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Abstract—We consider optimizing packet sizes and the re- optimal number of packets scales in the same way as without
use factor to minimize the delay required to send a message cooperative receptions, but the optimal re-use factoremses
between two nodes in a linear multi-hop wireless networks aject ithout bound as the signal-to-noise ratio (SNR) increases
to a reliability constraint. In earlier work, this problem w as - . . . .
considered for a network in which each node only decoded the while without cooperatlve reception th_'s app_roaches a dedn
transmission of the previous node, treating the transmissins Cconstant. Numerical results comparing this scheme to that

of all other nodes as noise. Here, we consider a cooperativewithout cooperative reception are also given.
transmission scheme in which a node uses the transmission§ o
all previous nodes to decode a given message. We analyze the
growth of the delay as well as the optimized system parametsr

as a function of the message size. Il. SYSTEM MODEL

|. INTRODUCTION As in [1], we consider an infinite one-dimensional model,

In a store-and-forward wire-line network with error freevhere all nodes are regularly spaced on a line and we
links, ignoring any overhead per packet, the end-to-end;del”orma”ze the distance between nodes to be 1. One node
to send a message over multiple hops is minimized by dividifg assumed to havé nats of data to send to another node
the message into as small of packets as possible so ag/tb€t H — 1 be the number of nodes betweerandy, each
benefit frompipelining. If overhead is not ignored, there is arPf Which is assumed to be a relay for the message (i.e. the
optimal packet-size that balances this pipelining effeithw number of “hops” ist7). To simplify the analysis, we assume
the amortization of overhead given by using larger packet§€ queuing delay on each hop is zero. This is reasonable
In multi-hop wireless networks, the picture becomes mo@$suming that the given flow has higher priority over other
complicated due to the interference between differenk4jh flows in the network. All nodes are assumed to transmit in
the presence of half-duplex constraints and that links ate the same frequency band (with normalized bandwidthi Jof
well modeled as error-free. To address these issues in [1 nd the interference is treated as Gaussian noise. The @hann
model was studied for optimizing both the packet-size and reétween any pair of nodes is modeled as distance dependent
use factor in a linear multi-hop wireless network with reaylyl path-loss with additive Gaussian noise. All nodes transitit
spaced nodes. These parameters where optimized to mininfi@er P and the noise power i8/,. We assume the nodes
the end-to-end delay for sending a fixed amount of data wi@nploy a regular TDM-schedule with reuse facfor so that
a given end-to-end reliability constraint, modeled usingie N time-slott nodesn K +(¢ mod K) are allowed to transmit,
exponents. Related models have also been studied in [2]-f® 7 = --.,—1,0,1,.... Furthermore, we assume that all

In [1], it is assumed that each node decodes and relays eB€f€s (including those not between the source and destmati
message based only on the received signal from its near@¥f@ys transmit in their assigned time-slot, so that theee a
neighbor, treating other simultaneous transmissions &enon© “edge effects” in terms of the received interference.

In particular, a node ignores transmissions by nodes ottaer t Next we describe the cooperative reception scheme we
its nearest neighbor. It is well-known that the throughplt gonsider, which we refer to as using “redundant receptions.
such a multi-hop network can be improved by using variodsach packet will be encoded into a codeword and transmitted
cooperative schemes, e.g. [6], [7]. Here we consider a simpley each node following the TDM schedule. For a given re-use
cooperative reception scheme as in [7], in which each not#gtor i, each node stores the transmissions of a message from
uses the transmissions of multiple previous nodes to decdi$eKk —1 preceding neighbors and uses these for decoding (see
a given message. Given such a scheme, we again consfder 1), treating all other interference as noise. The dista
optimizing the packet sizes and re-use factor. As in [1], weetween the transmitters and the receiver for th&Se- 1
focus on the asymptotic growth in the total delay as tHeansmissions arél — 1, K — 2, ..., 1, respectively, and so
message size increases. In this regime, we show that there will be receptions wittk’ — 1 different signal-to-noise-

This work was supported in part by the DARPA IT-MANET programder
grant W911NF-07-1-0028 and by NSF under grant CCF-0905224. 1To simplify notation, we us@at as the unit of information.



plus-interference ratios (SINRS). We consider a model in which the source divides theats
of traffic into m equal-sized packets containidg = # +h

/\ bits, whereh denotes an extra overhead needed per packet.

