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Abstract—This paper studies medium access control (MAC)
protocols for regular wireless networks, where only nearest-
neighbor interactions are involved. Each station chooses a state
in the current time slot, which determines whether it transmits
or not, based on its own state and the states of all its nearest
neighbors in the previous time slot. The dynamics of the network
follow that of a Markov Chain of Markov Fields, which is shown
to converge to a stationary distribution for certain types of
interactions. It is found that this type of protocols can achieve
the optimal one-hop broadcast throughput in regular wireless
networks. In case each station can only distinguish between
transmitting and idle neighbors, the interactions of the network
can be described using the Ising model in statistical mechanics.
For this case, a MAC protocol is designed that can achieve a
throughput close to the optimum.

I. INTRODUCTION

The performance of wireless networks is limited by interfer-
ence between stations, which is primarily a short-range effect
among neighboring stations. Most existing medium access
control (MAC) protocols such as ALOHA and carrier-sense
multiple access (CSMA) exploit this phenomenon by using
local interactions among stations to schedule at most one
station in a neighborhood. In this paper, we study MAC
protocols that only involve such nearest-neighbor interactions.
Specifically, we consider time-slotted MAC protocols such that
in each time slot, each station makes its transmission decision
based on a local state, which is determined by its own state
and that of its neighbors in the previous time slot. This model
includes protocols such as ALOHA, in which a station’s state
is simply whether it transmits or not.

For simplicity, we consider regular wireless networks in
which a station is placed at each point in a lattice and only
neighboring stations cause significant interference to each
other. Specifically, we consider the square and triangular net-
works shown in Fig. 1. The square, triangular and hexagonal
lattices are the only two-dimensional lattices consisting of
regular polygons. Note that the triangular lattice is the most
representative, i.e., it represents the closest possible packing
of the stations in a wireless network. Hexagonal networks are
not considered in this paper, although the techniques developed
here also apply.

The performance of the MAC protocols we study depends
on whether the interactions are symmetric or not. By symmet-
ric interactions, we mean that the effect of state information
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Fig. 1. Square and triangular networks.

does not depend on which neighbor it is originated from, while
asymmetric interactions lack this property. If the interactions
are asymmetric, stations have to distinguish the orientation
of the incoming state information, therefore directional an-
tenna or some other form of location information is required.
Otherwise, omnidirectional antenna and orientation-oblivious
stations suffice. This work focuses on asymmetric interactions.

We consider the broadcast throughput of a MAC protocol,
given by the average number of successfully received packets
per station per time slot. It is shown that the maximum
broadcast throughput of 4/5 can be achieved in a regular
square network, if each station can choose from one of five
states and inform all neighbors of its choice. Similarly, the
maximum broadcast throughput of 6/7 can be achieved in a
regular triangular network, if the number of states is seven.
However, in some wireless networks, it may not be easy for a
station to obtain state information from its neighbors beyond
whether they are transmitting or not. Therefore, it may be
necessary to assume each station can only be in one of the two
states: ‘transmit’ or ‘idle.’ In this aspect, it has been recognized
in [1] and [2] that the resulting interactions among stations are
similar to that found in the Ising model in statistical mechanics
[3], [4]. Using the Ising model, we design a MAC protocol
that can achieve a throughput of 3/4 in square networks.

The remainder of the paper is organized as follows. Sec-
tion II introduces the system model. In Section III we derive
the maximum broadcast throughput for square and triangular
networks; we construct an algorithm to achieve these results
via nearest-neighbor interactions in Section IV. In Section V
we use the Ising model to design a MAC protocol for square
networks, which achieves a throughput close to the optimum.
Section VI concludes the paper.



II. SYSTEM MODEL

Consider networks in which stations populate a finite square
or triangular lattice, denoted by S. To simplify the analysis,
a periodic boundary condition is assumed, i.e., the network
is wrapped around so that stations on the left and right
boundaries are neighbors, as are stations on the top and the
bottom. Consequently, there is no edge effect. In Section IV,
simulation results show that the periodic boundary assumption
has little effect on the performance. Let stations be labeled
by their coordinates, i.e., r = (i, j). Let Nr denote the
set of neighbors of station r. In square networks, N(i,j) =
{(i − 1, j), (i + 1, j), (i, j − 1), (i, j + 1)}, and in triangular
networks,1 N(i,j) = {(i − 1, j), (i + 1, j), (i, j − 1), (i, j +
1), (i− 1, j − 1), (i+ 1, j + 1)}. For boundary stations, these
definitions are modified to account for the periodic boundary
condition. Each station broadcasts packets to all its nearest
neighbors. It is assumed that every station is saturated, so
queueing is not considered.

