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Abstract 
We consider the role of switching in minimizing the 
number of electronic ports (e.g., SONET ADMs) in an 
optical network that carries sub-wavelength traffic. 
Providing nodes with the ability to switch traffic 
between wavelengths, such as through the use of 
SONET cross-connects, can reduce the required 
number of electronic ports. We show that only small 
switches distributed among the nodes in the ring are 
needed for significant reductions in the number of 
ports. We characterize a class of network architectures 
that use both the minimal amount ADMs and the 
minimal amount of switching. We also give an 
algorithm for designing a topology that is efficient in 
both the required number of electronic ports and the 
amount of switching used.  

1 Introduction 
Wavelength Division Multiplexing (WDM) systems 
have increasingly been deployed to increase the 
capacity of optical networks. These networks typically 
have a SONET ring architecture. Nodes in such a ring 
use SONET Add/Drop Multiplexers (ADMs) to 
electronically combine lower rate streams onto a 
wavelength, e.g. 16 OC-3 circuits can be multiplexed 
onto one OC-48 stream.  With WDM, multiple SONET 
rings can be supported on a single fiber pair; however, 
each additional ring will require additional ADMs. The 
cost of these electronic multiplexers dominates the 
costs of such a network. To reduce the number of 
electronic ADMs, WDM Add/Drop Multiplexers 
(WADMs) can be employed; WADMs allow a 
wavelength to either be dropped at a node or to 
optically bypass a node.  When a wavelength is not 
dropped at a node, an electronic ADM is not required 
for that wavelength.  The required number of SONET 
ADMs can be further reduced by grooming the lower 
rate traffic so that the minimum number of wavelengths 
needs to be dropped at each node.   

The benefits of grooming with WADMs have been 
looked at in a number of recent papers including [1-7].  

In [1] it was shown that the general grooming problem 
is NP-complete.  However, for several special cases, 
algorithms have been found that significantly reduce 
the required number of ADMs.  For example, for 
uniform all-to-all traffic, algorithms have been found 
for both bi-directional rings [4] and unidirectional rings 
[1].  Heuristic algorithms for general (non-uniform) 
traffic have also been presented in [6-7]. In much of the 
work on grooming, such as [1,2,6,7], it is assumed that 
each low-rate circuit must stay on the same wavelength 
between the source and destination. This assumption 
can be relaxed when a node is equipped with SONET 
digital cross-connect (DCX), which allows for the 
electronic switching of low rate streams between 
SONET rings (i.e. wavelengths). The added flexibility 
provided by DCXs can reduce the required number of 
ADMs in a network. An example of this is given in [1] 
where it is shown that only equipping a single hub node 
with a DCX can reduce the required number of ADMs 
over a network with no switching capability, even when 
the hub node is required to have an ADM on every 
wavelength. In [5] it was shown that the cost savings, in 
term of ADMs, with a single-hub architecture can be as 
high as 37.5 percent. In other work, such as [3], it is 
assumed that every node can cross-connect every 
wavelength that is dropped at that node. Clearly, more 
switching capability will not increase the required 
number of ADMs. However, there is a non-negligible 
cost associated with providing this electronic switching. 
Therefore, in addition to minimizing the required 
number of ADMs, it is also desirable to limit the 
amount of switching in the network.  

In this paper, we consider architecures that are 
efficient both in terms of the number of ADMs used, as 
well as the amount of switching provided. In [8], it is 
shown that it is often possible to minimize the required 
number of ADMs in a network while only providing a 
limited amount of switching. In other words, additional 
switching capability does not lead to any further 
reduction in the number of ADMs. In [8], multiple-hub 
architectures were considered, where the nodes in the 
ring are divided into hub nodes and non-hub nodes. 
Each hub node can cross-connect every wavelength 



dropped at the hub while non-hub nodes have no DCXs. 
For such an architecture, with uniform traffic, it is 
shown in [8] that the optimal number of hub nodes is 
generally equal to the number of wavelengths of traffic 
generated by a node.  