A The objective is to minimize the total delay given a reliapil

Time st FT % FF FF constraint that specifies the end-to-end probability obrefor
T the entire message must be at least

s S S I1l. A SYMPTOTIC DELAY ANALYSIS

A. Hop-by-hop Decoding Scheme
We begin by considering a hop-by-hop coding scheme, in

— which packets are coded individually for each hop. In thieca
FT FT """ Ff FT to guarantee an end-to-end reliability of it is sufficient to
guarantee a hop-by-hop reliability gf,, = .
Fig. 1. Example of using redundant receptions. It follows from (4) that the delayD; of sending one packet

over one hop must now satisfy
Let . D (# +h)— %1og i )
(Mo o) — J (@ YTk 0\
R S N 1 S e S e S o 1+ 2472
denote the received SINR for a packet transmitted by t
node ; hops away from a given receiver, where is the
path-loss exponent. Let be the vector of theX — 1 SINRs

used for decoding. Given that a packet with block-lenlyii

Y

br‘ahe number of time slots from the source node sending out
the first block until the destination node receives the l&stib
is H+ (m — 1)K. Thus, the total delay should satisfy

containing L, nats of information is successfully received (H + (m —1)K) {(A +h) —Llog L}
by all of the K preceding neighbors of a given nodethe D> m p_omH] (6)
probability, P,;, that the packet is not received correctly by ZK_’llog <1 + w(%J’O)
node: can be bounded as [8]: =1 i
Puy, < exp(pLy — Nuo(Eo(p,7))), ) We consider the behavior of the bpund in (6) yvhen the
length of the messagé goes tooco. First, we rewrite the

for any p € [0, 1], where right-hand side of (6) as

K-1 (No

Eo(p,v)p Z log <1 + %) . 3 D= K ~ (L + lmlogm

i=1 P Zfi;l log <1 + 'VJ‘(E[;K)) p

This follows from viewing the/ — 1 received transmissions as

the outputs ofK’ — 1 parallel Gaussian channels with different +b1_L + (h +b2)m + by logm + ibl(h + b2)> . @
SINRs and bounding the error exponent for these channels MK Kp K

as in [8] 2. To apply this result we require that each nodghere by = H— K, andb, =
re-encodes a packet usingiferent codeword on each hop. is jgentical to the corresponding one in [1] expect for the

Given an upper boundy, on the block error probability ,afficient K 1t follows that asl, — co

Py, for a single hop, the minimun¥y,, satisfying SE-1, 14 25O
j=1 &) 1+p

—log #. This expression

Kol vi( Do, K) for a fixed K that the results in [1] still hold, which are
Nhuop Z log | 1+ 1+, > pLy —lognm,  (4)  summarized in the following proposition.
=1 Proposition 1: Let p* andm* minimize (7) over) < p < 1
is the minimum delay for sending a block bf nats over that andm > 1. If L — oo, then p* and m* satisfy p* — 0,
hop for which we can use (3) to guarantee that the reliability,* — o0, and L m*?logm* = O(L).

constraint is met. In the rest of the paper, we use this valgge proof of this follows from the same argument as Propo-
of Ny, as the minimum delay for each hop. sition 2 in [1] and so is omitted.

