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Abstract—We consider a model for information theoretic
games on interference channels introduced in previous work.
The players in these games are the users, who autonomously
select their encoding and decoding strategy with the objective of
maximizing their own rate. In previous work, a Nash equilibrium
region for this game was defined and completely characterized for
two-user linear deterministic interference channels. In particular
for such channels it was shown that there always exists an efficient
Nash equilibrium. In this paper, we consider extending this to
models with more than two users. We show that some of the
analysis extends to networks with more than two users, however,
significant differences also emerge. For example, it may no longer
be the case that there are always efficient equilibria.

I. INTRODUCTION

Mitigating interference is a key challenge in wireless net-
works (as well as some wireline cases). In an open environ-
ment, where the users (or device manufactures) have freedom
in their choice of operating parameters, it is important to
understand how the incentives of different users effect their
desire to control interference. Such questions are naturally
studied using game theory.

Here, we focus on a basic example of such a problem,
namely a game among a set of users sharing an interference
channel. In this channel each user communicates an indepen-
dent message over a point-to-point link, and the links interfere
with each other through cross-talk. Each user’s objective is
to maximize his own throughput; however, doing this effects
the performance of the other users as well. The canonical
information theoretic model for an interference channel is
the Gaussian interference channel. The capacity region of
this channel is not known in general. However, recently the
capacity region for the two-user interference channel has been
characterized to within one bit for all values of channel
parameters [1]. Furthermore, it is shown in [2] that the high
SNR behavior of the two-user Gaussian interference channel
is in fact captured by a deterministic interference channel,
for which the capacity region can be computed exactly using
the results in [4]. (This type of deterministic model was first
proposed in [5] for Gaussian relay networks.)

In [8], a game theoretic model for two users communicating
over a general interference channel was developed. In particu-
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lar, the Nash equilibria region of the channel was defined as a
natural extension of the information theoretic capacity region.
If a pair of rates lie in this region then for long enough block
lengths there exists a pair of encoding and decoding strategies
from which neither user is willing to deviate if they require
arbitrarily small probability of error. In [8], this region was
then completely characterized for the two-user deterministic
interference channel model from [2]. This region had a very
simple structure and was always given by the intersection of a
“box” with the capacity region. Moreover, it was shown that
there are always Nash equilibria which are efficient, i.e., which
lie on the maximum sum-rate boundary of the capacity region.
In [9], these results were partially extended to the two-user
Gaussian interference channel.

In this paper, we consider extending the game theoretic
model in [8] to interference channels with more than two users.
As in [8] we restrict our attention to the linear deterministic
channel models. The analysis in [8] benefited from the fact the
for two users, the capacity region of the deterministic channel
is known. This is not the case for a general deterministic
interference channel with more than two users. Hence, we
focus on a few special cases K-user deterministic interference
channels and use these to show that in some cases the insights
from the two user case directly generalize, while in other cases
they do not. Moreover, we show that with more than three
users there will not always be an efficient Nash equilibria.

Other game theoretic approaches for interference channels
have been studied before, mainly focusing on Gaussian mod-
els, e.g. [6], [7]. However, there are two key assumptions in
these works: 1) the class of encoding strategies are constrained
to use random Gaussian codebooks; 2) the decoders are
restricted to treat the interference as Gaussian noise and are
hence sub-optimal. Because of these restrictions, the formula-
tion in these works are not information-theoretic in nature. For
example, a Nash equilibrium found under these assumptions
may no longer be an equilibrium if users can adopt a different
encoding or decoding strategy as we allow here.

II. PROBLEM FORMULATION

To begin, we define the basic interference channel game
for K users; this directly generalizes the K = 2 user
game presented in [8]. Communication starts at time 0. Each
user i = 1, . . . ,K communicates by coding over blocks of



length Ni symbols. Transmitter i sends on block k infor-
mation bits b

(k)
i1 , . . . , b

(k)
i,Li

by transmitting a codeword de-

noted by x(k)
i = [x(k)

i (1), . . . ,x(k)
i (Ni)]. All the information

bits are equally probable and independent of each other.
Receiver i observes on each block k an output sequence
y(k)

i = [y(k)
i (1), . . . ,y(k)

i (Ni)] through the interference chan-
nel, which specifies a stochastic mapping from the input se-
quences of users 1, . . . , K to the output sequences of the users.
Given the observed sequences up to block k, {y(m)

i }k
m=1,

receiver i generates a guess b̂
(k)
i� for each information bit.

