
1

Complexity of Allocation Problems in Spectrum
Markets with Interference Complementarities

Hang Zhou, Randall Berry, Michael L. Honig, and Rakesh Vohra

Abstract—Markets are often viewed as a key ingredient in
facilitating more efficient dynamic spectrum access. In this paper
we consider how such spectrum markets are influenced by a
key property of the wireless medium: interference. Interference
can result in ”complementarities” among the “spectrum goods”
being traded, which complicates the design of an efficient market
mechanism. We consider several alternative models for defining
such spectrum goods, and explore the impact of these choiceson
the complexity of the resulting market.

Index Terms—Dynamic Spectrum Sharing, Spectrum Markets,
Optimization, Complexity

I. I NTRODUCTION

Spectrum markets have been proposed as a way to enable
a more flexible allocation of spectrum [1]–[5], [25]. Such
markets could be operated by a primary spectrum holder to
lease spectrum for secondary use, or by a neutral third party
that pools and leases spectrum from multiple providers and/or
the government. Indeed, provisions for limited forms of such
markets have been adopted in the U.S. [6]. When combined
with software defined (frequency-agile) radio technology,such
markets could be operated on much finer scales in time and
space than traditional spectrum allocations. The design ofsuch
spectrum markets must account for the fact that transmitting
in the same spectrum at nearby locations creates interference,
which differentiates spectrum from many other goods. In
particular, an agent’s value for spectrum at a particular location
may depend on the use of the spectrum at nearby locations.
One solution to this is for a market to allocate a band
of spectrum at only two locations that are sufficiently far
apart, creating ”spatial guard zones” to mitigate interference.
However, if spectrum is allocated on a small geographic scale,
the overhead from such guard zones can become significant.1

Moreover, the acceptable interference (and thus the appropriate
guard zone) may vary greatly depending on the application and
the technology used.

Instead of using predetermined guard zones to design
markets without interference, we consider using markets to
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1When spectrum is allocated on a large (e.g. national) scale as in traditional
auctions, this is not a significant issue as such guard zones will be a small
fraction of the total area allocated and boundaries can be drawn in sparsely
populated areas.

manage interference. For example, agents could purchase
spectrum to preclude others from using it, creating guard zones
on demand. This results in bundles of “spectrum assets” having
complementarities(i.e., the value of a bundle may be greater
than the sum of the values of the individual assets). In addition
to creating guard zones, an agent could mitigate interference
by coordinating transmissions across neighboring spectrum it
owns, again leading to complementarities.2

Our focus in this paper is on developing models of different
approaches to defining complementary spectrum assets in
such a market. We study the effect of such definitions on
the complexity of the resulting efficient allocation problems,
where an efficient allocation is one that maximizes the valueof
the buyers in the market.3 We are interested in the complexity
of efficient market allocation because it is closely relatedto
many mechanism design issues. In particular, if there exists
a simple algorithm to solve the efficient allocation problem,
then there may exist a simple pricing scheme (such as uniform
pricing) that achieves the efficient allocation. Otherwise, it
suggests that simple price functions cannot achieve the effi-
cient allocation, which may require pricingbundlesof goods in
the market. Here, different definitions of spectrum assets result
in different manifestations of interference complementarities.
By comparing the complexities of the allocation problems in
different markets, we examine the influence of the definitions
of spectrum assets. In cases where the resulting allocation
problems are NP-hard, we also discuss various algorithms
for approximating the optimal algorithm. Our motive here
is two-fold. First, such algorithms can be used to study the
efficient allocation for a large number of assets and agents,and
second, such algorithms might be useful in developing truthful
mechanisms that approximate an efficient allocation [9], [10],
[16]. Alternatively, the cases where the allocation problems are
NP-hard may provide a reason to design spectrum markets in
such a way that the problem sizes are not too large, so that
despite the NP-hardness, the relevant problems can be solved
exactly.

An alternative approach for dealing with such interference
complementarities is viabargaining, i.e., allowing the agents
to negotiate with each other to determine the how spec-

2We focus on complementarities due to interference but note that comple-
mentarities between adjacent spatial locations can exist for other reasons as
well, e.g., in traditional spectrum auctions complementarities exist due to the
desire to create a national footprint in a given band. With more flexible radios
and markets, this may be less of a concern.

3Of course, one might also be interested in maximizing the revenue of the
seller. We do not explicitly address this here, but note thatmany mechanisms
that attempt to maximize revenue are again closely related to solving the
underlying efficient allocation problem.
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trum assets are defined as well as how they are allocated.
Such an approach dates back to the work of the economist
Ronald Coase [7], who argued that if agents have well-defined
property rights and there are no transaction costs, then such
bargaining would lead to the efficient allocation. This may
seem to suggest that the problem of defining spectrum assets
is unimportant; would agents not simply bargain with each
other to determine the correct definition? The problem with
this conclusion is that transaction costs are not zero. In practice
there are importantfrictions that can can impede bargaining
such as the time needed to find counter parties and reach an
agreement. When spectrum is allocated on a finer temporal or
spatial scale, such frictions would likely increase. Indeed, in
cases where the allocation problems are NP-hard, bargaining
to achieve an efficient outcome is also likely to be difficult.
Additionally, Coase’s conclusions are based on agents having
perfect information about each other’s valuations and do not
hold in general in the presence of imperfect information.

We first give a basic model in Section II for spectrum mar-
kets with complementarities, in which determining the efficient
allocation is shown to be NP hard. Several approximation
schemes are discussed. We then consider different models for
defining the assets in a spectrum market, including allowing
guard zones with secondary users (Section III) and allowing
the market to determine a “radius” over which nodes may
transmit (Section IV). We show that redefining the spectrum
asset in this way leads to a substantial reduction in (worst-
case) complexity.