2|f the first node of theil hop propagation interval is the source node, then Proposition 1 ShOW_S the Ime_ar Sca“ng OI the total .end to
nodes2, 3, ..., K — 1 receive fewer thark — 1 copies of the message. To €Nd delay and the optimal scaling @f* and p* under a fixed
simplify the discussion, we assume that the source nodsrhitsin each time reuse factor/X'. The coefficient of the highest order term in
slot with different power to mimic the transmissions frone thodes ahead of (7) is
it, and all the other nodes receive the same number of dtploapies.

3In the usual parallel channel model the transmissions aresimultane- P K
ously by a single transmitter, while here they are sent derdifit times by g(K, —) = . (8)

different transmitters. Conditioned on all preceding sraiiters receiving the ZK—l log (1+ W(%J{)
packet, this difference does not matter. Jj=1 1+p




In [1], it is shown that the optimak™ minimizing the analo-  Next, we show thats; > K;. If we ignore any integer
gous term without redundant receptions is a bounded cansteonstraints onk; then this value should satisfy
for all values of the SNR;~ 2 Next, we consider whether
this is still true with redundant receptions and compare the 9 K
optimal reuse with that for the scheme without redundant - = 0. (13)
o)
K=K;

receptions in [1]. For a given SNR, lé{; be the value of 1+ 2 (ﬁp’
K minimizing g(K, N%) and letK; be the choice of that

I Nog o . If
minimizesK/log ( 1 + “(%OP’K) , which is the highest order 0 ( No)
term for the scheme without redundant receptions. We want o7 P
to compareK; and K, as a function of the SNR. To do this
we consider several different SNR regimes.

We begin by studying the case where the SNR beco

asymptotically smaII.P A To complete the proof, requires showing that (14) holds; the
Proposition 2: As 1= — 0, K2 — 2 and Ky — 2. proof of this is sketched in the Appendix. n
Proof:  Letting +- N—O — 0 is equivalent tof2 — oo, in Finally, we consider the high SNR case, where the SEIR
which case the noise component will be much larger than thges tooco.

interference part and sg; (42, K) — I~ and the limiting Lemma 1: If £ — oo, then no finite X will minimize

<0

— 3

(14)

K=K,

then there must exist somB.f larger thank; which yields
a smaller value ofy(K ) This implies that ignoring any
n\ﬁ?eger constraintg(, > K 1.

No No
value ofg(K, £-) is given by " 9(K, 5-)- _
Proof: Let f(x) denote function
lim g(K, P —) = lim L{} 1 o
Mo 00 Ny Yo o0 Z e<1+ : flx)=log [ 1+ 1 = — —
p N, T (G40 - 0))
= %= Jim 2_ (9 _ _ (15_)
ZJ LT M Ltp It can be easily shown thaf(x) is a convex decreasing
function, withlim,—q f(z) = oo, and f(1) = 0.
Therefore, theK minimizing % also minimizes  The K minimizing g(K, o) is the same as th& maxi-
g(K, £-) for small enough SNR. Sinc — 17 is a mono- Mizing
tonlcally increasing function of{ for all posmve integerdy, %
the smallest possible choice @f yields the minimal value Z log | 1+——"—— + =% Z f (16)
and soK,; — 2. The same argument applies &5, . ]

Next, we consider the case Wh%% is some finite non-zero which can be seen to be a lower bound on the integral of
constant. this function f(x). As K becomes large, the resulting bound
Proposition 3: If £~ is a finite non-zero constant, thét, ~ will approach the Riemann integral ¢fx) and thus the result

is a finite constant and ignoring any integer constraiijs> follows. [ |
K. Proposition 4: As N— — 00, then Ky — oo.
Proof: First, we will show thatK is finite. Consider Proof: Applying Lemma 1, the result follows. ]
This result implies that for large enough values®fNy,
7]-(%,1{) %( oK) i« we'd prefer to have at most one node transmitting at a time
log 1+p 14+p < No(14p) (10) and all nodes would participate in the transmission. Noé th
F the numerator ofy in (8) reflects the increase in end-to-end
It then follows that delay due to a loss in pipe-lining with larger choices iof
P K K The denominator of reflects the decrease in delay due to an
9(K, F) > 1 ; (11) increase in the “rate per hop” due to lower interference and a
0 K-1(_j-o v ¢ (@) - :
ijl (%) 5 (1+p) larger cooperative group of users. This result shows that fo

high SNRs the later effect dominates.