Without loss of generality, we assume that this is done via
maximum-likelihood decoding on each bit.

Note that this communication scenario is more general than
the one usually used in multiuser information theory, as we
allow the users to code over different block lengths. Such
generality is necessary here, since even though the users may
agree a priori on a common block length, a selfish user may
unilaterally decide to choose a different block length during
the actual communication process.

A strategy si of user i is defined by its message encoding,
which we assume to be the same on every block and involves:

• the number of information bits Li and the block length
Ni of the codewords,

• the codebook Ci employed by transmitter i,
• the encoder fi : {1, . . . , 2Li} × Ωi → Ci, that maps on

each block k the message m
(k)
i := (b(k)

i1 , . . . b
(k)
i,Li

) to a

transmitted codeword x(k)
i = fi(m

(k)
i , ω

(k)
i ) ∈ Ci,

• the rate of the code, Ri(si) = Li/Ni.

Let s = (s1, . . . , sK) denote a strategy profile, i.e., a
choice of strategies for each user i = 1, . . . , K. A given
profile s jointly determines the probabilities of error p

(k)
i :=

1
L

∑Li

�=1 P(b̂(k)
i� �= b

(k)
i� ), i = 1, . . . , K. Note that if the users

use different block lengths, the error probability could vary
from block to block even though each user uses the same
encoding for all the blocks.

The encoder of each transmitter i may employ a stochastic
mapping from the message to the transmitted codeword;
ω

(k)
i ∈ Ωi represents the randomness in that mapping. We

assume that this randomness is independent between the two
transmitters and across different blocks and is only known at
the respective transmitter and not at any of the receivers.

For a given error probability threshold ε > 0, we define an
ε-interference channel game as follows. Each user i chooses
a strategy si and receives a pay-off of πi(s) = R(si) if
p
(k)
i (s) ≤ ε, for all k; otherwise, πi(s) = 0. In other words,

a user’s pay-off is equal to the rate of the code provided that
the probability of error is no greater than ε. A strategy profile
s is defined to be (1 − ε)-reliable provided that it results in
an error probability pk

i (s) of less than ε for i = 1, . . . , K and
all k.

For an ε-game, a strategy profile s∗ = (s∗1, . . . , s
∗
K) is

a Nash equilibrium (NE) if no single user can unilater-
ally deviate and improve his pay-off, i.e. if for each user

i = 1, . . . ,K, there is no other strategy si such that1

πi(si, s∗−i) > πi(s∗i , s
∗
−i). If user i attempts to transmit at

a higher rate than what he is receiving in a NE and the
other users do not change their strategy, then user i’s error
probability must be greater than ε. Similarly, a strategy profile
s∗) is an η-Nash equilibrium2 (η-NE) of an ε-game if no user
can unilaterally deviate and improve his pay-off by more than
η, i.e. if for each user i, there is no other strategy si such that
πi(si, s∗−i) > πi(s∗i , s

∗
−i)+ η. Note that when a user deviates,

it does not care about the reliability of the other users but only
its own reliability. So in the above definitions (si, s∗−i) is not
necessarily (1 − ε)-reliable.

Given any ε̄ > 0, the capacity region C of the interfer-
ence channel is the closure of the set of all rate vectors
(R1, . . . , RK) such that for every ε ∈ (0, ε̄), there exists
a (1 − ε)-reliable strategy profile s that achieves the rate
vector (R1, . . . , RK). The Nash equilibrium region CNE of
the interference channel is the closure of the set of rate pairs
(R1, . . . , RK) such that for every η > 0, there exists a
ε̄ > 0 (dependent on η) so that if ε ∈ (0, ε̄), there exists a
(1− ε)-reliable strategy profile s that achieves the rate vector
(R1, . . . , RK) and is a η-NE. Clearly, CNE ⊆ C. Here, our
goal is to characterize which rate points in C are included in
CNE.

