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Abstract— In this paper we consider traffic grooming in
WDM/SONET ring networks when the offered traffic is
characterized by a set of traffic matrices. Our objective is
to minimize the cost of electronic Add/Drop Multiplexers
(ADMs) in the network, while being able to support any of-
fered traffic matrix in a rearrangeably non-blocking manner.
We provide several methods for reducing the required num-
ber of ADMs for an arbitrary class of traffic matrices. We
then consider the special case where the only restriction on
the offered traffic is a constraint on the number of circuits a
node may source at any given time. For this case, we provide
a lower bound on the number of ADMs required and give
conditions that a network must satisfy in order for it to sup-
port the desired set of traffic patterns. Circuit assignment
and ADM placement algorithms with performance close to
this lower bound are provided. These algorithms are shown
to reduce the electronic costs of a network by up to 27%.
Finally, we discuss extensions of this work for supporting
dynamic traffic in a wide-sense or strict sense non-blocking
manner as well as the benefits of using a hub node and tun-
able transceivers. Much of this work relies on showing that
these grooming problems can often be formulated as stan-
dard combinatorial optimization problems.

Keywords— Wavelength Division Multiplexing, SONET
Rings, SONET Add/Drop Multiplexers (ADMs), Optical
Network design, Traffic Grooming, Topology Design

I. Introduction

WAVELENGTH division multiplexing (WDM) is in-
creasingly used to expand the available capacity

of an optical network. Typically these networks have a
SONET/SDH ring architecture. In particular, the network
nodes are arranged in a ring and interconnected by fiber
(typically multiple fibers for protection purposes). Fur-
thermore, each node in the ring uses a SONET Add/Drop
Multiplexer (ADM) to electronically combine lower rate
streams onto a wavelength. For example, if a wavelength
supports OC-48 (2.5 Gb/s) traffic, then 16 OC-3 (155
Mb/s) circuits can be multiplexed onto this wavelength.
Using WDM technology, each fiber in a ring can support
multiple wavelengths; each additional wavelength can be
used to add an additional SONET ring among the nodes.
This results in a substantial increase of the network capac-
ity. However, every additional SONET ring will require
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additional ADMs. The dominant cost for this increased
capacity is the cost of these ADMs.

Often, the number of electronic ADMs can be reduced by
employing WDM Add/Drop Multiplexers (WADMs) which
allow a wavelength to either be dropped at a node or to
optically by-pass the node. When a wavelength is not
dropped at a node, an electronic ADM is not required for
that wavelength; however, the node can not access any of
the traffic on the by-passed wavelength. Thus, for a wave-
length to by-pass a node, the traffic for that node must
be routed on the remaining wavelengths. Such a routing
is referred to as a grooming of the traffic. Grooming with
WADMs has been the topic of several recent papers in-
cluding [1]-[9]. Traffic grooming itself predates the work
on WDM SONET rings. For example, there has been
work (e.g. [10]) on grooming low rate traffic in SONET
rings (without WDM) to reduce the number of required
line cards. The ideas behind traffic grooming are also ap-
plicable to other WDM networks. For example there has
been recent interest in networks using IP directly on top of
an optical layer. In this situation, traffic grooming can be
used to reduce the number of IP ports instead of SONET
ADMs [11]. Notice that traffic grooming is a special case of
a virtual topological design problem. In our case the cost is
measured in terms of ADMs; other work in this area consid-
ers designing virtual topologies to minimize such quantities
as the number of wavelengths or the blocking probability
(see e.g. [12]-[15]).

Assume that the traffic requirement of each node in a
ring is given. Consider the problem of finding a grooming
which minimizes the required number of ADMs needed to
support this traffic requirement; we refer to this as the
grooming problem. In [1] it is shown that the general
grooming problem is NP-complete. However, for several
special classes of traffic requirements, either optimal al-
gorithms or heuristics with good performance have been
found (see eg. [1], [6], or [8]). In each of these cases, the
traffic requirement is characterized by a single static traffic
matrix. Often this is not the best description of the traf-
fic requirements, for example, if traffic changes throughout
the day. A better description of the traffic may be as a set
of traffic matrices. In this case, we want to minimize the
number of ADMs needed to support any traffic matrix in
this set. We refer to this as a dynamic grooming problem,
since the resulting ring can support, in a non-blocking man-
ner, traffic which dynamically changes within the given set.
This problem is the main emphasis of this paper. A similar



formulation of the dynamic grooming problem was consid-
ered in [3]-[5] for a bi-directional ring employing digital
cross-connects. Also in [16] and [17] a similar non-blocking
approach is considered but for wavelength allocation prob-
lems as opposed to traffic grooming.

We now give a precise description of the network model
to be considered. Let N = {1, 2, . . . N} denote a set of N
nodes in a WDM SONET ring. Unless otherwise noted,
we consider unidirectional rings in the following. In other
words, all traffic must propagate in one direction around
the ring. Unidirectional path-switched rings (UPSR) are
the primary example of unidirectional rings in practice. Bi-
directional rings, such as BLSR/2 and BLSR/4, are also of
interest in practice. Some of the following results also apply
to bi-directional architectures; when this is true, we point
it out below We assume that each node has one WADM
and a SONET ADM for every wavelength dropped at that
node. The WADMs are static, i.e., the wavelengths that
are dropped at each node are fixed. The SONET ADMs
multiplex g low rate streams onto a single wavelength; g is
referred to as the traffic granularity. All traffic is assumed
to be duplex and consists of circuits with granularity g. A
duplex circuit between two distinct nodes i and j is rep-
resented by i-j. A traffic requirement, R, between all the
nodes is a multi-set (a set with repeated entries) of the form
R = {i-j|i, j ∈ N , i �= j}. A traffic requirement can also
be represented by the N × N traffic matrix, [Ri,j ], where
Ri,j represents the number of circuits i-j in R. Thus, for
all i and j, Ri,j = Rj,i and Ri,i = 0.

We assume that nodes do not have a digital cross-connect
system (DCS). We also assume nodes do not have optical
wavelength changers and that both parts of a duplex con-
nection use the same wavelength. Thus a connection oc-
cupies a portion of the same wavelength around the entire
ring. In [1] it is shown that allowing wavelength chang-
ers or allowing each part of a duplex connection to use a
different wavelength does not result in any improvements
with regard to grooming; so, there is no loss in making this
assumption and it simplifies the following analysis. On the
other hand, as we will see in Sect. 4, using a DCS may
be beneficial. It has been shown in [2] and [6] that for
static traffic a DCS can help reduce the required number
of ADM’s.