where((a) is the Riemann-Zeta function. Taking the limit a3 concatenated Decoding Scheme

K — it follows that :
o In [1], a concatenated coding scheme was also considered

lim g(K, i 2> tim K — . (12) in which an end-to-end.outer code is used to correct missing
K00 Ny K—00 L packets that do not arrive at the destination. For the scheme
without redundant reception, it was shown that the totatend
Thus, the optimalK, has to be finite. end delay still grows linearly wittL, but that the concatenated
coding scheme has smaller end-to-end delay due to slower
4We assume the minimal feasiblé is 2 due to the half-duplex constraint. growth in the second highest order terms.




We can consider combining our scheme with redundant ‘ ‘ ‘
receptions with such a concatenated code. Using the same —o— Opumal pulo CC
formulation in [1] and applying the similar argument as in o ’
Section 1lI-A, the scheme with or without the redundant Eost
reception again have the same order of growth and differ only }
in the highest order coefficient. In particular it can be show
that all the results given in Section IlI-A still hold for dua
scheme. We omit the details due to space considerations.

IV. NUMERICAL RESULTS 150

Optimal m
e
B
8

In this section, we present some numerical results for non-
asymptotic systems. First in Fig. 2 we show the growth order
of the minimal delays using for the scheme with redundant
reception both with and without concatenated coding. We als
plot the first order terms for each scheme. It is clear that the
highest order term dominates the total delay. We also show Fig. 3. Optimalp’s andm’s.
the behavior of the optimal for different messages sizes
L. Figure 3 shows the optimal andm as a function ofL.

The results shown in these two figures are consistent with our . PelRy SEn D e receptons
analysis. In all of these figures,= 3, = 0.001, No/P =1,
h =10, andH = 10. oof
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ol i Fig. 4. The ratio of the optimal delay with redundant recamsi to that
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o’ o’ ' o’ ! V. CONCLUDING REMARKS

In this paper, we considered a linear ad hoc network in
Fig. 2. Minimum delays and optimak’s with redundant receptions. ~ Which nodes combine multiple copies of a message received
with different SINRs. By jointly decoding, the performarioe
terms of delay for a given reliability is boosted compared to
Next we compare the delay and reuse factors between usihg schemes studied in [1] in which decoding was based only
redundant receptions and not using them as in [1]. Figureof the transmission of the nearest node.
shows the delay gain of the scheme with redundant receptionWe also considered the delay performance under different
over the scheme without it. The ratio of the optimal delayhwitSNR settings. In the low SNR regime, the noise dominates, and
redundant receptions to that without redundant recepti®nsusing redundant receptions gives little improvement nedat
shown as a function of SNR for different choices of the patlo the schemes in [1]. In this regime, both schemes have a
loss constantv. As expected, the ratio decreases with SNRimilar optimal reuse facto#&’. On the other hand, in the
For a given SNR, the ratio increases with high SNR regime, the scheme with redundant receptions has a
Figure 5 and Figure 6 show the optimal reuse fackor better performance gain and much larger optifiathan the
versus the SNR for the scheme with and without redundasrevious scheme. In the limiting case, where the SNR goes to
receptions, respectively. These two figures show that as pse, the analysis suggests that the reuse factor of the redtindan
dicted, the optimaK for the scheme with redundant receptiomeception scheme will become arbitrarily large. This iragli
increases without bound while the optimAl for the other no reuse, which is quite different from the scheme without
scheme converges to a bounded constant. redundant receptions.



. Oplim‘al K with red‘undam recep‘!ions ‘ A PPENDIX
e It can be shown that
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