In terms of related work, a number of papers have discussed
mechanisms for allocating spectrum to primary and/or sec-
ondary users including various types of auctions [11]–[17]and
pricing schemes [18]–[24]. As noted above, here we do not
consider an explicit mechanism but instead focus on the prob-
lem of finding an efficient spectrum allocation. This can be
viewed as a key part of a mechanism such as a VCG auction,
in which the efficient allocation is determined from agents’
submitted valuations.4 The interference complementarities we
study do not arise in most of the prior work because either
the focus is on allocating spectrum at a single location, or it
is assumed that no two interfering locations are allocated.

II. BASIC MODEL FORSPECTRUM MARKETS

Our basic model is for a market with a fixed set,C, of
availablespectrum assets, where each assetj ∈ C represents
the right to exclusively transmit with a fixed power mask
over a given frequency band within a given geographic area.5

We assume|C| is large so that there are many assets to be
allocated, and these assets are small enough relative to the
given power mask that interference effects among them are
significant.

Let A be the set of agents who wish to acquire the assets,
and letG = (C, E) be aninterference graph, in which the set
of directed edges,E, corresponds to pairs of interfering assets.
Each agent here needs not be a single transmitter/receiver pair,

4In a VCG auction, a version of the efficient allocation problem would also
have to be solved for each agent to determine their payment.

5This definition is motivated in part by the discussion in [25].
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Fig. 1. Agentk’s revenue and interference for three spectrum assets,C =
{1, 2, 3}. Each shaded node denotes the asset for which agentk has positive
revenue. The dashed arrows denote the interference cost agent k would incur
without having the corresponding neighboring asset.

but more generally can be a service provider that may seek
to dynamically acquire spectrum at multiple locations to serve
its customers. We assume thatG is planar, as would be the
case for interference due to spatial proximity. Letrij denote
the revenue that agenti accrues when assigned assetj if there
is no interference from any assetj′ such that(j, j′) ∈ E.6

For example,rij could be proportional to the number of end
users agenti serves in assetj. Furthermore, if agenti is
assigned assetj and agentq 6= i is assigned assetj′ with
(j, j′) ∈ E, then agenti suffers aninterference costof ci

jj′

and agentq suffers an interference cost ofcq
j′j (assuming

(j′, j) ∈ E). Note thatci
jj′ needs not be equal toci

j′j . We
assume thatrij ≥∑j′ :(j,j′)∈E ci

jj′ for all i and j, so that an
agent never receives a negative utility (revenue minus costs)
from an asset. If agenti acquires both assetsj andj′, she will
not suffer this interference cost, due to the complementarity
between assets. (Fig. 1 shows an example scenario for an agent
k ∈ A and three assets (C = {1, 2, 3}).) This complementarity
could be due to reducing power in one asset, coordinating
transmission schedules across assets or utilizing some type of
cooperative transmission scheme. For now we do not focus
on any particular underlying cause, but will return to this in
Sect. IV.7

This model allows for multiple frequency bands at any
location, where each band corresponds to a distinct asset. As-
suming no interference across different bands, the interference
graph consists of a separate component for each band.8 We
also assume that an agent’s utility from acquiring multiple
bands at a single location is simply the sum of the utility
for each band. This is reasonable if an agent is serving users
that are tied to a given band or has sufficiently many users to
utilize all bands, but precludes cases where different bands are
substitutes (e.g., where an agent desires one of two bands but
not both). With these assumptions, the problem decomposes

6We assume that spectrum is scarce enough so that if agenti does not
acquire it, then another agent will.

7Of course this linear model is a simplification. More elaborate models
could be developed based on specific assumptions about how agents coor-
dinate the use of neighboring assets. Even in such cases, agents could be
restricted to report valuations in this linear form to simplify the market design.

8The model can be extended to allow interference across different bands
modeling for example out-of-band interference due to different choices of
receive filters. However, in this case, the resulting interference graph may not
be planar and some of the following analysis would need to be modified.
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into a separate problem for each band. Hence, we assume a
single band in the following.

A. Efficient Allocations

A desirable goal for a market is to maximize efficiency
(revenue minus cost). For our basic model, this is given by
the following integer program:

max
∑

i∈A

∑

j∈C

rijxij −
∑

i∈A

∑

(j,j′)∈E

ci
jj′ (xij − xij′ )

+ (P1)

s.t.
∑

i∈A

xij ≤ 1, xij ∈ {0, 1}, ∀j ∈ C, ∀i ∈ A, j ∈ C

wherexij = 1 if agent i ∈ A is assigned assetj ∈ C and
zero otherwise.

Note that if there are no complementarities (i.e.,ci
jj′ = 0

for all i ∈ A and (j, j′) ∈ E), then (P1) is easy to solve;
simply give each assetj to the agent with the largest value of
rij . We next consider the complexity of (P1) whenci

jj′ > 0.

B. Computational Complexity

By choosing large interference costs, one can ensure that
when an agent is assigned an asset, no neighboring assets will
be assigned to another agent. Using this idea, one can map
the independent set problem into an instance of (P1), showing
that it is NP hard. Moreover, as the next proposition states,
the problem remains hard even for small interference costs.

Proposition 1: Problem (P1) is NP-hard even if the inter-
ference costs on each link is arbitrarily small (relative tothe
revenue).

The proof of this proposition is given in Appendix A.
The hardness in (P1) comes from the integer constraint.

Indeed, relaxing this constraint to0 ≤ xij ≤ 1 yields a
linear program (LP) that is easily solvable. This LP will
typically have fractional solutions, which cannot necessarily
be interpreted as frequency or time sharing due to the need to
coordinate such fractional assignments across assets (see[8]).

We next identify several scenarios in which (P1) can be
efficiently solved.