Consider a simple example of grooming for a sin-
gle traffic matrix. Suppose we have a ring with
N = 5 nodes and a granularity of g = 4, e.g. OC-
12’s on an OC-48. Consider the traffic requirement
R1 = {1-2, 1-2, 1-3, 1-3, 1-4, 1-4, 1-5, 1-5}; this corresponds
to each node requesting 2 duplex circuits with node 1. The
minimum number of wavelengths required to support R1 is
2. By using two wavelengths and dropping each wavelength
at each node, R1 can trivially be supported using 10 ADMs.
Consider grooming the traffic so that {1-2, 1-2, 1-3, 1-3} are
placed on one wavelength and {1-4, 1-4, 1-5, 1-5} are placed
on the second wavelength. In this case the traffic can be
supported using only 6 ADMs. It can be seen that this
is the minimum number of ADMs needed to support R1.
In this example the topology which minimized the number

of ADMs also minimized the number of wavelengths. As
shown in [2] this is often the case, but, in general, it is not
true [2], [4].

In the remainder of this paper we consider the dynamic
grooming problem, i.e. grooming for a set of traffic allo-
cations. In Sect. 2, we give a general formulation of this
problem. We also present several approaches to reducing
the required number of ADMs which are particularly ap-
plicable when the number of traffic allocations is small. In
Sect. 3, we consider a specific class of traffic requirements.
This class is defined by requiring the network to support
any traffic matrix such that the number of circuits termi-
nated at each node is less than some constant t. Such a
class is natural, for example, if each node is capable of
sourcing only t circuits. For such traffic, we lower bound
the number of ADMs needed and provide necessary and
sufficient conditions that a network must satisfy to sup-
port such traffic. We use these conditions to develop al-
gorithms for allocating ADMs in the network. Finally, in
Sect. 4, we develop extensions to the basic model that al-
low a network to be non-blocking in a strict sense; the use
of a hub architecture and tunable lasers in order to achieve
further reductions in electronic multiplexing costs is also
considered.

II. The Dynamic Grooming Problem

Suppose we know that at any time, the traffic require-
ment belongs to a set {R1, . . . ,RK} of allowable traf-
fic requirements. The dynamic grooming problem is to
find a topology with the minimum number of ADMs such
that any allowable traffic requirement can be supported
with an appropriate grooming. A feasible topology for
the grooming problem is a topology which can support
any allowable traffic matrix. The minimum number of
wavelengths required by a feasible topology is Wmin =
maxi=1,... ,K �|Ri|/g�, where |Ri| is the cardinality of the
set Ri, i.e. the number of circuits that need to be sup-
ported. If each of the Wmin wavelengths is dropped at
each node, then clearly this is a feasible topology which
uses NWmin ADMs. Furthermore, this solution requires
no grooming of the traffic to support any allowable traffic
set; by this we mean that each call can be routed on any
wavelength with available capacity. We seek to improve on
this obvious no grooming solution.

If a ring can accommodate a particular traffic set R1,
it can also accommodate any subset of R1. Thus an al-
lowable traffic set which is the subset of another can be
ignored. For any set of allowable traffic requirements, a
new single traffic requirement can be defined which gives
the worst case characterization of this traffic. Specifically,
given {R1, . . . ,RK}, define [Rk

i,j ] to be the traffic matrix
corresponding to the traffic requirement Rk. Consider a
new traffic set R∗, which has the traffic matrix [R∗

i,j ] de-
fined by R∗

i,j = maxk=1,... ,K Rk
i,j . Every allowable traffic

requirement is then a subset of R∗. Thus we can apply a
grooming algorithm designed for a single traffic allocation
to R∗ (as noted above, grooming for single traffic matrices
as been addressed in several previous papers). The result-



 1     2    3     4     5Node: 

2λ
1λ -Wavelength Dropped

- Not Dropped

Fig. 1. Network topology which supports R∗ in Example 1. In this
figure, horizontal lines correspond to the two wavelengths, and
an X indicates that the wavelength by-passes a node.
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Fig. 2. Optimal topologies for supporting R1 (left) and R2 (right)
from Example 2.

ing topology is clearly feasible for the dynamic grooming
problem. As shown in the next two examples, this ap-
proach may or may not yield a topology which uses fewer
than NWmin ADMs.

Example 1: Consider a ring with N = 5 nodes and gran-
ularity, g = 4. Suppose we have the following two allowable
traffic requirements:

R1 = {1-3, 1-3, 4-2, 4-2, 5-2, 5-2}
R2 = {1-3, 1-3, 1-4, 1-4, 5-2, 5-2}.

In this case, Wmin = 2; thus, with no grooming, both
R1 and R2 can be supported using 10 ADMs. For this
example, R∗ = {1-3, 1-3, 1-4, 1-4, 4-2, 4-2, 5-2, 5-2}. It is
easy to see that the topology shown in Fig. 1 can support
R∗ (and therefore both R1 and R2) using only 6 ADMs.
So in this case grooming for R∗ is beneficial.

Example 2: Consider the same ring with N = 5 and
g = 4. Suppose that this time the allowable traffic sets are:

R1 = {1-2, 1-2, 1-3, 1-3, 1-4, 1-4, 1-5, 1-5}
R2 = {1-2, 1-2, 2-3, 2-3, 2-4, 2-4, 2-5, 2-5}.

Once again Wmin = 2 and 10 ADMs are required with no
grooming. However, in this case R∗ contains 14 circuits
and thus requires at least 4 wavelengths. It can be seen
that 11 ADMs are needed to support R∗, which in this
case is worse than the no grooming solution.

In example 2, each of the allowable traffic matrices corre-
sponds to uniform all-to-one traffic. For such traffic matri-
ces, the optimal grooming can be found by an algorithm in
[1]. An optimal topology for each of these traffic matrices is
shown in Fig. 2. We consider how this information can be
used to come up with a good topology for supporting both
R1 and R2. Recall, a topology is specified by which nodes
have ADMs on which wavelengths. We say that a topol-
ogy T contains a topology T ′ if T can be obtained from T ′

by adding additional ADMs and possibly additional wave-
lengths, but not removing any. Clearly if T ′ can support
a given traffic set, then T can also support it. Let T1 and

T2 be the two topologies in Fig. 2 which support R1 and
R2 respectively. Consider forming a new topology, which
also uses λ1 and λ2, as follows. In the new topology, drop
λ1 at each node which has an ADM on λ1 in either T1 or
T2. Likewise, drop λ2 at each node which has an ADM
on λ2 in either T1 or T2. The resulting topology contains
both T1 and T2 and thus can support both R1 and R2.
For the topologies in Fig. 2, such a combination results in
both wavelengths being dropped at every node, which is
the same as the no grooming topology.

