2 sum of the elements on each level.

IV. M AIN RESULTS

To begin, we give the capacity region,C, of our two-user
deterministic interference channel. This region is given by
Theorem 1 in [8], which applies to a larger class of deter-
ministic interference channels. For our model, the resulting
region becomes the set of non-negative rates satisfying:4

Ri ≤ nii, i = 1, 2 (2)

R1 + R2 ≤ (n11 − n21)
+ + max(n22, n21) (3)

R1 + R2 ≤ (n22 − n12)
+ + max(n11, n12) (4)

R1 + R2 ≤ max(n12, (n11 − n21)
+)

+ max(n21, (n22 − n12)
+) (5)

2R1 + R2 ≤ max(n11, n12) + (n11 − n21)
+

+ max(n21, (n22 − n12)
+) (6)

R1 + 2R2 ≤ max(n22, n21) + (n22 − n12)
+

+ max(n12, (n11 − n21)
+). (7)

Our main result, stated in Theorem 1 below is to completely
characterizeCNE for the two-user deterministic interference
channel model. This characterization is in terms ofC and a
“box” B in R

2
+ given by

B = {(R1, R2) : Li ≤ Ri ≤ Ui,∀i = 1, 2},

where for each useri = 1, 2, Li = (nii − nij)
+, and

Ui =

{

nii − min(Lj , nij), if nij ≤ nii,

min((nij − Lj)
+, nii), if nij > nii.

(8)

Theorem 1:CNE = C ∩B. Moreover,CNE always contains
at least one efficient point and is either equal toB or is the
intersection ofB with the simplex corresponding to the sum-
rate constraint forC.

First let us interpret the boundsL1, L2, U1, U2. The number
Li is the number of levels at receiveri that never see
any interference from userj. These are always the most
significant bits of useri’s signal. In the example in Fig. 2,

4The boundaries of the region in [8] is given in terms of conditional
entropies that must be maximized over any product distributionon the channel
inputs. For our model the optimizing input distribution for each bound is
always uniform over the input alphabet. The given bounds follow.
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Fig. 3. Examples ofCNE = C ∩ B for a symmetric interference channel
with normalized cross gainα.

these correspond to the top level for transmitter1 (L1 = 1)
and the top3 levels for transmitter2 (L2 = 3). The number
Ui is the number of levels at receiveri that receive signals
from transmitteri but are free of interference from the topLj

levels from transmitterj. In Fig. 2, these correspond to the
top level at receiver1 (U1 = 1) and the top three levels at
receiver2 (U2 = 3).

Intuitively, it is clear that at anyη-NE, useri should have
rate at leastLi: these levels are interference-free and useri
can always send information at the maximum rate on these
levels. This will create interference of maximum entropy ata
certain subset of levels at receiverj and render them un-usable
for userj. The rate for userj is bounded by the number of
remaining levels that it can use. This is precisely the upper
boundUj . What Theorem 1 says is that any rate pair in the
capacity regionC subject to these natural constraints is inCNE.

To illustrate this result, consider a symmetric interference
channel in whichn11 = n22 andn12 = n21. Let α = nji/nii

be the normalized cross gain. Four examples ofC and B
corresponding to different ranges ofα are shown in Fig. 3.
For 0 < α < 1

2 , CNE = B is a single point, which lies at
the symmetric sum-rate point ofC. For 1

2 < α < 2
3 , again

CNE = B. CNE contains a single efficient point (the symmetric
sum-rate point inC), but now there are additional interior
points ofC which may be achieved as a Nash equilibrium.5 For
2
3 < α < 1, CNE is a the intersection of the simplex formed
by the sum-rate constraint ofC andB. In this case, there are
multiple efficient points; in fact, the entire sum-rate faceof C
is included inCNE. For 1 < α < 2, C ⊂ B and soCNE = C.
For 2 ≤ α (not shown)C = B and so againCNE = C. Note
that in all cases, the symmetric rate point is inCNE.

V. A NALYSIS

To prove Theorem 1, we first show that points outside of
B cannot be achievable as a NE. The intuition behind this
result was discussed in the previous section. We then show

5In a slight abuse of terminology, we say that points inCNE can be
“achieved as a NE.”

that all points insideC ∩B can be achieved as NE. The proof
of this is based on first noting that sinceC andB are convex
polytopes, their intersection must also be a convex polytope.
We first explicitly construct strategies which show that the
corner points ofC∩B are inCNE. In these strategies each user
either transmits only un-coded bits or uses a repetition code
across levels (but no coding over time) and in fact achieves
perfect reliability. SinceC ∩B is a convex polytope, any point
can be expressed as a convex combination of the corner points.
Using this and a time-sharing argument, we can then show that
the remaining points inC ∩B are also inCNE. The additional
properties ofCNE given in Theorem 1 then directly follow.
In the following, we focus on the first step in this argument,
namely showing that the corner points ofC ∩ B are inCNE.

A pair of strategies(s1, s2) are defined to be apartial
Bernoulli pair if: (i) For i = 1, 2, useri’s transmitted signal at
each channel use containskj ≤ min(njj , nji) i.i.d. Bernoulli-
1/2 bits which create interference for userj’s received signal
(the remaining bits of useri’s signal can be arbitrary values
possibly dependent on thesekj levels); and (ii ) each useri
transmits at rateRi = nii − ki with zero probability of error.
The first property in this definition states that each userj sees
interference of maximum entropy onkj levels. Intuitively, on
these levels, each user can not reliably convey any information.
This leaves the user withnjj −kj levels. The second property
states that each user is transmitting at maximum rate over these
remaining levels; this requires the user to essentially transmit
uncoded bits on these levels. The next lemma shows why these
strategies are useful in characterizingCNE.