1) Dominant Revenues:First we consider restrictions on
the costs and revenues. We say that an agenti has adominant
revenuefor an assetj if

rij ≥
∑

j′:(j,j′)∈E

ci
jj′ +

∑

j′ :(j,j′)∈E

max
k∈A

ck
j′j , (1)

andi’s net revenue (assuming interference from all neighbors,
i.e., rij −

∑

j′ :(j,j′)∈E ci
jj′ ) is the largest among agentsi′ that

also satisfy (1) withi′ replacingi.
Proposition 2: Assume for eachj ∈ C, there is at least one

agenti∗(j) with dominant revenue. Then under either of the
following conditions, the optimal solution is to assign each
assetj to i∗(j): (i) for eachj ∈ C there is only one agent
with positive revenue or (ii) eachi ∈ A has positive revenue
for at most one asset.

The proof of this follows from showing that in each case,
one can always improve the revenue by assigning an asset to
an agent with a dominant revenue.

I = [j1, j2]

j1 j2j1 − 1 j2 + 1

ci
j1(j1−1)

ci
j2(j2+1)

Fig. 2. An example of the line topology with intervalI = [j1, j2] for an
agenti.

2) Line Model: In this scenario we restrict the topology of
the interference graph to be a line with the assets numbered
consecutively (see Fig. 2). We reformulate the optimization in
terms ofintervalsof consecutive assets. LetI be the set of all
intervals on the line, andui(I) be the utility agenti receives
from being allocated intervalI and not any neighboring assets,
i.e., ui(I) =

∑

j∈I rij − ci
j1(j1−1) − ci

j2(j2+1), where I =

[j1, j2]. Problem (P1) can then be reformulated as follows,
wherexiI indicates if intervalI is assigned to agenti,

max
∑

i∈A

∑

I∈I

ui(I)xiI (Pl)

s.t.
∑

i∈A

∑

I∋j

xiI ≤ 1 andxiI ∈ {0, 1} ∀i ∈ A, I ∈ I.

The next lemma shows that Problem (Pl) can be efficiently
solved by linear programming.

Lemma 1: If the integer constraint in Problem (Pl) is re-
laxed to0 ≤ xiI ≤ 1, for all i ∈ A, I ∈ I, then the resulting
feasible set is a polyhedron with integral extreme points.

This lemma holds simply because the relaxed constraint
matrix in (Pl) has consecutive 1’s in each column and thus
is totally unimodular[31].

3) Ring Model:The analysis of a line model can be gener-
alized to a ring. In this case the corresponding reformulation
is not totally unimodular, but is ”nearly” so. This can be
exploited to efficiently find a solution. The details are omitted
due to space considerations.

The line and the ring cases suggest that one way to manage
the market complexity would be to have lines or rings of assets
separated by spatial guard zones, each such line or ring could
be operated as a separate market in which prices are announced
for intervals of assets as suggested by (Pl).

C. Approximation Algorithms

We next consider approximation algorithms for a general
instance of Problem (P1). These are based on reformulating the
problem by replacing the(xij − xij′ )

+ terms in the objective
with xij(1 − xij′ ) and introducing the new variableszi

jj′ :=
xijxij′ yielding

max
∑

i∈A

∑

j∈C

r̃ijxij +
∑

i∈A

∑

(j,j′)∈Ẽ

c̃i
jj′z

i
jj′ (P2)

s.t.
∑

i∈A

xij ≤ 1, xij ∈ {0, 1}, ∀i ∈ A, j ∈ C,

zi
jj′ ≤ xij , zi

jj′ ≤ xij′ , ∀i ∈ A, (j, j′) ∈ Ẽ

where r̃ij = (rij −∑j′:(j,j′)∈E ci
jj′ ), c̃i

jj′ = ci
jj′ + ci

j′j and

Ẽ is the set ofundirectededges for the interference graphG
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formed by replacing all directed edges between a pair of nodes
by a single undirected edge. Herer̃ij is the minimum revenue
agenti can gain from assetj (assuming interference from all
neighbors), and̃ci

jj′ is the extra revenuegained if i receives
j and j′ (or edge(j, j′)). Let Zopt denote the optimal value
of (P2) or equivalently (P1).

1) Max-̃rij approximation: First we consider a simple
scheme: allocate each asset to the agent with the largest value
of r̃ij . The performance of this scheme is bounded as follows:

Proposition 3: Let γ > 0 be a constant so that
∑

j′:(j,j′)∈E ci
jj′ ≤ γr̃ij , ∀i ∈ A, j ∈ C. Then the Max-̃rij

scheme gives a(1 + γ)-approximation to (P2).
Proof: Let Ẑ be the total utility achieved by this algorithm

and let i∗(j) be the agent assigned assetj in this solution.
Note thatẐ ≥ Z|c̃=0 =

∑

j∈C r̃i∗(j),j , whereZ|c̃=0 is the
solution to a modified version of (P2) in which each of the
c̃i
jj′ terms is set to zero. Similarly, letZ|r̃=0 be the solution

to (P2) in which all of ther̃ij terms are set to zero, and let
î(j) be the agent assigned to assetj in this solution. Note that
Z|c̃=0 + Z|r̃=0 ≥ Zopt. By the definition ofγ,

Z|r̃=0 ≤
∑

j∈C

∑

j′ :(j,j′)∈E

c
î(j)
jj′ ≤

∑

j∈C

γr̃î(j),j ≤ γZ|c̃=0.

Combining we have(1 + γ)Ẑ ≥ Zopt.
2) Max-rij : A related approximation is to assign each asset

to the agent with the largest value ofrij . By a similar proof
this scheme has the following approximation bound:

Proposition 4: Let γ′ > 0 be a constant so that
∑

j′:(j,j′)∈E ci
jj′ ≤ γ′rij , for all i ∈ A, j ∈ C. Then allocating

each asset to the agent with the largestrij gives a1/(1+γ′)-
approximation.