This is not the only way to “combine” the two topologies.
Consider a second new topology, again using λ1 and λ2.
Now drop λ1 at each node which either has an ADM on
λ1 in T1 or an ADM on λ2 in T2. Likewise, drop λ2 at
each node which either has an ADM on λ2 in T1 or an
ADM on λ1 in T2. This new topology is shown in Fig.
3; it contains T1 and it also contains a topology which is
equivalent to T2, but with its wavelengths permuted. Such
an equivalent topology can clearly support the same traffic
as T2. Therefore the new topology can support both R1

and R2. This topology only requires 7 ADMs, which is less
than the 10 ADMs required by the no grooming topology.

Each of the two preceding combinations of T1 and T2

were formed by assigning each wavelength in T1 to a wave-
length in T2, and then forming a new topology as above.
Suppose that T1 and T2 are now two arbitrary topolo-
gies which support two corresponding traffic matrices. The
above procedure can be generalized as follows. Let W be
the maximum number of wavelengths used in either T1 or
T2. If either T1 or T2 used less than W wavelengths, con-
sider it specified for W , but with no ADMs on the extra
wavelengths. There are now W ! ways of matching wave-
lengths in the two topologies. The best combination is one
which requires the fewest ADMs. For large values of W ,
considering each of the W ! combinations becomes unattrac-
tive, but as shown next such a “brute force” approach is not
necessary. Every possible combination can be represented
by a bipartite graph (C,D,E). Recall, a bipartite graph
(C,D,E) is a graph with two disjoint sets of nodes, C and
D, and a set of edges, E, where each edge is between a node
in C and a node in D. Here, C and D will correspond to the
sets of wavelengths in T1 and T2 respectively. Between each
c ∈ C and d ∈ D, there is an edge (c, d) ∈ E. We associate
with each edge, (c, d) ∈ E, a cost which equals the num-
ber of distinct nodes with an ADM on either wavelength c
in T1 or wavelength d in T2. The bipartite graph for the
two topologies in Fig. 2 is shown in Fig. 3. A matching of
all the wavelengths in T1 to the wavelengths in T2 corre-
spond to a set of W disjoint edges in this graph; the total
cost of these edges gives the number of ADMs required for
this combination. Thus we want to find such a matching
which has the minimum total cost. This problem can be
recognized as a instance of an “assignment problem”; this
combinatorial optimization problem has several well known
polynomial algorithms [18]. Such algorithms can be used
to find the best combination of wavelengths in polynomial
time.

We wish to make several comments about this approach.
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Fig. 3. Bipartite graph for the two topologies in Fig. 2 and the
resulting topology.

First, there are often multiple optimal topologies which are
not obtainable from each other by simply permuting the
wavelengths. The number of ADMs in the optimal com-
bination may depend on which of these topologies is used.
Second, we have considered only a case with two allowable
traffic matrices.1 For a larger number, one can generalize
this assignment problem. Unfortunately, the generalization
results in a much more difficult combinatorial optimization
problem.2 Of course one could consider combining topolo-
gies sequentially, i.e., first combining two topologies, then
adding a third to this combination, etc. For more than
a few topologies this approach is unattractive. Finally
we note that nothing in this formulation required a uni-
directional ring. Thus, this approach also works in the
bi-directional case.

III. t-allowable Traffic

In this section we focus on a particular subclass of dy-
namic grooming problems. Specifically, we consider sets
of allowable traffic which are determined only by limiting
each node to sourcing at most t duplex circuits at any time,
where t is a specified constant. In other words, a traffic ma-
trix [Ri,j ] is allowable if and only if it satisfies

∑
j

Rij ≤ t for all i. (1)

This will be the only constraint on the set of traffic patterns
which must be supported. We call these allowable traffic
matrices t-allowable. Such a constraint is natural in many
cases. For example, suppose each node represents a cus-
tomer site and that a service provider wishes to guarantee
the customer the availability of t “switched OC-3 connec-
tions” at each site. To satisfy this guarantee, the ring must
be provisioned to handle any t-allowable traffic pattern.

A similar class of allowable traffic matrices was studied
in [3]-[5]. The model in [3] allows each node i to source at
most t(i) circuits, where t(i) is constrained to be a mul-
tiple of g (note in [3] the units of t(i) are the number of
light-paths as opposed to the number of low-rate circuits as
we have defined them here). The work in [3]-[5] focuses on
bi-directional rings where every node has a DCS. In con-
trast, we focus on the unidirectional ring case without using
DCSs. Hence the approaches in [3]-[5] do not directly ap-
ply to the problem considered in this paper. Furthermore,

1Note this is not as restrictive as it first appears, since we can also
support any subsets of the two allowable traffic sets.

2The assignment problem is easy to solve because it is a unimodular
problem. Such problems have the characteristic that vertex solutions
to the LP relaxation are the same as the solution to the integer pro-
gram. When we generalize to more than two traffic matrices, the
resulting problem is no longer unimodular.

in [3] and [4] the grooming problem is divided into two
steps. First low speed traffic is groomed into light-paths
and then these light-paths are grouped onto SONET rings.
While this simplifies the problem, it may lead to a subopti-
mal solution [6] Our approach considers the two problems
together.

In the following, assume that we are given a network with
N nodes and a traffic granularity of g. We refer to a traffic
set as t-maximal if it is t-allowable and if the addition of
any other circuit would make it not t-allowable. As noted
above, if a network can support every t-maximal traffic
matrix it can support every t-allowable one. For any t-
allowable traffic set, R, the maximal number of circuits in
this set is bounded by:

|R| ≤ �Nt/2� . (2)

Furthermore, there exists t-maximal sets which achieve this
bound. Therefore the minimum number of wavelengths,
Wmin, for the set of t-allowable traffic patterns is given by

Wmin =
⌈
�Nt/2�1

g

⌉
. (3)

Thus NWmin ADMs are required for the no grooming so-
lution; this gives an upper bound on the required num-
ber of ADMs. We will focus on reducing this number of
ADMs while still supporting any t-allowable traffic matrix
using Wmin wavelengths. As noted above the minimum
ADM solution often uses the minimum number of wave-
lengths but not always. Hence, restricting our solutions to
those using the minimum number of wavelengths is sensi-
ble not only because it makes efficient use of wavelengths
but also because it is likely to yield a nearly optimal solu-
tion. The problem we address can be stated as follows. For
given values of N , g and t, we wish to specify a topology,
i.e., which of the N nodes have ADM’s on which of the
Wmin wavelengths. This topology must be able to support
any t-allowable traffic matrix using the minimum number
of ADM’s. In the previous section, we considered finding
topologies for each allowable traffic set and then combining
these topologies in order to support every allowable traffic
set. When t = 1 there are 2−N/2N !

(N/2)! different t-maximal traf-
fic matrices. Clearly, finding a topology for each possible
t-allowable traffic matrix and then combining these is not
a feasible approach. In the following we develop an alter-
native approach which relies on formulating this problem
as a bipartite matching problem. Before looking at this
approach we give a lower bound on the required number of
ADM’s.