Following [8], we consider this question in the context of
the linear deterministic interference channel model introduced
in [2]. In this channel, channel input for each is interpreted as a
succession of levels: x = 0.b1b2b3b4b5 . . . . each representing
one bit of the real-valued input to the corresponding Gaussian
channel. The most significant bit coincides with the highest
level, the least significant bit with the lowest level. Noise
is modeled by truncation. Bits of smaller order than the
noise are lost.The signal from transmitter i, as observed at
receiver j, is scaled by a nonnegative integer gain aji = 2nji

(equivalently, the input column vector is shifted up by nji).
At each time t, the input and output, respectively, at link i
are xi(t),yi(t) ∈ {0, 1}q , where q = maxij nij . Note that nii

corresponds to log2 SNRi and nji corresponds to log2 INRji,
where SNRi is the signal-to-noise ratio of link i and INRji is
the interference-to-noise ratio at receiver j from transmitter i
in the corresponding Gaussian interference channel. To model
the super-position of signals at each receiver, the bits received
on each level are added modulo two. The channel output at
receiver i is then given by

yi(t) =
K∑

j=1

Sq−nijxj(t), (1)

where summation and multiplication are in the binary field
and S is a q × q shift matrix (e.g. see [5]).

In [8], CNE was completely characterized for the linear
deterministic channel model with K = 2 users. In particular,

1We use the notation s−i to denote the set of strategy choices for every
user except user i. Also, with a slight abuse of notation we use (si, s−i) to
denote the profile s.

2In the game theoretic literature, this is often referred to as an ε-Nash
equilibrium or simply an ε-equilibrium for a game [10, page 143].
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Fig. 1. Examples of CNE for for a symmetric deterministic interference
channel with normalized cross gain α.

CNE was shown to be equal to the intersection of a “box” B
and the capacity region C of the deterministic channel (see
Figure 1). The intersection is always non-empty and contains
at least one point on the sum-rate boundary of C.

III. ANALYSIS

A. Bounds

In this section, we generalize the “box” bounds in [8] to
a K-user linear deterministic interference channel. We first
make some preliminary definitions. For a given user i, let
Li = (nii − maxj nij)+ denote the number of interference
free levels at user i’s receiver; at these levels user i never sees
any interference from another user. Let Di denote the nii direct
levels at user i’s receiver, i.e. the levels that are connected to
that user’s transmitter. Let Qi be the set of levels at user i’s
receiver that are connected to an interference free level for any
other user j �= i. Finally, let Ui = |Di\Qi|; this is the number
of direct levels at user i that are not interfered with by any
other user’s interference free levels. The generalization of the
bounds in [8] is then given in the following lemma.

Lemma 1: If (R1, . . . , RK) ∈ CNE, then for each user i,
Li ≤ Ri ≤ Ui.

Let B =
∏

i[Li, Ui] be a K-dimensional box formed by
taking the Cartesian product of these bounds. This lemma
can then be re-stated as saying that CNE ⊆ C ∩ B, i.e. the
Nash equilibrium region must lie within the intersection of the
capacity region and this box. The proof of Lemma 1 follows
from a similar argument as in the two-user case; we briefly
provide some intuition behind this. It can not be that a user
achieves a rate lower than Li in a Nash equilibrium since that
user can always change his strategy to simply transmitting
uncoded information on the Li interference free levels and
so improve his pay-off to at least Li. Furthermore, when all
users are sending at maximum rate on their Lj interference
free levels, this will create maximum entropy interference to
each user i on |Qi| levels rendering them unusable. This leaves
Ui remaining levels, which upper bounds a user’s reliable rate
for ε small enough.

Following [8], we define a profile of strategies (s1, . . . , sK)
to be a partial Bernoulli profile if: (1) each user i sees
i.i.d. Bernoulli-1/2 interference on ki levels at his receiver,
which interfere with his transmitted signal and (2) each user
i, transmits at rate Ri = nii − ki with zero probability of
error. As the next lemma states, such strategies are useful for
showing that a given rate point is in CNE.

Lemma 2: If there exist a partial Bernoulli profile that
achieves the rate point (R1, . . . , RK), then (R1, . . . , RK) ∈
CNE.

Using this, we then have the following result which states
that the “lower” corner of B is always in CNE .