In this paper, we relax the assumption that each 
node is either a hub or a non-hub node, and we allow 
only a subset of the wavelengths dropped at node to be 
cross-connected. In this case, instead of a few hub 
nodes with complete switching capability, each node 
may have some partial switching capability. We give 
examples to show that such an architecture can result in 
both an efficient use of ADMs as well as a small 
switching cost. Next, we describe the basic ring model 
to be considered and discuss quantifying the switching 
cost of a ring. Following this we give an example to 
illustrate the approach we are considering. We then 
characterize cases where an “optimal” architecture can 
be found. Finally we give a heuristic algorithm for 
switching and grooming in a ring. 

2 Ring Model 
In this paper, we consider unidirectional ring networks, 
such as a UPSR SONET ring. This is done primarily to 
simplify our description; much of the following can be 
easily generalized to bi-directional rings and, in some 
cases, to arbitrary mesh networks. Let N denote the 
number of nodes in the ring, and assume these are 
numbered 1, 2,. . . , N.  We assume that all traffic has 
the same granularity of g, i.e., g low-rate circuits can be 
combined on each wavelength, and that there is a 
uniform traffic demand of r ≤ g low-rate circuits 
between each pair of nodes in the ring. We also assume 
that sufficient wavelengths are available so that any 
wavelength limitations can be ignored. For the above 
situation, a lower bound on the number of ADMs 
needed, regardless of the amount of switching, is given 
by the following expression [5]: 
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In general, this bound is not tight, but it can be achieved 
in several cases. Some conditions needed for this bound 
to be tight are given in [8] and used to motivate the 
architectures presented there. 

To quantify the amount of switching used in 
different architectures, we assign a switching cost of 
(ng)2 to a DCX that can cross connect low-rate traffic 
between n wavelengths. Assuming that the DCX is a 
crossbar switch, this cost is equal to the number of 
cross-points in the switch. This is a common metric 
used in studying switch designs. If multi-stage switch 
architectures are used then this cost could be modified 
to reflect this. However the above metric will suffice to 
illustrate the points in this paper. The total switching 

cost for a ring architecture is then the sum of the 
switching costs of all DCXs in the ring.  

3 Example 
Consider a unidirectional ring with N=9 nodes, a traffic 
granularity of g=2 and uniform traffic demand of r=1 
circuit between each pair of nodes. In this case, from 
(1) we have a lower bound of 48 ADMs. First we 
consider supporting this traffic using a multi-hub 
architecture as in [8]. Each node generates 4 
wavelengths worth of traffic. Using the symmetric hub 
architecture from [8], this traffic can be supported with 
4 hub nodes and 50 ADMs. Each hub node receives one 
wavelength from each of the 5 non-hub nodes and must 
be able to switch circuits between these wavelengths. 
This requires a 5g×5g DCX. Therefore, the switching 
cost of this architecture is greater than1 4(100)= 400. 

Next we describe a distributed switching 
architecture for supporting the same traffic.  Consider 
dividing the nodes into the following groups of three: 

 

(1,2,3) (4,5,6) (7,8,9)  (1,4,7) 
(1,5,8)  (1,6,9) (2,5,7) (2,6,8) 
(2,4,9) (3,6,7) (3,5,9) (3,4,8) 

 

Notice that each pair of nodes is in exactly one of these 
groups. The traffic between all three nodes in each 
group can be supported by having two of the nodes 
send all of their traffic to the third node. A 2g×2g DCX 
at the third node can be used to switch the incoming 
traffic, which can then be forwarded to its destination. 
This requires 4 ADMs and a switching cost of (2g)2= 
16.  Since there are 12 groups, supporting all of the 
traffic requires 48 ADMs and a total switching cost of 
192. Notice that in this case we are using the minimum 
number of ADMs given by the bound in (1) and the 
switching cost is over 50 percent less than the cost for 
the symmetric multi-hub architecture. Also notice that 
any node within each group could serve as the “hub” 
for that group. For example, the switching capability 
could be spread out among all the nodes in the ring or 
concentrated at only 4 nodes. 