3) Edge coloring approximation:Consider a proper edge
coloring of G̃ = (C, Ẽ), which dividesẼ into q disjoint sets
E1, ..., Eq, one for each color. The objective function in (P2)
can then be written as

Z =
∑

j∈C

∑

i∈A

r̃ijxij +

q
∑

k=1

∑

jj′∈Ek

∑

i∈A

c̃i
jj′z

i
jj′ . (2)

Consider solving the followingq + 1 modified problems:
for eachk = 1, . . . , q, one problem is given by replacing
the objective in (2) with

∑

(j,j′)∈Ek

∑

i∈A c̃i
jj′z

i
jj′ , and the

final problem is given by replacing the objective in (2) with
∑

j∈C

∑

i∈A r̃ijxij . Let Zk denote the optimal value of each
of these problems. Note thatZq+1 is equivalent toZ|c̃=0 as
defined for the previous approximation and so can be easily
solved. Furthermore, the firstq problems can also be solved
by a greedy assignment of edges, since no two adjacent edges
appear in their objectives. We then use the allocation for the
problem with the largest valueZk as our approximation.

Proposition 5: If a proper edge coloring ofG can be found
usingq colors, then the preceding procedure gives a(1 + q)-
approximation.

Proof: Clearly, the allocation achievingmaxk Zk is also
a feasible solution to (P2) and from (2) we haveZopt ≤
∑q+1

k=1 Zk. Hence,maxk Zk ≥ Zopt

q+1 .
This approximation factor is minimized by settingq equal to

the chromatic indexχ of G. For a general graph determining

χ is NP-complete, but it can be approximated to within 1
by the maximum degreeD plus one. An edge coloring using
D + 1 colors can be easily found, resulting in a(2 + D)-
approximation.9

4) GRA-approximation:Let Z|c̃=0 andZ|r̃=0 be defined as
in the Max-̃rij approximation. SinceZ|c̃=0+Z|r̃=0 ≥ Zopt, it
follows that eitherZ|c̃=0 ≥ 1/2Zopt or Z|r̃=0 ≥ 1/2Zopt. As
we have noted previously, computingZc̃=0 is easy. However,
exactly computingZ|r̃=0 is difficult in general. Indeed, by a
similar argument as in the proof of Proposition 1, it can be
shown that this is NP-hard. Instead we consider approximating
this by adapting theGeometric Rounding Algorithm(GRA)
in [26]. This involves solving the natural LP relaxation to
(P2) and then applying a randomized dependent rounding
scheme to get an integer solution. The specific scheme in
[26] is shown to give a constant factor approximation to
theWinner Determination Problem(WDP) in a combinatorial
auction with single-minded bidders. The WDP is to efficiently
allocate a collection of distinct goods to a set of bidders, where
each bidder only desires a specific subset of the goods. The
approximation factor for the GRA scheme in [26] is equal to
the maximum cardinality of the subset desired by any agent.

Finding Z|r̃=0 can be viewed as a generalization of the
WDP problem in which the goods are assets to be allocated
to each agent. Each agenti will only value pairs of goods
(j, j′) for which ci

jj′ > 0. However, in our case, agents are not
single minded and may value multiple pairs, with an additive
valuation across pairs. It can be seen that the results in [26]
still apply with such a generalization, i.e., applying the GRA
algorithm approximatesZ|r̃=0 with an approximation factor
equal to the maximum cardinality of a subset desired by an
agent (2 in our case). Using this we have the following bound.

Proposition 6: Taking the minimum ofZ|c̃=0 and the GRA
approximation toZ|r̃=0 is a 4-approximation.

We briefly comment on the implications of these approxi-
mations in terms of market mechanisms. The Max-r̃ij and the
Max-rij only base their allocations on one value per agent
for each asset and so would suggest a mechanism with lower
overhead, and moreover, given these values, the allocationfor
each asset can be done separately. The challenge here is how
to incentivize the agents to correctly report these values.For
example, it is well known that using such an approximation
in a truthful mechanism, like the VCG auction, can result in
a mechanism that is no longer truthful. The edge coloring
and GRA approximation require agents to report their full
valuations for all bundles of assets and again ensuring that
this is done truthfully is an open question.

D. Numerical Example

We present a numerical example to illustrate the perfor-
mance of the preceding approximations for a square lattice
with |C| = 9 assets and|A| = 6 agents. An agent’s revenue
for an asset is proportional to the number of end users within
the asset, which are distributed according to a spatial Poisson

9Moreover, for certain graphs of interest such as regular lattices,χ is equal
to the degree and aχ-edge coloring can be easily found giving a(χ + 1)-
approximation.
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Fig. 3. Total revenue achieved by various approximation algorithms for a
3 × 3 lattice with six agents, and Poisson intensities of 5 and 20 users/asset.

process with intensityµ. The area of each asset is normalized
to one, and the locations of end-user groups are independent.
The interference cost is due to the inability to serve end users
close to the asset boundary, modeled as the outerλ fraction
of the asset’s area. The interference cost is then proportional
to the number of end users located within the corresponding
boundary area.

Fig. 3 shows total revenue versus the interference areaλ
for the different approximations with intensities ofµ = 5 and
µ = 20 users per asset for all agents. These are compared with
the optimal total revenue obtained from the integer solution to
(P1). The revenue of a natural linear relaxation to (P1), which
is an upper bound for the optimal revenue, is also shown in
Fig. 3. Each point is an average over500 realizations of the
locations of the end users (and thus the revenues and costs).