Lemma 1: If there exists a partial Bernoulli pair of strate-
gies that achieves the rate pair(R1, R2) then(R1, R2) ∈ CNE.

The proof of this is based on using Fano’s inequality to
bound the pay-off a user can receive from deviating from a
partial Bernouli pair of strategies. The next two lemmas show
that three corners ofB are always inCNE.

Lemma 2:The rate pairs(U1, L2), and(L1, U2) are always
in CNE.

Proof: Without loss of generality, consider the pair
(U1, L2). This can be achieved by the following strategy pair
(see Fig. 4): (i) User2 transmits uncoded information on itsL2

most significant levels and nothing on the remaining levels.(ii )
User1 transmits uncoded information on every level that is not
interfered with by user2’s signal and transmits i.i.d. Bernouli-
1/2 noise on all remaining levels that are received above the
noise floor ateitherreceiver. It can be seen that this is a partial
Bernoulli pair and so(U1, L2) ∈ CNE.

By a similar argument we have:
Lemma 3:The rate pair(L1, L2) is in CNE.
In general, the equilibrium strategies in Lemma 2 are not

efficient, e.g. for both examples in Fig. 4, the maximum
sum-rate obtainable inC is 6, which is not obtained by these
strategies. This efficiency loss is due to the random noise or
“junk” that user 1 is transmitting on the levels marked with
a “J.” The overall system performance can be improved by
better utilizing these “junk levels.” Since user 1 is already
transmitting at the upper bound, it cannot improve its own
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Fig. 4. Two examples of the equilibrium strategies used in Lemma2. On
the left is the pair of strategies achieving(U1, L2) = (3, 2); on the right is
the pair of strategies achieving(U1, L2) = (4, 1). Here a level labeled with
I

j

k
indicates that thekth uncoded information bit of userj is sent on that

level; a level labeled with aJ indicates that the user sends noise (junk) on
that level. On other levels a user does not transmit.

rate (in a NE) by changing its strategy. However, if the rate
pair (U1, L2) is not efficient, user 1 can change its strategy on
only the junk levels so that there is a new NE in which user 2’s
rate is increased without decreasing user 1’s rate. Moreover,
the resulting rate pair will meet the sum-rate bound ofC and
so is efficient. This provides the remaining corners ofC ∪ B.

Let us see how this improvement can be done for the
examples in Fig. 4. In the left example, user 1 has two junk
levels that it can release to improve user 2’s rate. The lower
junk level appears below the noise floor at receiver 2 so what
user 1 does there is immaterial. The upper junk level appears
at the bottom level at receiver2. If user 1 sends nothing
instead of junk at that level, then user2 can send 1 more
bit of information by using the bottom level. This additional
signal from user2 is appearing below noise floor at receiver1
and therefore will not deteriorate user1’s rate (see Fig. 5,
left). Thus, we can now achieve(3, 3), which is efficient.
Moreover, the strategies remain a partial Bernoulli pair and
therefore(3, 3) ∈ CNE

Now, consider the right example in Fig. 4, where user 1 has
a single junk level. If user 1 turns off the junk level, user 2 can
transmit on the third level and gain one extra bit. But unlikethe
previous example, this extra signal is harmful to user 1 since
it causes interference at the receiver of user1 at the second
level from the bottom. The problem here is that the bottom
level of user2 is actually harmless to user1, but it is currently
being interfered with by an information bit from user 1 and so
is not usable. But we can get around this problem by having
user1, instead of transmitting nothing on the junk level, send
a copy of this interfering information bit (see Fig. 5, right).
This way, user2 can see that bit on level 3, subtract it from
the received signal at the bottom level and free that level for
transmitting its own bit. Again this will be a partial Bernoulli
pair of strategies, and the resulting rates are efficient.

We can generalize this construction as follows. TheLi most
significant levels of each useri are defined to be that user’s
guaranteed levels. Each user can always transmit uncoded bits
on each of these levels regardless of the other user’s strategy.
Let useri’s open levelsbe that user’s non-guaranteed levels
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Fig. 5. Examples of the efficient strategies for the two interference channels
from Fig. 4. Note that on the right user 1 transmits two copies of I1

3
.

that (i) appear above the noise floor at userj’s receiverand
(ii) at useri’s own receiver are either interfered with by user
j’s guaranteed levels or appear below the noise floor. These
are levels where useri cannot send information for itself but
may be useful for helping userj. In Fig. 4, the “junk” levels
of user 1 correspond to his open levels. Finally, theharmless
levels of useri are the non-guaranteed levels that do not create
interference at receiverj. Useri’s signal on his harmless levels
does not effect userj’s performance. On the left-hand side of
Fig. 4, each user’s two least significant levels are harmless.
For i = 1, 2, let Oi denote useri’s open levels andHi his
harmless levels.

Lemma 4:The rate pairs(U1, L2+min(O1,H2)) and(L1+
min(O2,H1), U2) are always inCNE. Furthermore, these rate
pairs always satisfy the sum-rate bound forC with equality.
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