4 Perfect Architectures 
The distributed architecture in the above example meets 
the lower bound on the required number of ADMs from 
(1). This architecture can also be shown to have the 
smallest switching cost of any architecture that uses this 
number of ADMs. The proof of this follows from the 
characterization of architectures that achieve (1) given 
in [8]. We refer to such an architecture as perfect, i.e., a 

                                                        

1 The actual switching requirements will be larger than this 
because we have not accounted for the switching required for 
inter-hub traffic. 



perfect architecture both meets the bound on ADMs in 
(1) and has the smallest switching cost of all 
architectures that meet this bound. In this section we 
consider when the above example can be generalized to 
other cases, i.e., other values of N, g, and r.  A 
sufficient condition for this is given in the following 
proposition. 
 

Proposition 1: A perfect architecture for a 
unidirectional ring with parameters N, g, and r can be 
found if the nodes in the network can be divided into 
groups of g/r + 1 nodes such that each pair of nodes is 
in at most one group. 
 

The resulting perfect architecture is a natural 
generalization of that in the preceding section. For the 
case of r=1, the above condition can be shown to be 
necessary as well as sufficient.  

Let M = g/r +1. The problem of finding groups of 
M nodes with the above property can be described in 
graph theoretic terms. Consider a fully connected graph 
with N nodes; denote this graph by KN. Assume each 
node in this graph represents a node in the ring; a pair 
of nodes are represented by a link in this graph. Each 
group in the above construction can be viewed as a 
fully connected subgraph with M nodes. The above 
construction gives a family of subgraphs that are edge 
disjoint and cover the graph, KN. Such a family is 
referred to as a decomposition of the original graph. In 
this case each subgraph in the decomposition is 
isomorphic to KM (a fully connected graph with M 
nodes).  This is referred to as a KM-decomposition of 
KN. The above proposition can be restated as saying that 
a perfect architecture can be found if there exists a KM-
decomposition of KN, where M= g/r +1 is an integer. 

The problem of graph decompositions has been well 
studied in the graph theoretic literature and is related to 
combinatoric problems such as finding a block 
orthogonal designs or Steiner triple systems of a given 
order [9]. The next proposition provides a necessary 
condition for the existence of a KM-decomposition of 
KN. 
 

Proposition 2: If there exists a KM-decomposition of 
KN, then the following hold: 
 

M-1|N-1 and M(M-1)|N(N-1). 
 

Here we use the notation a|b to denote that b is divisible 
by a. Furthermore, the above conditions can be shown 
to be sufficient for all but a finite number of values of 
M and N [9].  By combining the above arguments we 
have that unless M-1|N-1 and M(M-1)|N(N-1), where 
M=g/r +1, a perfect architecture can not be found. 
Also, except for a finite number of values of M and N 
the above conditions are sufficient. Notice that for the 
example in Sect. 3 the above conditions are met. 

When a perfect architecture can be found, it will 
have N(N-1)/K(K-1) DCXs, and each DCX will have a 

switching cost of ((K-1)g)2. Thus the total switching 
cost is  
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5 Algorithm 
From the preceding section, for an arbitrary N, g and r, 
a perfect architecture may not exist. In this section, we 
give a heuristic algorithm for routing and grooming 
traffic for an arbitrary ring. The basic idea of this 
algorithm is to first find subsets of the total traffic 
requirement that are similar to the subsets used in a 
perfect architecture. In a perfect architecture, these 
subsets of traffic correspond to all-to-all traffic among a 
group of M nodes, where each node in the group 
generates a full wavelength worth of traffic. In the 
general case, these subsets will not necessarily 
correspond to all-to-all traffic between the nodes in a 
group. In particular, a pair of nodes may appear in 
multiple groups, but the traffic between the pair will 
only be assigned to one of the groups. In addition, each 
node in a group may not generate a full wavelength 
worth of traffic.  