A. Lower Bound on the number of ADMs.

Minimizing the required number of ADM’s is equivalent
to starting out with every node having an ADM on each
wavelength and maximizing the number of ADM’s that can
be removed while still supporting every t-allowable traffic
matrix. In this section we give an upper bound on the
number of ADM’s that can be removed or equivalently a



lower bound on the number of ADM’s needed by a feasi-
ble topology. First we establish some preliminary results.
Throughout this section, assume that N , t and g are spec-
ified.

We look at a particular way to construct a t-allowable
traffic set which attains the bound in (2). This construction
is useful in proving Lemma 2 below. Denote a permutation
of the set of nodes, N , by π, i.e. π(1), . . . , π(N) is some
ordering of the nodes. Let π−1(i) denote the ith node in
this ordering. Define two sets of pairs of nodes, C1 and C2.
The set C1 contains all pairs of nodes (π−1(i), π−1(i + 1))
where i is odd and strictly less than N . The set C2 contains
all pairs of nodes (π−1(i), π−1(i + 1)) where i is even and
strictly less than N along with the pair (π−1(N), π−1(1)).
For a given t, the desired t-maximal set contains �t/2� cir-
cuits between each pair in C1 and �t/2� circuits between
each pair in C2. The resulting set is obviously t-maximal
and contains

�t/2� �N/2� + �t/2� �N/2� = �Nt/2� circuits.

For example, suppose N = 5. With the trivial permu-
tation, π(i) = i, we have C1 = {(1, 2), (3, 4)} and C2 =
{(2, 3), (4, 5), (5, 1)}. If t = 3 the t-maximal set given by the
above construction is {1-2, 1-2, 3-4, 3-4, 2-3, 4-5, 5-1}. This
set contains

⌊
(5)(3)

2

⌋
= 7 circuits as we desired. If instead

we use the permutation π(i) = (i + 1) mod N , then C1 =
{(5, 1), (2, 3)} and C2 = {(1, 2), (3, 4), (4, 5)}. In this case,
we get the 3-maximal set {5-1, 5-1, 2-3, 2-3, 1-2, 3-4, 4-5}.

Define Mi to be the set of nodes with ADMs removed
from wavelength i for i = 1 . . . Wmin. The following lem-
mas help to bound the maximum number of ADMs which
can be removed.

Lemma 1: If a network with Wmin wavelengths can sup-
port every t-allowable traffic set then for all i = 1 . . . Wmin,
|Mi| < N/2.

Proof: To establish a contradiction assume that a
network can support every t-allowable set, but for some i,
|Mi| ≥ N/2. In this case we construct a t-maximal set
where every connection involves a node in Mi. Thus, no
circuit in this set can be supported on wavelength i. Fur-
thermore, this set will require at least Wmin wavelengths
and so can not be supported. The particular t-maximal
set we construct has the form discussed above. Let π be a
permutation of N such that for every odd i ≤ N , π−1(i)
is in Mi. Such a permutation exists since |Mi| ≥ N/2. Us-
ing this permutation, consider the t-maximal set defined
above. This set requires Wmin wavelengths and each cir-
cuit involves a node from Mi as desired.

Lemma 2: If a network with Wmin wavelengths can sup-
port every t-allowable traffic set then for all i = 1 . . . Wmin,
|Mi| < (Wmin − 1)g/t.

Proof: Again, we prove the lemma by contradiction.
Assume that a network can support every t-allowable set,
but for some i, |Mi| ≥ (Wmin −1)g/t. By lemma 1, |Mi| <
N/2. Thus, we can pair up each node in Mi with a distinct
node in N−Mi and form a t-allowable traffic set by setting

3λ
2λ
1λ

 1     2    3     4     5Node: 
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Fig. 4. Provisioning of ring in Example 3.

up t circuits between each pair. This traffic set consists of
|Mi|t circuits, none of which can be placed on wavelength
i. This set must be placed on the remaining Wmin − 1
wavelengths, but these wavelengths can accommodate at
most (Wmin − 1)g circuits. Thus this t-allowable set can
not be supported, yielding a contradiction.

Lemma 3: If a network with Wmin wavelengths can sup-
port every t-allowable traffic set then for all i �= j,

min(|Mi|, |Mj |) ≤ (Wmin − 2)g/t. (4)
Proof: We show that we can always construct a t-

allowable set with min(|Mi|, |Mj |)t circuits which can not
be carried on either wavelength i or j and thus must be
carried on the other Wmin − 2 wavelengths. Since each
wavelength can accommodate at most g circuits, (4) must
be true for this set to be supported. The proof will be
completed once we show how to construct the above set.
Consider two wavelengths i and j and assume |Mi| ≤ |Mj |.
Let K be the set of nodes removed from both i and j (K
may be empty). From lemma 1, we can assume that |Mj | <
N/2. Thus, each node in K can be paired with a distinct
node in N − Mj . Likewise, every node in Mi − K can be
paired with a distinct node in Mj − K. Placing t circuits
between each pair gives the required t-allowable set.

An immediate corollary of Lemma 3 is that for every
wavelength except one we must have |Mi| ≤ (Wmin−2)g/t.
Lemma 2 gives a bound on the ADMs that can be removed
on the remaining wavelength. Thus, we have the following
upper bound:

ADMs removed

≤ (Wmin − 1)
⌊g

t
(Wmin − 2)

⌋
+

⌊g

t
(Wmin − 1)

⌋ (5)

The next example shows that this bound is tight for some
choices of N , t, and g.

Example 3: Suppose we have a network with N = 5, t =
2, and g = 2. For this ring, Wmin = 3 and the above upper
bound yields that at most 4 ADMs can be removed. Figure
4 shows a topology that achieves this bound. Consider
the 2-allowable traffic requirement {1-2, 1-3, 2-3, 4-5, 4-5}.
This can be supported on a ring provisioned as in Fig. 4
by assigning {1-2, 2-3} to the first wavelength, {4-5, 4-5}
to the second wavelength, and 1-3 to the third wavelength.
Such an assignment can be found for any other 2-allowable
traffic set.

Next we establish a connection between this problem and
bipartite matching problems. By exploiting this connec-
tion, we come up with necessary and sufficient conditions
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Fig. 5. Bipartite graph corresponding to traffic set and topology in
Example 3

for a topology to be able to support any t-allowable traf-
fic matrix. This is then used to develop several heuristic
algorithms for removing ADM’s from wavelengths.