Lemma 3: The rate point (L1, . . . , LK) are always in CNE .
This follows as in the two-user case by considering a strat-

egy profile in which each user transmits uncoded information
on his interference free levels and i.i.d. Bernouli-1/2 noise on
the remaining levels that appear at any receiver. Note that if
nij > njj then this requires user j to transmit i.i.d. noise
at some levels that appear below the noise floor at that user’s
own receiver. It can be seen that this satisfies our requirements
for a partial Bernoulli profile.

B. One-to-Many and Many-to-One channels

Two classes of deterministic interference channels for which
the capacity region is known for more than two users are
the one-to-many and many-to-one models studied in [3]. For
the many-to-one interference channel, interference only occurs
at one receiver, which without loss of generality we assume
to be 1. For the one-to-many case, only transmitter 1 causes
interference to any other receiver.

The next lemma shows that in the one-to-many case, the
bounds in Lemma 1 have a relatively simple form.

Lemma 4: In a one-to-many deterministic interference
channel, U1 = L1 = n11, and for each user i �= 1,
Ui = Li + min(nii, (ni1 − n11)+).

Proof: Since user 1 does not see any interference, it must
be that L1 = U1 = n11.

Now suppose that ni1 ≤ n11 for some user i �= 1. In this
case, if user i can receive any interference on a level, it must
be receiving interference from one of user 1’s interference free
levels. Thus, it follows that Uj = Lj , which is the same as
the conclusion of the lemma for ni1 ≤ n11.

If instead, ni1 ≥ n11 then when user 1 transmits only on
his n11 interference free levels, the (ni1 − n11) lowest levels
at receiver i will not see any interference. Adding the max of
these and nii to user i’s Li interference free levels yields the
desired expression for Ui.

Using this we then have the following partial characteriza-
tion of CNE for a one-to-many channel.

Proposition 1: In a one-to-many deterministic interference
channel, if ni1 ≤ n11 for all i, then CNE = (L1, . . . , LK); oth-
erwise CNE contains multiple points including (U1, . . . , UK).

Proof: If ni1 ≤ n11 for all i, then the result follows
directly from Lemmas 3 and 4. If this condition is not satisfied,
consider the strategy profile in which user 1 transmits uncoded
information only on his interference free levels. Then each user



i �= 1 can send uncoded information on all of the U1 levels.
This is a partial Bernoulli profile and so from Lemma 2, we
have that (U1, . . . , UK) ∈ CNE.

In a two user interference channel, CNE = B ∩ C. The
preceding proposition shows that when ni1 ≤ n11 for all i
this also the case in a one-to-many interference channel with
more than two users. However, when ni1 > n11 for at least two
users i �= 1 this will no longer be true. To see this, consider
a symmetric one-to-many channel with three users in which
n21 = n31 > n11. For such a channel the rate pair (U1, U2, L3)
is in B ∩ C. Indeed, this rate pair can be achieved (with
zero probability of error) by modifying the strategy profile
in the proof of Proposition 1 for achieving (U1, U2, U3) by
having user 3 only transmit on its L3 interference free levels.
However, for η < 1, this rate pair can not be a η-NE for ε
small enough. This is because due to the symmetry any rate
that user 2 is achieving can also be achieved by user 3 and
since U2 = U3 ≥ L3 + 1, user 3 can deviate and improve
his rate by 1. The issue here is that the strategic interaction
of user 1 with user 2 and 3 is coupled due to the structure
of the channel. The constraints in the box do not account for
this coupling. Taking this into account it can be seen that in a
symmetric one-to-many channel, it must be that CNE is simply
the line segment in R

K connecting the points (L1, . . . , LK)
with (U1, . . . , UK). The next lemma generalizes this example:

Lemma 5: In a one-to-many deterministic interference
channel with K > 2 users, if ni1 > n11 for at least two
users i �= 1, then CNE �= B ∩ C.

Another property in the two-user case is that CNE always
contains an efficient rate point. Once again with more than
two users in a one-to-many channel, this may no longer be
true as summarized in the following Proposition.

Proposition 2: In a one-to-many deterministic interference
channel with K > 2 users, CNE will not contain a sum-rate
optimal point unless ni1 > nii + n11 for all i �= 1 except at
most 1 user.