The state of each station assumes values in some finite set
E, where E may depend on the underlying network. Let Ω =
ES denote the configuration space, i.e., the state space of the
entire network. Let Xr(t) ∈ E be the state of station r at time
t, and X(t) = {Xr(t)}r∈S ∈ Ω be the configuration, or the
state of the network, at time t.

We assume that at the end of each time slot, each station
acquires the current states of its nearest neighbors.2 Stations
then choose their current states based only on the previous
states of their neighbors and themselves. Precisely, we are
interested in MAC protocols for which X = {X(t)}t∈N is
a Markov Chain of Markov Fields (MCMF) [5], i.e., a process
for which
• X(1),X(2), . . . is a Markov chain on Ω, and
• for every t, X(t) is a Markov field3 on Ω conditioned on

X(t− 1).
Furthermore, we restrict our attention to protocols in which all
stations make identically distributed decisions conditioned on
the same previous states of their neighbors and themselves.4

III. THE MAXIMUM BROADCAST THROUGHPUT

The performance measure we use is the one-hop broadcast
throughput, which can be understood as the proportion of
stations that can receive a packet in each time slot. A station
receives a packet in a given time slot if and only if it
does not transmit and only one of its neighbors transmits.
The maximum broadcast throughput for regular networks are
characterized as follows.

Theorem 1. The maximum one-hop broadcast throughput,
ρBC, of a regular network is k/(k+1), where k is the number

1In a triangular network, the geographic location of station (i, j) on R2 is
(i− j/2,

√
3j/2) in a rectangular coordinate system.

2A protocol would be required for exchanging such information. The design
of such a protocol is beyond the scope of this paper.

3In our case, X(t) is simply a set of independent random variables
conditioned on X(t− 1).

4This assumption rules out protocols in which stations, for example, are
simply assigned to transmit or not based on their location [6].
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Fig. 2. Optimal pattern and its tessellation in square networks.
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Fig. 3. Optimal pattern and its tessellation in triangular networks.

of neighbors a station has, i.e., k = 4 and 6 for square and
triangular networks, respectively.

Proof: The converse part of the theorem is first estab-
lished. Let p be the fraction of stations transmitting over
any given slot. Since a station cannot transmit and receive
simultaneously, ρBC ≤ 1 − p. Also, a transmission results in
at most k successful receptions, therefore, ρBC ≤ kp. Hence,

ρBC ≤ min{1− p, kp}.

The maximum of the right-hand-side over all p satisfies 1−p =
kp, which implies that the instantaneous throughput of any slot
is upper bounded by k/(k + 1), and so is ρBC.

We next describe a transmission schedule which achieves
the maximum throughput. For square networks, consider the
pattern shown in Fig. 2, where 0 means transmitting, 1, 2,
3 and 4 mean receiving a packet from the left, down, up
and right transmitters respectively. This pattern tessellates
the plane as shown in Fig. 2 and achieves a throughput of
4/5. For triangular networks, the required pattern is shown
in Fig. 3, where 0 means transmitting, 1, 2, 3, 4, 5 and 6
mean receiving a packet from the left, lower-right, lower-
left, upper-right, upper-left and right transmitters respectively.
This pattern tessellates the plane as shown in Fig. 3, and a
throughput of 6/7 can be achieved.

IV. ACHIEVING THE MAXIMUM BROADCAST
THROUGHPUT VIA NEAREST-NEIGHBOR INTERACTIONS

In this section, a distributed algorithm is developed, which
allows the patterns shown in Figs. 2 and 3 to emerge and
shift periodically, starting from arbitrary initial configuration,
using only nearest-neighbor interactions.



A. Square Networks

Choose E = {0, 1, . . . , l − 1} with l = 5, and consider the
following dynamics or protocol. Let ⊕ and 	 denote addition
and subtraction modulo l respectively. At time t, station r
collects state information

{
Xr′(t)

}
r′∈Nr

and selects its state
at time t+ 1 from the multi-set

V(i,j)(t) =
[
X(i−a,j−b)(t)⊕ h⊕ ad1 ⊕ bd2 :

(a, b) ∈ N(0,0) ∪ {(0, 0)}
]