B. Bipartite Matching Formulation

For a given ring network, we want to construct a bipar-
tite graph (C,D,E) which represents the possible place-
ments for each call from a given t-allowable traffic set,
R. We will denote one set of nodes in the graph by
D = {λ1,1, . . . , λ1,g, λ2,1, . . . , λWmin,g}. This set contains
g elements for each of the Wmin wavelengths correspond-
ing to possible circuit assignments on that wavelength. The
other set of nodes, C, will correspond to the traffic require-
ment R. There is an edge in the graph between λi,j and
a circuit k-l ∈ R if both nodes k and l have an ADM
on wavelength i. For example, the bipartite graph corre-
sponding to the topology and the traffic requirement from
Example 3 is shown in Fig. 5.

A matching, M , in a bipartite graph is a set of disjoint
edges. Being able to accommodate a traffic matrix in a
given topology is equivalent to being able to find a match-
ing in the corresponding bipartite graph which uses all the
nodes in the set of requested circuits, C. Such a matching
is called a C-saturating matching. A necessary and suffi-
cient condition for the existence of such a matching is given
by Hall’s theorem which we state below. First we need the
following definition. For a bipartite graph (C,D,E), if S
is a subset of nodes in C, then the open neighborhood of
S, N(S), is a subset of nodes in D such that d is in N(S)
if and only if there is an edge between d and a node in S,
i.e. d ∈ N(S) ⇐⇒ (c, d) ∈ E and c ∈ S.

Hall’s Theorem: Let G = (C,D,E) be a bipartite graph.
There exists an C-saturating matching if and only if for all
subsets S of C, |N(S)| ≥ |S|.

A proof of this theorem can be found in many texts on
combinatorics (e.g. [19]). As stated, this theorem is useful
to check that a single traffic matrix can be supported. We
are interested in supporting every t-allowable traffic matrix;
the following theorem provides a necessary and sufficient
condition for this. We say that a circuit i-j must be routed
on a set of wavelengths if either i or j does not have an
ADM on any wavelength not in this set.

Theorem 1: For a given topology with Wmin wave-
lengths, any t-allowable traffic matrix can be supported
if and only if the following two conditions are satisfied:

A. For every pair of nodes (i, j) there exists a wavelength
on which both i and j have an ADM.
B. For any group of m wavelengths and any t-allowable
set, there exists at most gm circuits which must be routed
on this group.

Proof: We first show that these conditions are neces-
sary. Clearly, if A is not satisfied then any t-allowable set
containing i-j can not be accommodated. If B is not satis-
fied then there exists a set of m wavelengths on which we
must route more than gm circuits in some t-allowable set,
C. Consider the bipartite graph corresponding to C. Let
S be the subset of C containing the above circuits, then
|N(S)| = gm and |S| > gm. Thus by Hall’s theorem there
exists no C-saturated matching, and this traffic matrix can
not be accommodated.

Next we show that these conditions are sufficient. As-
sume that they are not sufficient, so that there exists an
assignment of ADMs to Wmin wavelengths which satisfies
both of the above conditions, but which can not support
some t-allowable traffic set C. Since C cannot be sup-
ported, by Hall’s theorem there exists a subset S of C such
that |N(S)| < |S|. Let k be a nonnegative integer such that
(k − 1)g < |S| ≤ kg. For a bipartite graph corresponding
to an allocation of ADMs, |N(S)|will always be a multiple
of g. Thus |N(S)| < |S| implies that |N(S)| ≤ (k − 1)g.
Therefore this set of more than (k−1)g calls must be routed
on a set of k − 1 or fewer wavelengths, which contradicts
condition B, completing the proof.

C. Algorithms for removing ADMs

We now use the results from Theorem 1 to develop al-
gorithms for removing ADM’s from wavelengths. The re-
sulting topologies will support any t-allowable traffic re-
quirement. Given such a topology, one then needs to know
how to groom the traffic for each allowable traffic set. For
each traffic matrix one can set up a maximum matching
problem as in Sect. 3.2. Polynomial algorithms for solv-
ing this problem are known (see, e.g. [18]).In many cases
an assignment can be found by inspection. These assign-
ments can be all computed off-line and stored in a look-up
table. Also, in some cases, the assignments can be stored
in a more compact form than simply listing every possi-
ble assignment. Alternatively, if the traffic changes slowly,
the assignment for the current traffic set can be computed
on-line.

If Wmin = 1, no ADMs can be removed in any feasible
topology. If Wmin = 2, every node must have an ADM on
one wavelength, and at most �g/t� nodes can be removed
from the other wavelength. This follows directly from lem-
mas 2 and 3. Furthermore, if �g/t� nodes are removed
from the other wavelength, the resulting topology is fea-
sible. To see this note that the most circuits that will be
forced onto one wavelength is �g/t�t ≤ g. So, by the The-
orem 1 we can accommodate all t-allowable circuits. Thus
for Wmin ≤ 2 we have a trivial algorithm which yields the
minimum number of ADMs. Therefore in the following we
shall only consider the case where Wmin ≥ 3.

To use Theorem 1 to verify that a topology can sup-



port every t-allowable traffic pattern, condition B must
be checked for every subset of wavelengths. There are
2Wmin possible subsets; checking each set is not an appeal-
ing prospect. In the following we avoid this by removing
ADMs in certain symmetric patterns which require us to
check many fewer cases.

For a circuit i-j to be forced on a set of n wave-
lengths, either i or j must have an ADM removed from
each of the remaining Wmin − n wavelengths. When
Wmin − n > 2, this can only occur is at least one of
the two nodes has an ADM removed from more than one
wavelength. So if we remove at most one ADM for each
node, we only have to check B for sets of Wmin − 1 and
Wmin − 2 wavelengths. Clearly, we can remove �N/Wmin�
nodes from each wavelength so that no node will be re-
moved from more than one wavelength. Also if we remove
�(Wmin − 2)g/t� or fewer nodes per wavelength, then no
more than (Wmin − 2)g circuits will be forced on any set
of Wmin − 2 or Wmin − 1 wavelengths. Thus if we remove
min (�(Wmin − 2)g/t�, �N/Wmin�) ADMs per wavelength
and no more than one ADM per node, condition B is satis-
fied. Condition A is also easily satisfied in this case. Thus
we have proved the following lemma which immediately
yields an algorithm for allocating ADMs.

Lemma 4: For Wmin > 2, one can always remove
min (�(Wmin − 2)g/t�, �N/Wmin�) ADMs from each of
Wmin wavelengths such that no node has more than one
ADM removed and any t-allowable traffic matrix can be
supported.

Recall that according to Lemma 3 we can remove more
than �(Wmin − 2)g/t� nodes from at most one wavelength.
Thus if

�(Wmin − 2)g/t� < �N/Wmin� (6)

the above algorithm removes the most nodes possible from
every wavelength except possibly one. When Wmin be-
comes large for a given N , the inequality in (6) is reversed.
When this occurs the procedure in lemma 6 will remove
only a small percentage of the ADMs. In such cases, to get
further reductions in ADMs, we have to consider removing
nodes from more than one wavelength. In the following we
first consider the case where a node can be removed from
at most 2 wavelengths; then we generalize to an arbitrary
number of wavelengths.