We know from Proposition 1 that (U1, . . . , UK) ∈ CNE and
from Lemma 1 it follows that this rate point dominates any
other rate point in CNE. Hence to prove the theorem we simply
have to show that this rate point is not efficient. This can be
done by using the characterization of the maximum sum-rate
in [3]. Note that the condition that ni1 > nii + n11 means
that user 1’s creates very strong interference at user i. As an
example, again consider a symmetric many to one channel
with K = 3 users and assume that n11 = n22 = n33 = 3
and n21 = n31 = 2. For this channel, (U1, U2, U3) = (3, 1, 1),
resulting in a sum-rate of 5. However, the maximum sum-
rate of this channel is 7, which is achieved by the rate profile
(R1, R2, R3) = (1, 3, 3). The issue here is that when user 1
uses one of its two most significant levels, it creates interfer-
ence at two other users. Effectively a gain by user 1 causes a
net reduction in the sum-rate, resulting in the inefficiency. To
characterize this inefficiency, for a given channel define the
efficiency

γ =
RCNE

sum

RC
sum

, (2)

where RCNE
sum is maximum sum-rate in CNE and RC

sum is the
maximum sum-rate in C (e.g. in the previous example γ = 5

7 ).
It can then be seen that in a one-to-many interference channel
with K users γ ≥ 1

K−1 , and this bound is achieved in a
channel in which n11 = ni1 = nii for all i.

Next we consider the many-to-one case. By a similar
argument as that used to prove Lemma 4 we have the following
lemma for the many-to-one case. In this case, when n1i > nii

for some i then in general there does not seem to be a simpler
expression for U1.

Lemma 6: In a many-to-one deterministic interference
channel, Ui = Li = nii for all i �= 1 and if n1i ≤ nii for all
i �= 1, then U1 = L1.

In the many-to-one case, we can exactly characterize CNE

as given next.
Proposition 3: In a many-to-one deterministic interference

channel, CNE = B ∩ C.
Proof: When n1i ≤ nii for all i �= 1, then Lemma 6

implies that B is the single point (L1, . . . , LK), which we
know is in CNE from Lemma 3. When this is not true, then
B is a line segment connecting the points (L1, . . . , LK) to
the point (U1, L2, . . . , LK). To complete the proof, we need
to show that the point (U1, L2, . . . , LK) is also in CNE. To
do this consider the partial Bernoulli profile in which each
user i transmits only on his nii interference free levels and
user 1 transmits on each level for which he is not receiving
interference.

In this case, CNE will always contain an efficient rate point
as summarized next.

Proposition 4: In a many-to-one deterministic interference
channel, CNE always contains a sum-rate optimal rate point.

This follows from again using the characterization of the
sum-rate point in [3]. In this case it can be seen that this
will be exactly equal to the sum-rate achieved by the point
(U1, . . . , UK).

The previous results show that the results in [8] generalize
directly to the many-to-one case, but not to the one-to-many
case. A key difference between these two models is that in the
many-to-one case, each users action effects at most one other
user (user 1), while in the one-to-many case user 1’s actions
can effect multiple other users. This difference is at the heart
of the different behavior we observe with respect to these two
classes of channels.

C. Three-user bi-symmetric models

As another example we consider a class of three-user
bi-symmetric channels defined as all three-user channels in
which n11 = n22 = n33, n12 = n32 = n21 = n23 and
n13 = n31 = 0; i.e. there is no interference between users 1
and 3 and the interference between users 1 and 2 is the same
as that between users 3 and 2. Given such a channel, let C12

denote the capacity of the two user (symmetric) interference
channel created by removing user 3; and let C23 denote the
capacity of the channel created by removing user 1. Note
that the symmetry assumption implies that C12 = C23 The



next lemma shows that the symmetry of this channel can be
exploited to characterize the optimal sum-rate.

Lemma 7: Given a three-user bi-symmetric channel, if the
rate profile (R1, R2) ∈ C12, then (R1, R2, R1) ∈ C. Further-
more, if the rate profile (R1, R2, R3) ∈ C is sum-rate optimal,
then it must be that R1 = R3 and (R1, R2) ∈ C12.