(1)

where N(0,0) is the set of neighbors of station (0, 0). Each
state s ∈ Vr(t) is selected with a probability proportional to
f(ns), where ns is the number of occurrences of s in Vr(t)
and f : N 7→ R is some increasing function with f(0) = 0.
The parameters l, h, d1, d2 represent the size of the smallest
repeating unit, the direction of pattern shift, and the difference
in the states of neighboring stations along the horizontal and
vertical directions, respectively. The multi-set Vr(t) can be
interpreted as a collection of votes on a station’s next state
from all of its neighbors and itself. The more votes on a
given state, the higher probability the state will be chosen.
No transition is made to any state that receives zero vote
because f(0) = 0. The interactions are asymmetric, since
Vr(t) depends on the orientation of the state information. An
example of f is f(ns) = ens1{ns>0}, where 1{ns>0} is 1
if ns > 0 and 0 otherwise, which results in the Boltzmann
distribution on Vr(t). We next show that the throughput of the
system converges to the maximum under these dynamics.

Theorem 2. For a finite square network with periodic bound-
ary condition, under the preceding Markov dynamics with
gcd(h, l) = 1, X has the unique stationary distribution

π(x) =

{
l−1, if x = x(k) for k = 0, . . . , l − 1

0, otherwise
(2)

where the l recurrent configurations x(k) =
{
x
(k)
(i,j)

}
, k =

0, . . . , l − 1, have the following properties:
i) x

(k)
(i,j) = x

(k)
(i−1,j) ⊕ d1,

ii) x
(k)
(i,j) = x

(k)
(i,j−1) ⊕ d2, and

iii) x
(k)
(i,j) = x

(k	1)
(i,j) ⊕ h,

and all other configurations are transient.

Proof: First note that there will be exactly l configurations
that satisfy properties i) and ii) in the theorem. Moreover, these
configurations can always be ordered so that property iii) is
satisfied. Given such an ordered list of configurations, we next
show that this set must be recurrent. Suppose the previous
configuration is x(k). Observe that x(k)(i−1,j)⊕h⊕d1, x

(k)
(i,j−1)⊕

h⊕d2, x(k)(i,j)⊕h, x
(k)
(i,j+1)⊕h	d2, x

(k)
(i+1,j)⊕h	d1 are all equal

by properties i) and ii). Hence, the current state of station (i, j)

will be x(k)(i,j) ⊕ h with probability 1, and from property iii)
the current configuration is x(k⊕1). Therefore, x(0), . . . ,x(l−1)

form a cycle in the configuration space, and so are absorbing.
To see that the remaining configurations are transient, select

any of them to be the initial configuration. Fix a station r

and let its state be s. Under the given Markov dynamics,
station r will vote for itself to transition to state s⊕h and for
each of its neighbors to transition to the state that is locally
consistent with s⊕h under one of the recurrent configurations.
Hence, in one step of the Markov dynamics there is a positive
probability that all stations in Nr∪{r} transition to such a local
configuration. Likewise, in the next transition, there will be a
positive probability that all stations in Nr∪{r} remains locally
consistent with a recurrent configuration and the neighborhood
of each station in Nr is also consistent with the same configu-
ration. Continuing it follows that with sufficiently many steps
there will be a positive probability that the entire network
transitions to one of the recurrent configurations. Since the
l recurrent configurations are absorbing, there is a nonzero
probability that the initial configuration will never be visited
again and so it must be transient.

From symmetry it then follows that the stationary distribu-
tion for these dynamics is given by (2).

To prevent starvation and avoid collisions, we need
gcd(h, l) = gcd(d1, l) = gcd(d2, l) = gcd(d1±d2, l) = 1. For
the pattern in Fig. 2, we have d1 = 1, d2 = 2. The protocol
allows the pattern to emerge via nearest-neighbor interactions,
and the pattern can be shifted in any direction by choosing
h, where h = 1 shifts the pattern to the left, h = 2 shifts it
down, h = 3 shifts it up and h = 4 shifts it to the right.

B. Triangular Networks

For a triangular lattice, similar dynamics can be defined by
using a state space with l = 7 states. At time t, station r
selects its state at time t+1 from the multi-set Vr(t) given by
(1), where N(0,0) is now the set of neighbors of station (0, 0)
in a triangular network. The l = 7 recurrent configurations
also satisfy

iv) x
(k)
(i,j) = x

(k)
(i−1,j−1) ⊕ d1 ⊕ d2

in addition to properties i), ii) and iii) in Theorem 2. Following
similar arguments as in the proof of Theorem 2, these are the
only recurrent configurations, and the stationary distribution
resulting from these dynamics is also given by (2).