Suppose we allow a node to be removed from at most
two wavelengths. Assume (6) does not hold, then we can
remove at least �N/Wmin� ADMs from each wavelength.
Consider removing ADMs in the following manner: from
wavelength i remove ADMs for nodes (i − 1)�N/Wmin�
to (i�N/Wmin� + k) mod N , where k is a constant to be
determined. For a node to be removed from at most 2
wavelengths, we must have k ≤ �N/Wmin�. If a node is re-
moved from wavelength i, the only other wavelengths it can
be removed from are (i − 1) mod N and (i + 1) mod N .
Since a node is removed from no more than 2 wavelengths,
traffic can only be forced onto groups of Wmin − 4 or more
wavelengths. Thus condition B need only be checked for

sets of Wmin − 4, Wmin − 3, Wmin − 2, or Wmin − 1 wave-
lengths. For a given choice of k, the number of circuits
forced on a set of Wmin −4 wavelengths is at most kt. The
number forced on a set of Wmin − 3 is at most 2kt, and
the number forced on sets of Wmin − 1 and Wmin − 2 is at
most (�N/Wmin� + k) t. Thus for condition B to hold, the
following inequalities must be satisfied:

(Wmin − 4)g ≥ kt (7)
(Wmin − 3)g ≥ 2kt (8)

(Wmin − 2)g ≥ (�N/Wmin� + k) t (9)
(Wmin − 1)g ≥ (�N/Wmin� + k) t (10)

For (7) to be satisfied for a positive value of k, it must be
that Wmin > 4. Also note that for condition A to fail, there
must be a circuit which is blocked from every wavelength.
When ADMs are removed in the above manner a circuit
can be blocked from at most 4 wavelengths. Thus, when
Wmin > 4, A is always satisfied. Therefore when Wmin >
4, the largest k < �N/Wmin� which satisfies (7)-(10) yields
the most ADMs which can be removed in this manner.

Assuming that Wmin > 4, it is sufficient to check only
(8) and (9) out the four inequalities above; this is shown
next. First note that if (9) is satisfied then clearly (10)
must also be. Let l = Wmin −4, then by assumption l ≥ 1.
Inequality (8) can be rewritten as (l + 1)g/2 ≥ kt and (7)
can be written as lg ≥ kt. Note that for l ≥ 1, (l+1)/2 ≤ l.
Thus if (8) is satisfied, then (7) must also be. If either N
or t is even it can be shown that if (8) is satisfied, then (9)
must also be; thus in this case we only need to check that
(8) is satisfied. In this case it also follows that (6) is never
satisfied. These results are summarized in the following
lemma.

Lemma 5: If Wmin > 4 and (6) is not satisfied, then
�N/Wmin� + k ADM’s can be removed per wavelength in
the above manner for any k < �N/Wmin� which satisfies
(8) and (9).

If Wmin > 4 and either N or t is even, then �N/Wmin�+k
ADM’s can be removed per wavelength in the above man-
ner for any k < �N/Wmin� which satisfies (8).

Next we generalize the above procedure to allow nodes
to be removed from an arbitrary number of wavelengths.
For now we assume that N ≥ Wmin. For given integers x
and k, suppose we remove nodes (i − 1)�N/Wmin� + 1 to
((i+x−2)�N/Wmin�+k) mod N from wavelength i, where
0 ≤ k ≤ �N/Wmin�. Thus we remove (x−1)�N/Wmin�+k
nodes from each wavelength, and a node is removed from
at most x wavelengths. Traffic is then only forced onto
groups of Wmin−2x or more wavelengths. For an arbitrary
value of x, as long as x is less than Wmin/2, condition A
is satisfied. We only need to check condition B for sets of
Wmin − 2x or more wavelengths. The most circuits that
can be forced on a set of Wmin − 2x wavelengths is kt. To
see this consider 2x adjacent wavelengths and note that
there are k nodes without an ADM on any of the first x
wavelengths and k other nodes without an ADM on the
next x wavelengths. By similar reasoning we can find the



most circuits that can be forced on sets of Wmin−(2x−1) to
Wmin−1 wavelengths. In this manner we get the following
set of inequalities which must be satisfied for B to hold.

(Wmin − 2x)g ≥ kt

(Wmin − (x + i))g ≥ ((x − 1 − i)�N/Wmin� + 2k)t,
∀i = 1, . . . , x − 1

(Wmin − i)g ≥ ((x − 1)�N/Wmin� + k)t, ∀i = 1 . . . , x

When x = 2, these inequalities are the same as (7) - (8).
In the x = 2 case, we were able to reduce this set of in-
equalities to a smaller subset. A similar reduction can be
shown for an arbitrary choice of x. Specifically, out of this
set of 2x inequalities, it can be shown via algebraic manip-
ulations that if the following three inequalities are satisfied
then the entire set of 2x must also be.

(Wmin − (2x − 1))g ≥ 2kt

(Wmin − (x + 1))g ≥ ((x − 2)�N/Wmin� + 2k)t
(Wmin − x)g ≥ ((x − 1�N/Wmin� + k)t

From this it follows that the most ADMs that be removed
in this manner is given by the solution to the following
integer program:

maximize (x − 1)�N/Wmin� + k

subject to: (Wmin − (2x − 1))g ≥ 2kt

(Wmin − (x + 1))g ≥ ((x − 2)�N/Wmin� + 2k)t
(Wmin − x)g ≥ ((x − 1�N/Wmin� + k)t

0 ≤ k ≤ �N/Wmin�
1 ≤ x ≤ �Wmin/2�.

(P)

Where x and k are constrained to be integers. This opti-
mization problem can be solved in the following manner:
First set k = 0 and find the largest value of x which sat-
isfies the constraints. Next, fix x at this value and find
the largest value of k satisfying the constraints. Again we
summarize these results in the following lemma which im-
mediately yields an algorithm for removing ADMs.

Lemma 6: Consider a ring with Wmin > 2. Then we
can remove (x− 1)�NWmin�+ k ADMs per wavelength in
the above manner where x and k are solutions to the inte-
ger program (P) and still support every t-allowable traffic
matrix.

Example 4: The following provides an example of the
algorithms in lemmas 4 and 6. Consider a ring with 15
nodes, g = 16, and t = 10. For this ring, Wmin = 5
and �N/Wmin� = 3. Using the algorithm from Lemma
4 we can remove 15 ADMs. The resulting allocation is
shown in Fig. 6. Using the algorithm in Lemma 6, one
finds that x = 2 and k = 1, and thus one can remove 4
nodes per wavelength, for a total of 20 ADMs removed.
The resulting topology is shown in Fig. 7.For comparison,
the upper bound on the number of ADMs removed from
(5) is 22.