The algorithm forms groups of nodes and, for each 
group, a corresponding subset of the offered traffic. We 
try to form sets of all-to-all traffic between the pairs of 
nodes in a group.  When this is not possible, we form a 
set that contains all the remaining traffic between each 
pair of nodes in the group, such that no more than one 
node in the group generates more than a wavelength 
worth of traffic. Furthermore, we try to form the largest 
groups that satisfy these properties. These sets are 
formed by adding nodes to a group one at a time and 
adding the corresponding traffic to the subset. We give 
more details of this algorithm next. To simplify the 
discussion we only describe the case where r=1. We 
maintain a list of the circuits originating at each node in 
the ring that have not yet been assigned to a subset. A 
list of the nodes in each group and the corresponding 
traffic subsets are also maintained. When a node is 
added to a group, all remaining traffic from that node to 
any other node in the group is added to the traffic 
subset.  

 

Grouping Algorithm: 
 

1. Choose as the first node in a group, a node with the 
maximal remaining circuits to be assigned. 

 

2. Add nodes to the group until more than one node in 
the group has g circuits in the traffic subset or there 
are no other nodes with any traffic to send to the 
nodes in the group. Add nodes to the group 
sequentially; at each time adding the node that will 
result in the largest increase in the number of 
circuits in the corresponding traffic subset.  

 



3. If all circuits have been assigned, stop. Otherwise 
go to 1. 

 

We note that for the case when a perfect architecture 
exists, the above algorithm will divide the nodes into 
the groups given in Proposition 1. 

The traffic for each group can then be supported 
using a single DCX at one “hub” node for the group. 
This “hub” node will be chosen from the nodes that 
have the maximal number of circuits in the traffic 
subset. Each “non-hub” node in the group will generate 
no more than 1 wavelength worth of traffic and send all 
of the traffic to the hub node. If there are K nodes in a 
group and each non-hub node uses a different 
wavelength, the traffic can be supported using 2(K-1) 
ADMs and a switching cost of (Kg)2. In cases where 
each node in the group does not generate a full 
wavelength of traffic, the number of ADMs and the 
switching cost can often be reduced by allowing nodes 
to share a wavelength. If all traffic must go through the 
DCX, then assigning traffic to wavelengths to minimize 
the needed number of ADMs is equivalent to the egress 
grooming problem studied in [1]. This problem can be 
reduced to the well-known Bin Packing problem [1]; 
any heuristic for the Bin Packing problem can then be 
used to assign the traffic to wavelengths.  

As an example of this algorithm consider a ring 
with N=6, g=4, and r=1. In this case, g/r + 1= 5, and 5 
is not divisible by 4, so a perfect architecture cannot be 
found. Using the above algorithm results in the 
following subsets of traffic: 

 

Subset 1: all-to-all traffic between {1,2,3,4,5} 
 

Subset 2: traffic between 6 and {1,2,3,4,5}. 
 

The first subset of traffic requires 8 ADMs and a 
switching cost of (4g)2=256. The second subset requires 
7 ADMs and a switching cost of (2g)2=64. Therefore, 
this architecture requires 15 ADMs and a total 
switching cost of 320. For comparison, the best multi-
hub architecture from [8] will require 18 ADMs and a 
switching cost of 512. Some other examples for a ring 
with g = 4 and r = 1 are given in Table 1 below. 
 

N ADMs  Switching 
6 15 320 
7 22 656 
8 26 912 
9 34 1152 
10 43 1504 
11 55 1968 
12 60 2592 
13 64 2368 
14 86 3040 
15 98 3280 

Table 1: Results of algorithm for ring with g=4, 
r=1 and N nodes. 

6 Conclusions  
In this paper, we discussed the role of switching in 
reducing ADM or port counts in WDM ring networks. 
We studied architectures where multiple nodes have 
some partial switching capability Such an architecture 
was shown to both reduce the needed number of ADMs 
and have a small switching cost. A heuristic algorithm 
for designing such architectures was also presented.  

In addition to reducing the number of ADMs, other 
advantages of switching include the ability to better 
support dynamic traffic and to improve a network’s 
robustness to node failures. In addressing these issues, 
the placement of the switches within a ring will likely 
be an important consideration. 
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