To prevent starvation and avoid collisions, we need
gcd(h, l) = gcd(d1, l) = gcd(d2, l) = gcd(d1 ± d2, l) =
gcd(d1 + 2d2, l) = gcd(2d1 + d2, l) = 1. For the pattern
in Fig. 3, we have d1 = 1, d2 = 2. The pattern will emerge
from the local interaction protocol and can be shifted in any
direction by choosing h, e.g., the pattern shifts to the left if
h = 1, whereas it shifts toward the lower-right corner if h = 2.

C. Simulations

The upper part of Fig. 4 shows a simulation result of the
protocol for square networks of size 20× 20 and 100× 100.
The function f defined in the protocol is f(ns) = ens1{ns>0}.
The throughput increases at the beginning, and then it stays
very close to the optimum of 4/5 for the remainder of the
simulation. The throughput stays at the optimum once the
network reaches one of the recurrent configurations and begins
to cycle through all recurrent configurations. The time it takes
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Fig. 4. Simulation of the 5-state protocol for square networks with (upper)
and without (lower) periodic boundary condition.

for the protocol to reach the optimal throughput increases with
the network size.

Note that without the periodic boundary condition, bound-
ary stations have fewer neighbors. The protocol achieves a
throughput slightly smaller than that in Theorem 1 [7], as is
shown in the lower part of Fig. 4. This is due to the fewer
transmissions by the boundary stations, e.g., a station on the
left boundary cannot transmit a packet to its ‘neighbor’ on the
right boundary.

V. A MAC PROTOCOL BASED ON THE ISING MODEL

In the above protocol, we assume there are multiple idle
states. It would be difficult for stations to distinguish the
states of their idle neighbors unless we allow idle stations to
explicitly notify their neighbors. In this section we discuss a
protocol for square networks based on the Ising model, in
which a station only needs to know whether its neighbors
transmitted or not in the previous time slot.

The Ising model [3], [4] was originally proposed to model a
spin system in stationarity. Each spin can be in ‘up’ or ‘down’
state, which is affected by the external magnetic field acting
on it and its interactions with neighboring spins. We can use
the Ising model to model regular wireless networks, such that
the spins represent the stations, and E = {+1,−1}, where
+1 means transmitting or ‘up’, and −1 means idle or ‘down’
[2].

Let x = {xr}r∈S and y = {yr}r∈S be the previous and
current configurations, respectively. Consider the dynamics in
which each station r observes the previous states of stations
in Nr and chooses its current state according to

pr(yr|x) ∝ exp

( ∑
r′∈Nr

Jr′−rxr′yr

)
(3)

where Jr′−r denotes the interaction from station r′ to station
r. To simplify the notation, we will use Jl, Jr, Jd, Ju to denote

the interactions from the left, right, down and up neighbors,
respectively.

If we choose Jl � 0, Jr � 0, Ju � 0, Jd � 0, each station
tends to choose the same state as its left and up neighbors, and
the opposite state as its right and down neighbors. It can be
shown that with these interactions, the pattern in the upper-left
of Table I is stationary, except that it shifts to the lower-right
corner. More generally, the pattern in the upper-left of Table I
is formed (up to shifts) by choosing
• Jl � 0, Jr � 0, Ju � 0, Jd � 0, in which the pattern

shifts toward the lower-right corner, or
• Jl � 0, Jr � 0, Ju � 0, Jd � 0, in which the pattern

shifts toward the upper-left corner,
while the pattern in the upper-middle of Table I is formed (up
to shifts) by choosing
• Jl � 0, Jr � 0, Ju � 0, Jd � 0, in which the pattern

shifts toward the lower-left corner, or
• Jl � 0, Jr � 0, Ju � 0, Jd � 0, in which the pattern

shifts toward the upper-right corner.
The MAC protocol we introduce here is based on two Ising

models. The state of station r is a two-dimensional vector
(xr,1, xr,2) where {xr,1}r∈S form the first Ising model, while
{xr,2}r∈S form the second Ising model. That is, the protocol
consists of two independent copies of the dynamics described
by (3). In the first Ising model, we choose Jl,1 � 0, Jr,1 �
0, Ju,1 � 0, Jd,1 � 0 so that it forms the stationary pattern in
the upper-left of Table I, which shifts toward the lower-right
corner, and in the second Ising model, we choose Jl,2 �
0, Jr,2 � 0, Ju,2 � 0, Jd,2 � 0 so that it forms the stationary
pattern in the upper-middle of Table I, which shifts toward
the lower-left corner. In each time slot, station r transmits
when xr,1 = xr,2 = +1 and remains idle otherwise. One
possible resulting activity pattern is shown in the upper-right
of Table I. Each station either is a transmitter or receives one
packet from a neighboring transmitter without collision, and
a throughput of 3/4 is achieved. This activity pattern shifts
downward, which is the vector addition of the direction of
shifts of the patterns formed in the two Ising models. More
generally, the activity pattern shifts
• downward if Jl,1, Ju,1 � 0, Jr,2, Ju,2 � 0, Jr,1, Jd,1 �

0, and Jl,2, Jd,2 � 0,
• upward if Jr,1, Jd,1 � 0, Jl,2, Jd,2 � 0, Jl,1, Ju,1 � 0,

and Jr,2, Ju,2 � 0,
• to the right if Jl,1, Ju,1 � 0, Jl,2, Jd,2 � 0, Jr,1, Jd,1 �

0 and Jr,2, Ju,2 � 0,
• to the left if Jr,1, Jd,1 � 0, Jr,2, Ju,2 � 0, Jl,1, Ju,1 � 0

and Jl,2, Jd,2 � 0.
If we shift the pattern formed in the second Ising model in

Table I one position to the left, the resultant activity pattern
would be almost the same as the one in the upper-right of
Table I, except that it is rotated by 90 degrees. The activity
pattern still shifts downward, but in this case the stations in
every other column are starved. In Table I, every station can
be a transmitter, so the problem of starvation does not occur.
But since each station always transmits at the same time with



TABLE I
ACTIVITY PATTERN IN SQUARE NETWORKS RESULTING FROM USING TWO ISING MODELS.

time first Ising model second Ising model activity pattern
t − − + + − − − − + + − − − − + + − −

− + + − − + + − − + + − − − − − − −
+ + − − + + + + − − + + + + − − + +
+ − − + + − − + + − − + − − − − − −
− − + + − − − − + + − − − − + + − −
− + + − − + + − − + + − − − − − − −

t+ 1 + − − + + − − + + − − + − − − − − −
− − + + − − − − + + − − − − + + − −
− + + − − + + − − + + − − − − − − −
+ + − − + + + + − − + + + + − − + +
+ − − + + − − + + − − + − − − − − −
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Fig. 5. Simulation of the protocol using two Ising models for square networks
with strong (upper) and weak (lower) interactions.

either its left or right neighbor, each station has exactly one
neighbor that it cannot deliver a packet to. Also, there is no
control on which activity pattern to occur.

Finally, for state information exchange between neighbors,
we can let each time slot be preceded by two mini-slots.
Station r transmits in the k-th mini-slot if xr,k = +1, for
k = 1, 2.

The upper part of Fig. 5 illustrates a simulation result of the
evolution of the throughput of this protocol. In this example,
the interaction potentials are chosen such that Jl,1 = Ju,1 =
Jr,2 = Ju,2 = 5 and Jr,1 = Jd,1 = Jl,2 = Jd,2 = −5. Similar
to the protocol in Section III, the throughput increases at the
beginning. But in this case, the throughput stays close to 3/4
for an extremely long time. The reason is that at the time
the throughput is close to 3/4, the network can be partitioned
into large clusters such that the activity pattern in Table I
appears within each cluster but not on the boundary between
the clusters. When this happens, it is difficult to ‘merge’ the
clusters so that the pattern appears in the entire network.
Comparing with the size of the entire network, the boundary of
the clusters only occupies a small area, hence the throughput

is close to 3/4.
The lower part of Fig. 5 shows the same simulation, but

with weak interactions. All interaction potentials are reduced
to one-tenth of those in the upper part of Fig. 5. In this case, the
throughput fluctuates below 3/4 instead of staying constant.
The range of fluctuation is larger if the interactions are weaker.

VI. CONCLUSION

In this paper, we have studied MAC protocols in regular
wireless networks in which stations choose to transmit or
not based on their own previous states and those of their
neighbors. We have shown that, if neighboring stations are
able to exchange a few bits of state information, then a simple
protocol can be used to achieve the optimal one-hop broadcast
throughput. In case a station can only discern transmitting
or idle states of its neighbors, it is still possible to obtain
a throughput close to the optimum.

The interactions considered in this paper are asymmetric,
which requires directional antennas or additional information
exchange so that each station has orientation of the state
information it receives. If the interactions are required to be
symmetric, whether it is possible to achieve the maximum
throughput via nearest-neighbor interactions is open and left as
future work. The protocol developed here can also be extended
to unicast traffic [7].
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