When Wmin is larger that N , then �N/Wmin� = 0 and
the above algorithms as stated will not remove any ADMs.
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Fig. 6. Topology corresponding to Lemma 4.
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Fig. 7. Topology corresponding to Lemma 6.

We describe a way that these algorithms can be modified to
be useful in this case. First note that for positive integers s
and r, a traffic set is (s+r)-allowable if and only if it can be
written as the union of a s-allowable set and a r-allowable
set. When Wmin > N we can use this to decompose the
allowable traffic into smaller sets such that each set will
fit on N or fewer wavelengths. Suppose we want to sup-
port all t-allowable traffic and this requires more than N
wavelengths. Let k = � t

2g � and let t′ = t − 2kg. Decom-
pose each t-allowable traffic set into k 2g-allowable sets and
one t′-allowable set. Each 2g-allowable set can be accom-
modated on N wavelengths and the remaining set requires
��Nt′/2� 1

g � wavelengths. Note that

kN +
⌈
�Nt′/2�1

g

⌉
=

⌈
�Nt/2�1

g

⌉
(11)

i.e., decomposing traffic in this way requires no more wave-
lengths. Since the number of wavelengths needed for each
set in this decomposition is less than or equal to N , we can
apply the above algorithms to remove ADMs from each set.
The resulting topology will support all t-allowable traffic.
This is illustrated next

Example 5: Consider a ring with N = 5, g = 2, and t = 6
so that Wmin = 8. Applying the above procedure we get
one set of 5 wavelengths which must support 4-allowable
traffic and one set of 3 wavelengths which must support 2-
allowable traffic. Applying Lemma 4 to both of these sets,
we find we can remove 1 ADM from each wavelength and
thus eliminate a total of 8 ADMs.

As in Example 4, consider a ring with N = 15 and g =
16. In Fig. 8 we have plotted the number of ADMs resulting
from the algorithm in Lemma 6 as t ranges from 1 to 30.
The number of ADMs with no grooming is also plotted
along with the lower bound from (5). With the grooming,
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the number of ADMs is reduced by up to 27%. In [1] it was
found that approximately 60 ADMs were needed to support
uniform all-to-all traffic in this network. Uniform all-to-all
traffic is (N − 1)-maximal. In this example, supporting all
(N − 1)-allowable traffic requires 77 ADMs, but this is a
much less restrictive set of traffic.

We note that for any W ′ ≥ Wmin, the algorithms in
this section still work; in this case they generate a topol-
ogy using W ′ wavelengths which supports all t-allowable
traffic. As noted above, at times using more than Wmin

wavelengths can reduce the required number of ADMs.

D. Hot spot node

In this section we consider a generalization the set of t-
allowable traffic. Suppose there is one node in the network
which has no restriction on the number of circuits it can
source, while all other nodes are still restricted to t circuits.
We refer to the unconstrained node as a hot spot. For
example, this node can be used to model a central office
node. In this case the minimum number of wavelengths
required to support all allowable traffic is Wmin = �(N −
1)t/g�. Clearly the hot spot node needs an ADM on each
wavelength. Consider applying the grooming algorithms
to the set of nodes not including the hot spot with the
above number of wavelengths. The resulting topology will
handle all t-allowable traffic between these nodes. This
allocation is also sufficient for all allowable traffic including
the hot spot node. To see this note that by including the
hot spot node no additional calls are forced onto any group
of wavelengths. Thus by Theorem 1 any allowable traffic
matrix can be supported. This procedure applies with an
arbitrary number of hot spots.

IV. Extensions to the basic model.

In this section we will describe a number of extensions to
our basic model. First, we discuss the use of a strict sense or
wide sense non-blocking network to support rapidly chang-
ing traffic. Then we discuss the benefits of using a hub
node and tunable lasers.

A. Blocking properties.

In the previous sections we found topologies which can
support any allowable traffic set. In this section we want

to study the properties of the rings as traffic changes from
one allowable set to the other. Specifically, suppose traf-
fic changes from one allowable traffic set to another while
some subset of the circuits stay active. We look at whether
we can support the new traffic set without re-routing the
existing calls. When discussing such properties, we will use
some standard definitions from switching theory which we
repeat here. A ring is strict sense or strictly non-blocking
if any allowable circuit between nodes can be established
without interference from any other existing allowable cir-
cuits. A ring is wide sense non-blocking if any allowable
circuit between nodes can be established without interfer-
ence from any other existing allowable circuits, provided
that the existing circuits have been established according
to some algorithm. A ring is rearrangeably non-blocking
if any allowable circuit can be established by possibly re-
routing any existing circuits. Clearly,

Strict sense =⇒ Wide sense =⇒ Rearrangeable.

The converse implications do not in general hold.
A ring provisioned according to the algorithms in sec-

tions 2 and 3 is rearrangeably non-blocking but not neces-
sarily strictly or wide-sense non-blocking. If traffic changes
frequently then the control overhead associated with re-
arranging existing circuits may not be acceptable. In such
a case, one may prefer a ring that is either wide-sense or
strictly non-blocking. If every node has an ADM on each
of the Wmin wavelengths then the resulting ring is strictly
non-blocking. Similarly, when a ring is provisioned to sup-
port the traffic matrix R∗ defined in Section 2, it will also
be strictly non-blocking. For any of the other cases looked
at, the resulting ring will not necessarily be strictly non-
blocking. For the case of t-allowable traffic, any ring with
Wmin wavelengths must have NWmin ADM’s in order to
be strictly non-blocking. In other words, in this case one
cannot save on the cost of ADMs by grooming. We prove
this for the case of t = 1, but it can be modified for an
arbitrary t.

Theorem 2: For t-allowable traffic, a strictly non-
blocking ring with t = 1 and Wmin wavelengths must have
an ADM for each node on each wavelength.

Proof: When Wmin = 1 the theorem is clearly true.
For Wmin = 2, we know that all the nodes must be on one
of the wavelengths. If we remove only one node, say node
j, from wavelength 1. We can find a set of g circuits not
involving node j and place them on wavelength 2. Then
any additional circuit involving node j cannot be estab-
lished without re-arranging these existing circuits, and so
the ring is not strictly non-blocking.