The approximation algorithms achieve close to the maxi-
mum revenue for smallλ. The gap widens as bothλ and
the spatial intensityµ increase, with the GRA-approximiation
performing best for largeλ andµ. However, for smallerµ, the
Max-rij approximation performs best. This algorithm assigns
assets based on their total value assuming no interference,
while the other algorithms make assignments based on ei-
ther the total revenue from the assets’ boundary areas or
interference-free areas. Forλ > 0.5, the probability that an
agent has more revenue in the boundary areas than in the
interference-free area is increasing withµ. Hence for largeµ
an algorithm that focuses on the boundary areas such as the
GRA-approximation performs better, while for smallerµ, the
Max-rij , which accounts for the entire asset performs better.

III. M ARKETS WITH SECONDARY ASSET-EDGE USERS

In Section II, we have shown that a generic definition for
spectrum assets with complementarities leads to an efficient
allocation problem that is difficult to solve. In this section,
we give an alternative model for spectrum assets that uses
secondaryagents in an attempt to improve on this complexity.

Interference primarily affects the users near asset bound-
aries, while users near the interior of an asset may receive little

original assets new assets (primary)

boundary area(j, j′) (secondary)

assetj assetj′

Fig. 4. Two adjacent assets showing the asset boundary area (shaded).
The dashed lines represent the original asset boundaries and the solid lines
represent new smaller asset boundaries.

interference. Hence, we consider treating the asset boundary
areas as separate assets from the interiors, which are restricted
to be used by secondary agents that provide local service
within those regions with lower Quality of Service (QoS),
provided that they do not interferer with primary users. This
is motivated by the well known model for secondary usage
such as that proposed for the TV white-spaces [27]; however,
here the secondary sharing is restricted to boundary regions
which are allocated via a spectrum market. We show that
allowing secondary boundary assets does not fundamentally
reduce the complexity of the resulting efficient allocation
problem provided that agents can operate in both a primary
and secondary role.

This model is illustrated in Fig. 4, which shows two
adjacent assets10. In our original model, these assets might be
represented by adjacent spatial regions (dashed lines in Fig. 4).
Now, we reduce the size of these regions, to create primary
assets (solid lines in Fig. 4), that do not create significant
interference with each other.11 The area along the original asset
boundaries (shaded in Fig. 4) becomes available for secondary
use. Both the boundary and primary assets are allocated to any
agent via a spectrum market.

As before, the set of primary assets,C, are related via an
un-directed graphG = (C, Ẽ), whereẼ now represents assets
that share a boundary area, i.e., each boundary area is indexed
by an edge inẼ. A boundary area(j, j′) ∈ Ẽ only experiences
interference from the neighboring assetsj andj′.

Agent i receives revenuerij when assigned assetj re-
gardless of whether or not she is assigned the neighboring
boundary areas. Letρi

jj′ denote the revenue agenti receives
from boundary area(j, j′) in isolation. If the agent owns asset
j and the neighboring boundary area(j, j′), then the agent
receives an additional (complementary) revenue ofǫi

jj′ . This
is again due to the possibility of mitigating interference by
coordinating transmissions across the asset and boundary area.

10The example in Fig. 4 uses square shape for assets for illustrative purpose
only. Our model in this section applies for general interference graphs.

11Of course, the needed reduction will depend on the power masks used
within each asset.
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The efficient allocation is again given by an integer program
with the objective:

max
∑

i∈A

∑

j∈C

rijxij +
∑

i∈A

∑

(j,j′)∈Ẽ

ρi
jj′y

i
jj′

+
∑

i∈A

∑

(j,j′)∈Ẽ

(ǫi
jj′z

i
jj′ + ǫi

j′jz
i
j′j). (P3)

This is optimized over the binary variables{xij , y
i
jj′ , z

i
jj′},

where xij = 1 if agent i is assigned assetj, and is zero
otherwise,yi

jj′ = 1 if the boundary area between assetsj
and j′ is assigned to agenti , and zi

jj′ = 1 if agent i
is assigned both assetj and the boundary(j, j′). Note that
zi

jj′ and zi
j′j refer to different assets. These are subject to

analogous constraints as in (P2).
Next we show that (P3) is equivalent to a special case of

(P2). Given an instance of (P3) with a graphG, construct
a new graphG′ which has a additional node for each node
in G plus a node for each boundary area (edge) inG12; G′

will have an edge between each node and the corresponding
boundary area. By appropriately defining the costs forG′, this
equivalency follows. The resulting graphG′ will have a special
structure not present in a general graphG. Unfortunately, this
structure does not make the problem more tractable. Indeed,
using similar arguments as in Section II-B it can be shown
that (P3) is still NP-hard. It also follows that the approximation
algorithms in Sect. II-C apply to (P3). We can use the structure
in (P3) to give an alternative approximation result for the
Max-r̃ij algorithm. Specifically, if there is a constantγ′ such

that
∑

j′:(j,j′)∈E ǫi
jj′ < γ′

(

rij + 1
2

∑

j′:(j,j′)∈E ρi
jj′

)

then
assigning each asset or boundary area to the agent with the
largest value ofrij or ρi

jj′ gives a(1+γ′)-approximation. The
constantγ′ would likely be smaller than the correspondingγ
for (P2).

In the above discussion, any agent can acquire the boundary
areas. However, if assets can only be acquired by primary
agents while boundary areas can only be acquired by a
different group of secondary agents, then there will be no
complementarities, and (P3) can be solved easily. Likewise,
in such a setting designing a market mechanism is simple.
Each assets and boundary region can essentially be sold via a
separate mechanism, such as a posted price or a second-price
auction.

The structure in (P3) can also be used to give a condition
under which the problem can be solved by a simple greedy
procedure. The precise statement follows.

Proposition 7: If for any boundary area(j, j′) ∈ Ẽ, there
exists some agenti such thatρi

jj′ ≥ ρi′

jj′ + ǫi′

jj′ + ǫi′

j′j for
all i′ 6= i, then (P3) can be solved by a two-stage greedy
algorithm that first assigns each boundary area to the agent
with the largest value ofρi

jj′ and then assigns each asset to the
agent with the largest revenue given the boundary assignment.