Proof: If (R1, R2) ∈ C, then from [8] it follows that this
rate pair can be achieved by either uncoded transmission or
simply using repetition coding across two or more levels (and
possibly time-sharing). Given such a coding scheme, consider
the three-user channel in which users 1 and 2 implement the
same scheme and user 3 simply copies the scheme of user 1.
Since user 3 does not interfere with user 1, user 1 will still be
able to achieve rate R1 and from the symmetry, user 3 will
also be able to achieve R1. Next consider user 2. If in the
two-user case, user 2 was receiving Bernoulli-1/2 interference
due to user 1 transmitting uncoded information on a level, it
will still see the same interference due to the superposition of
user 1 and user 3’s signals on that level. Likewise, if in the
two-user case, user 2 was receiving a repetition of user 1’s
signal on two levels, then in the three user channel it will be
receiving a repetition of the superposition of user 1 and 3’s
signals on the same levels. Hence, user 2 can still achieve rate
R2, proving the first part of the lemma.

To prove the second part, suppose that (R1, R2, R3) ∈ C is
sum-rate optimal with R1 > R3. It must be that (R1, R2) ∈
C12 since the presence of user 3 can only decrease the sum-rate
of these two users. But then the first part of the lemma implies
that (R1, R2, R1) ∈ C, which would have a higher sum-rate
than (R1, R2, R3), contradicting our initial assumption.

Next we turn to the Nash equilibria region for this channel.
Let C12

NE and C23
NE denote the Nash equilibria regions for the

corresponding two user channels. The next lemma relates these
to CNE for the three-user channel.

Lemma 8: In a three user bi-symmetric channel, if
(R1, R2, R3) ∈ CNE then it must be that (R1, R2) ∈ C12

NE

and (R2, R3) ∈ C23
NE.

Proof: This follows from noting that the bounds Ui and
Li in Lemma 1 will be the same for each user i in the three
user channel and in the corresponding two user channel. Since
in the two-user channel CNE = B ∩ C, it follows that if a
achievable rate pair is not in C12

NE, then it must lie outside of
B for the two user channel and thus also be outside of B for
the three user case. Hence it can not be a Nash equilibrium.

Let α = n21
n11

denote the normalized cross-gain for each of
the two-user interference channels. As shown in Figure 1, the
structure of CNE in the two user case depends on the value of
this parameter. The next proposition shows that this parameter
determines the efficiency in the three user case.

Proposition 5: In a three-user bi-symmetric channel, CNE

contains a sum-rate optimal point only when α ≥ 2/3.
Proof: From Lemma 7, it follows that the maximum sum-

rate is given by maximizing 2R1+R2 over all (R1, R2) ∈ C12.
From the structure of the capacity region, it can be seen that for
α < 2/3, the solution to this problem will not lie in C12

NE and so

from Lemma 8 it can not be in CNE. When α > 2/3, this point
does lie in C12

NE. This can be translated into an equilibrium
strategy for the three user case by having users 1 and 2 use
the same strategy and having user 3 copy user 1’s strategy.

By a similar argument as in this proof, we can also de-
termine the efficiency γ for any channel in this family as a
function of α. This has the following form:

γ =

⎧⎪⎨
⎪⎩

3−3α
3−2α , 0 ≤ α ≤ 1/2,
3α
2 , 1/2 ≤ α ≤ 2/3,

1, 2/3 ≤ α.

(3)

Hence, the minimum efficiency for this class of channels is
3/4, which occurs for α = 1/2. Note that this is better than the
worst-case efficiency of 1

3 for a 3 user one-to-many channel.
This suggests that having mutual interference is beneficial for
incentivizing cooperative behavior.

We also note that for this class of channels, it can again be
shown that in general CNE is not equal to B ∩ C.

IV. CONCLUSIONS

We have studied the Nash equilibria region from [8] for
three classes of deterministic interference channels with more
than 2 users: one-to-many channels, many-to-one channels and
3 user bi-symmetric channels. We have seen that the Nash
equilibrium region behaves differently in each of these cases
and in general may not contain an efficient point. Characteriz-
ing these regions and the efficiency for more general M -user
channels is left to future work as is relating these results to
the corresponding Gaussian channel models.
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