For Wmin > 2, we proceed by induction. First note
from lemma 1 there must be at least (N/2) + 1 nodes on
each wavelength for the ring to be even rearrangeably non-
blocking. When Wmin > 2 and t = 1, it follows from the
definition of Wmin that N/2 ≥ 2g +1. Thus there must be
more than 2g + 2 nodes on each wavelength. Now assume
that the theorem is true for Wmin = k wavelengths, and
consider the case when Wmin = k + 1. Without loss of



generality we can assume that nodes 1, . . . , 2g + 2 are on
wavelength 1. Thus we can consider any 1-allowable set of
g circuits between 2g of these nodes and place these circuits
on wavelength 1. Then any other 1-allowable set of calls
between the remaining N−2g nodes must be placed on the
remaining k wavelengths. If we consider a ring with these
N − 2g nodes, then the minimum number of wavelengths
for this ring is k. Therefore, by the induction hypothesis,
we can’t remove any of these N − 2g nodes from the re-
maining k wavelengths. The original 2g nodes were picked
arbitrarily from the set of 2g + 2 nodes that must be on
wavelength 1, and by choosing different sets and repeat-
ing this argument we have that every node must be on the
remaining k wavelengths. Likewise by repeating this argu-
ment but starting with a different initial wavelength we see
that every node must be on every wavelength. Thus the
theorem is true for Wmin = k + 1, and, by induction, for
any ring with t = 1.

Next we consider wide-sense non-blocking rings. This
case is more difficult than the other cases due to the fact
that a routing algorithm must also be considered. The
following gives an upper bound on the ADMs that can be
removed for a wide-sense non-blocking ring with t-allowable
traffic.

Lemma 7: Consider a unidirectional ring with Wmin

wavelengths. Let Mi be the set of nodes removed from
wavelength i. For the ring to be wide-sense non-blocking
for t-allowable traffic, where t is even, we must have for all
i:

|Mi| ≤ max(2Wming/t − N, 1)
Proof: First note that |Mi| ≤ N−2 for all i. We show

that if |Mi| > 1 then it must be that |Mi| ≤ 2Wming/t −
N . The lemma then follows. If 2 ≤ |Mi| ≤ N − 2 then
we can form the following t-maximal set which also has
the maximal link load. This set consists of two groups of
traffic. One group consists |Mi|t/2 of circuits which are
only between nodes in Mi. The other group consists of
circuits only between nodes in N−Mi. Let X be the subset
of the circuits in N − Mi which are routed on wavelength
i (X can not be empty since it is a t-maximal set and we
are using Wmin wavelengths).

First we prove if the ring is wide-sense non-blocking,
then:

|X| ≥ |Mi|/2 (12)

Assume this is not true. Suppose the circuits in X were
disconnected as well as |X| of the circuits involving the
nodes in Mi. We can find a set of 2|X| new circuits where
each circuit involves only one node in Mi and one node
which previously was in a circuit in X. Adding this set of
circuits to the remaining calls results in a new t-maximal
set, and none of these new calls can be routed on wave-
length i. This new set will also have the maximum link
load and thus requires all Wmin wavelengths. Thus these
calls cannot be accepted without rearranging some of the
other active calls. This is a contradiction and so (10) must
be true.

If (12) is true, beginning with a t-maximal set as above,
assume that the circuits involving the nodes in Mi are
disconnected along with |Mi|t/2 circuits involving nodes
from X. Then we can form |Mi|t circuits as above, where
each circuit is between one node from Mi and one node
that was in a circuit in X. These additional circuits must
be routed on the remaining Wmin − 1 wavelengths with-
out rearranging the active calls. This means that at most
(Wmin−1)g−|Mi|t calls not involving the nodes in Mi can
be routed on these wavelengths. There are (N − |Mi|)t/2
circuits in the original maximal set not involving nodes in
Mi, thus we must have

|X| ≥ (N − |Mi|)t/2 − (Wmin − 1)g + |Mi|t.

Also |X| ≤ g; combining these and performing some alge-
bra yields the desired result.

We assumed that t was even in this lemma just to sim-
plify the proof; a similar bound can be found for t odd.
Consider our previous example with N = 15, g = 16, and
t = 10. In this case the above bound is |Mi| ≤ 1; so,
for the network to be wide-sense non-blocking, at most 5
ADMs can be removed. Compare this with 20 ADMs that
can be removed for a rearrangeably non-blocking ring. For
this example with t taking on any even value between 2
and 14, |Mi| is always bounded to be less than or equal to
1, resulting in at most an 8% reduction in ADMs. These
results suggest that to get great benefits from grooming
for t-allowable traffic, some rerouting of existing traffic is
needed, at least within the unidirectional ring model con-
sidered here.

B. Using a hub node and tunable lasers

Investing in more sophisticated components elsewhere in
the network can yield further reductions in the cost of the
electronic layer multiplexing. We consider two examples –
the use of a hub node and the use of tunable lasers. First
we consider a hub node. By a hub node we mean a node
which has ADMs on every wavelength and has a SONET
DCS. The benefits of a hub architecture in reducing the
required number of ADMs has been pointed out previously
(see e.g. [2] or [3]). For bi-directional rings, several hub ar-
chitectures are given in [3] which support dynamic traffic.
By similar arguments to those used in [2]we can show that
making one node in the ring such a hub node will not re-
quire any more ADMs than were required without the hub.
It can easily be shown that the minimum number of ADMs
needed to support all t-allowable traffic with a single hub
node is given by

⌈
N

�g/t�
⌉

+ (N − 1) ADMs. (13)

For example, consider a ring with N = 7, g = 2, and t = 1.
Using the algorithm from Lemma 6 12 ADMs are needed to
support all t-allowable traffic. By making one node a hub
node, this traffic can be supported using only 10 ADMs.

We can also reduce the required number of ADMs if in-
stead of having fixed tuned lasers, each node is equipped



with tunable lasers. For example, again consider the ring
with N = 7, g = 2 and suppose we want to support all
1-allowable traffic. If nodes are equipped with tunable
lasers then each node only needs one ADM, and thus only
7 ADMs are needed for the entire ring. In this case using
tunable lasers reduced the required number of ADMs by
58%. Clearly with tunability a node needs no more than t
ADMs to support t-allowable traffic. Thus when t is small
there is a clear advantage to tunability. On the other hand
for larger values of t the gain from tunability is not as ob-
vious and is an open issue. Both tunability and the use of
a hub node can also reduce the required number of ADMs
for an arbitrary set of allowable traffic as studied in Sect.
2.

V. Conclusion

In this paper we examine the problem of designing a
WDM ring network to support dynamic SONET traffic.
The goal of our design is to minimize the number of elec-
tronic multiplexers (e.g., SONET ADMs) used in the net-
work. We developed a number of algorithms for assigning
ADMs to wavelengths in a way that supports every allow-
able traffic matrix in a non-blocking manner. For the spe-
cial case of t-allowable traffic, these algorithms are shown to
reduce the number of ADMs needed by up to 27%. We also
derive a lower bound on the number of ADMs required to
support all t-allowable traffic and show that in some cases
our algorithms perform close to this bound. Finally, we dis-
cuss extensions of our model to include supporting traffic
in a strictly non-blocking manner. Additionally we discuss
the use of a hub node and tunability to further reduce the
number of ADMs.
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