Proof: Consider using a two-stage dynamic programing
to solve (P3): in the second stage, given an assignment of
assets, optimally assign the boundary areas, and in the first

12Namely, G′ includes every node ofG, but also introduces a new node
for each boundary area.

stage assign the assets to maximize the current revenue plusthe
future revenue of the boundary assignment. Under the given
condition, stage two always assigns each boundary area to the
agent with the largest value ofρi

jj′ , giving the stated algorithm.

IV. M ARKETS WITH FLEXIBLE ASSETBOUNDARIES

So far we have assumed that the interference costs are given
constants, which could model a variety of scenarios. We now
consider a specific model for mitigating interference: adjusting
the “radius” over which an agent can transmit in a given
asset. For example, if agents serve users in each asset via
downlink transmissions from a single access point, this can
be accomplished by adjusting the access point’s transmission
power.13 In other cases, such as uplink transmissions, the
model can be viewed as simply determining the radius within
which users may transmit (determined for example via GPS).
We study market mechanisms that assign both assets and the
radii, and show that this additional flexibility can reduce the
complexity of the allocation problem.

For simplicity, we assume that the underlying (undirec-
tional) interference graph is asquarelattice; however, all of
our problem formulations can be extended to other regular
lattices (such as a hexagonal lattice) and our main results
regarding complexity remain the same.

A. Model with Sectorization

We first consider a model in which each square asset is
partitioned into four90-degree sectors as shown in Fig. 5. For
example, an access point in the center of each asset could
use directional antennas to independently adjust the radius
of each sector. The length of an asset isL, which is also
the distance between the centers of neighboring assets. We
assume that each sector experiences interference from onlythe
closest sector in the neighboring asset. Each edge(j, j′) ∈ Ẽ
corresponds to a pair of interfering sectors; we abuse notation
and denote the corresponding sector in assetj (or j′) by jj′

(or j′j). Let Ri
jj′ ∈ [0, L/2] be theradiusof agenti in sector

jj′, which is the minimal distance from the asset center to
its boundary over which agenti can serve customers without
interference. Letwij be the revenue per unit area of agent
i in assetj, e.g., the density of agenti’s customers in the
asset. Agenti’s revenue from sectorjj′ is thenwijR

i2
jj′ in the

absence of interference.
Interference costs are modeled by using aninterference

boundary, which extends beyond a sector’s given radius by
∆ units.14 Specifically, an interference cost is incurred in
both sectorsjj′ (assigned toi) and jj′ (assigned tok) when
Ri

jj′ + Rk
j′j ≥ L − ∆. Interference from assetj in sectorj′j

can be ignored beyond distanceRi
jj′ + ∆ from the center of

assetj. Let zik
jj′ = max{Ri

jj′ +Rk
j′j − (L−∆), 0} denote the

13Of course in practice, exactly controlling the ”radius” of transmission is
not possible due to effects such as fading. This quantity is better viewed in an
average sense over the relevant time-scale at which allocations are performed.

14This is similar to the interference footprint in the standard protocol model
from [28]. Of course, this is an over-simplification; but it provides a first order
model of how one can adapt the interference externality.
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Fig. 5. Illustration of the radii model for two adjacent square assets each
with four sectors.

amount of overlap of interference boundaries in sectorsjj′

and j′j. Agents receive no revenue for any area within this
overlap (the shaded area in Fig. 5). Hence, the revenue of agent
i in sectorjj′ is wij(R

i
jj′ − zik

jj′ )
2. No additional interference

management is assumed between sectors assigned to the same
agent, i.e.,zii

jj′ is not necessarily zero. Interference among the
sectors assigned to the same agent is managed by the market
optimizing the radii.

The efficient allocation is given by the followingmixed-
integer quadratic program(MIQP) :

max
x,R,z

∑

i∈A

∑

j∈C

∑

j′:(j,j′)∈E

wij(R
i
jj′ −

∑

k∈A

zik
jj′)

2

(P4)

s.t. xij(
L

2
− ∆) ≤ Ri

jj′ ≤ xij

L

2
, ∀i ∈ A, (j, j′) ∈ E

0 ≤ Ri
jj′ + Rk

j′j − zik
jj′ ≤ L − ∆,

∀i, k ∈ A, (j, j′) ∈ Ẽ
∑

i

xij ≤ 1, zik
jj′ ≥ 0, xij ∈ {0, 1}

∀i, k ∈ A, j ∈ C, (j, j′) ∈ Ẽ.

This is clearly a simplified model that we have chosen to
highlight the potential advantages of having a market deter-
mine both asset assignments and radii. We briefly comment on
a few of these simplifications. The assumption that assets are
located on a regular lattice is one simplification; this could be
relaxed for example by introducing different distancesLjj′ for
different pairs of assets. Another simplification is the model for
interference costs; one could use a more sophisticated physical
layer model to capture these effects and these costs could vary
among providers who use different technologies and/or have
different QoS requirements. Finally, the revenue model does
not account for capacity constraints, which could precludea
provider from serving all users within an asset.

Problem (P4) can be solved via a two-step procedure: (i)
determine an assignment of assets to agents and (ii) determine
the radii of each sector for the assigned assets. The following

lemma shows that the first step can be solved independently
of the second.

Lemma 2: In an optimal solution to (P4),x∗
ij = 1 if and

only if i = argmax
i

wij for eachj ∈ C.

Proof: Let {x̃ij , R̃i
jj′ , z̃

ik
jj′} be an optimal solution to

(P4) and suppose that the lemma is not true for some asset
j. Let ĩ be the user currently assigned assetj and let i∗ =
argmaxi wij . Re-assigning assetj to agenti∗ with the same
radii for each sector and the same choices ofzik

jj′ and keeping
all other variables unchanged must still be a feasible solution
with the same area served in each asset. Moreover, the revenue
from assetj will increase and so the original solution cannot
be optimal.

Given an optimal asset assignment, the optimal radii are as
in Lemma 2, we next consider optimizing the asset radii. This
is given by the following quadratic program (QP):

max
R,z

∑

(j,j′)∈Ẽ

wj(Rjj′ − zjj′)
2 + wj′ (Rj′j − zjj′ )

2 (P5)

s.t. 0 ≤ Rjj′ + Rj′j − zjj′ ≤ L − ∆, ∀ (j, j′) ∈ Ẽ

L

2
− ∆ ≤ Rjj′ ≤

L

2
, ∀ (j, j′) ∈ E

zjj′ ≥ 0, ∀ (j, j′) ∈ Ẽ

where we have dropped the agent indices, since the agent
assigned to each asset is given. The objective of this QP is
convex and so it cannot be solved directly by using first order
conditions. However, its extreme points have the following
useful property:

Lemma 3:An optimal solution to (P5) must satisfyR∗
j ∈

{L/2− ∆, (L − ∆)/2, L/2}.
The proof is similar to the proof of Proposition 2.1 in [29]
and so we omit it here.

Since each sectorjj′ only interferes with the neighboring
sector j′j, (P5) can be separated into a collection of sub-
problems, one for each(j, j′) ∈ E. The subproblem for
(j, j′) ∈ E only involves the variablesRjj′ , Rj′j and zjj′ ,
which from Lemma 3 can take on only a finite number of
values each. Hence, we can solve (P5) and thus (P4) in
polynomial-time.

For the case of hexagonal assets with 120-degree sector-
ization, the efficient allocation problem is again a quadratic
problem that is very similar to (P4). Thus, Lemmas 2 and 3
can be extended directly. The only slight difference is that
the corresponding (P5) is separated into a collection of sub-
problems, one for each group of three interfering sectors.
Therefore, the problem can still be solved in polynomial-time.

The key difference between (P4) and (P1) is due to letting
the market assign the radii. Indeed, if the radii are not
determined by the market, (P4) is equivalent to a special case
of (P1), and is still NP-hard. Specifically, suppose that an agent
always uses the maximum radiusL/2 if it is assigned sector
jj′ but not sectorj′j, so thatzik

jj′ = ∆. An agent assigned
both sectorsjj′ and j′j can optimize both radii as in (P5).
This maps to (P1) by lettingrij be the revenue obtained from
assetj using the optimal radii{Ri∗

jj′}j′:(j,j′)∈E given by the
solution to (P5) and lettingci

jj′ = wij(R
i∗
jj′ )

2−wij(L/2−∆)2.
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assetj assetj′

Fig. 6. Illustration of the omnidirectional radii model fora square lattice.

B. Omnidirectional Model

Next we consider a variation without sectorization, so that
assets have the same radii in each direction. For example, this
models a system in which agents transmit from the center of an
asset using an omnidirectional antenna. With sectorization, the
optimization of asset radii decomposes into a separate problem
for each pair of interfering sectors. In an omnidirectional
model, the optimization of asset radii becomes coupled across
multiple assets. Nevertheless, we will show that a linearized
version of this problem can still be efficiently solved.

We consider the same model as in the previous section
except a single radiusRij is used for assetj by agenti.
Hence, the assets are squares as shown in Fig. 6. Again, the
assumption of square assets is only for the ease of presentation.
The formulation and results can be extended to hexagonal
lattices in a straightforward way. Agenti’s revenue when
assigned assetj with radius Rij is then 4wijR

2
ij minus

the interference costs from any overlap with the interference
footprint of neighboring assets (shaded area in Fig. 6). The
revenue agenti receives from assetj is then given by

wij

(

2Rij −
∑

k∈A

(zik
jjn + zik

jjs )

)

×
(

2Rij −
∑

k∈A

(zik
jjw + zik

jje )

)

(3)

wherezik
jj′ again denotes the amount of overlap of a neighbor-

ing asset’s interference area andjn, js, jw, andje denote the
assets to the north, south, east and west ofj (with respect to
an arbitrary choice of north). The efficient allocation is then
given by the following MIQP:

max
x,R,z

∑

i∈A

∑

j∈C

wij

(

2Rij −
∑

k∈A

(zik
jjn + zik

jjs)

)

×
(

2Rij −
∑

k∈A

(zik
jjw + zik

jje )

)

(P6)

s.t. 0 ≤ Rij + Rkj′ − zik
jj′ ≤ L − ∆,

∀i, k ∈ A, (j, j′) ∈ Ẽ

xij(
L

2
− ∆) ≤ Rij ≤ xij

L

2
, ∀i ∈ A, j ∈ C

∑

i

xij ≤ 1, zik
jj′ ≥ 0, xij ∈ {0, 1},

∀ i, k ∈ A, j ∈ C, (j, j′) ∈ Ẽ.

Lemmas 2 and 3 can be generalized to this problem.
However, given an assignment of assets, the resulting QP for
determining the radii is now coupled across the assets and the
objective is neither concave or convex, making this difficult
to solve for a large number of assets. However, after making
the assignment of assets, the number of remaining variables
is much smaller; there will be no more than3|C| variables
while before making an assignment there are on the order of
2|A|2|C|+ |A||C| variables; hence, for a moderate number of
assets, it is feasible to use a commercial solver to determine
the optimal radii.15 Alternatively, we next consider a linearized
version of this problem which yields a more tractable solution.

Note that sinceRij ≤ L/2, no interference costs will be
incurred if an agent uses a radiusL/2−∆. Thus, the revenue
that an agent gains from an asset can be represented as the
sum of the revenue from a square with radiusL/2−∆ and the
remaining area, which may incur an interference cost. Specif-
ically, by replacingRij in (3) with (L

2 −∆)+(Rij −(L
2 −∆))

and simplifying the resulting expression, (3) can be rewritten
as

8

(

L

2
− ∆

)



wijRij −
∑

j′:(j,j′)∈E

1

4
wij

∑

k∈A

zik
jj′





− 4wij

(

L

2
− ∆

)2

+ O(∆2) (4)

where we have used thatRij ≤ L/2 andzik
jj′ ≤ ∆ to get the

O(∆2) bound.
Dropping theO(∆2) terms, the remaining terms are linear

in the optimization variables. Furthermore, we can drop the
constant term4wij(

L
2 − ∆)2, and the (non-negative) scaling

term of 8
(

L
2 − ∆

)

, giving the following new optimization
problem:

max
x,R,z

∑

i∈A

∑

j∈C



wijRij −
∑

j′:(j,j′)∈E

∑

k∈A

αwijz
ik
jj′



 (P7)

s.t.(x,R, z) ∈ P

whereP denotes the same constraint set as in (P6). In fact,
this linear approximation can be applied to any regular lattice
with α = 1

4 for a square lattice as derived andα = 1
6 for a

hexagonal lattice.
Lemma 2 can be extended to (P7) and so this problem can

again be solved by first allocating each asset to the agent with
the largestwij and then optimizing the radii, which is now
a linear program, and so (P7) can be efficiently solved. Note
that the optimal asset assignment is the same in both (P6) and
(P7). Of course, if the true valuation is given by the objective
in (P6), then solving this linear version will lead to a loss in
revenue, which is characterized by the following lemma. Let
f(R) be the objective value of (P6) for some particular radii
vectorR that satisfiesP .

15Note that by using Lemma 3 this can be formulated as an integerQP.
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Lemma 4:SupposeR∗ andR̃ are the solution to (P6) and
(P7), respectively. Then,f(R∗)− f(R̃) ≤ β∆L

∑

j∈C

max
i∈A

wij ,

whereβ = 4 for a square lattice andβ = 2
√

3 for a hexgonal
lattice.

The lemma can be proved simply by obtaining an upper
and lower bound onf(R∗) and f(R̃), respectively, and thus
omitted. Lemma 4 suggests that this linear approximation is
reasonable for small∆. Numerical results, in the next section,
show that the loss may be small even for large values of∆.

C. Numerical Results

We present some numerical comparisons of the revenue
achieved by the original model and the radii models with
and without sectorization. A square lattice with4 × 4 assets
and 6 agents is used. We setL = 1 and for the radii
model thewij ’s are randomly generated following a Poisson
distribution with intensityµ = 50. As in Sect. II-D,1 − λ
denotes the fraction of each asset which is always interference
free. For the radii models, this is equivalent to choosing
∆ = (1−

√
1 − λ)/2. The revenues and costs for the original

model are assigned as in Sect. IV-A. For the original model,
we exactly solve (P1). For the omnidirectional model, we solve
(P7) to determine the asset assignment and radii used, but then
plot the corresponding revenue using the objective of (P6).We
also solve (P6) numerically. As a benchmark, we also show
results for a model with spatial guard zones, i.e., agents are
required to use a radius ofL

2 −∆ so that no two assets interfere.
In this case, the efficient allocation is to assign each assetj
to the agent with the largest value ofwij .
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Fig. 7. The total revenue versus the amount of interference under different
market models.

Fig. 7 shows the total revenue for each model versusλ,
averaged over200 realizations of thewij ’s. The fixed guard
zone model achieves the lowest revenue, which goes to zero
asλ increases since no revenue is obtained in the guard zones.
Even for moderate values ofλ, the other approaches achieve
significantly higher revenue, demonstrating the potentialbene-
fit of the spectrum market managing interference. The highest
revenue is achieved by the radii model with sectorization

which offers the most flexibility in assigning resources. Both
curves for the omnidirectional model are indistinguishable for
the entire range ofλ, showing that at least for this scenario,
the linear model is a good approximation. For small enoughλ
(equivalently small∆), the omnidirectional model outperforms
the original model. However, for largeλ (large ∆), the
omnidirectional model has lower revenue than the original
model. While the omnidirectional model has the flexibility of
optimizing asset radii across agents, the costs for the original
model are based on allowing agents to adapt asset radii on
a sector basis when they own neighboring assets. Hence, it
is not clear that one of these schemes will always perform
better than the other. For largeλ, the revenue from “boundary
regions” is greater and apparently the original model has better
performance.

V. CONCLUSIONS

We have examined several simple models of spectrum
markets with interference complementarities and shown how
different market structures can impact both the computation
of an efficient outcome and the resulting revenue. For a basic
model in which the market specified only the assignment of
assets to users, the resulting assignment problem was shown
to be NP-hard, which suggests that “simple” mechanisms will
not be able to obtain the efficient outcome in such markets.
Several approximations were given, which had good perfor-
mance in numerical examples. Next, we considered a market
where guard zones between primary assets were allocated for
secondary use. This did not improve the complexity of the
general allocation problem, but provided structure that can be
exploited in several cases. Finally, we considered models in
which the market determined both the assignment of assets
and their radii, which led to simpler allocation problems as
well as higher total revenue. These examples illustrate just a
few of the rich possibilities in defining spectrum assets and
the non-trivial interactions between these definitions andthe
complexity and efficiency of the resulting market design.

Future research directions include developing more refined
models for interference costs and studying their effect on the
resulting markets, studying strategic behaviors of agentsin
such markets and developing mechanisms to implement the
markets.

APPENDIX

A. Proof of Proposition 1

Given a graphG = (V, E) and positive numberK ≥ 3, the
Graph Partitioningproblem is to find a partition ofV in to
disjoint setsV1,...,Vm such that|Vi| ≤ K for all 1 ≤ i ≤ m
and such that ifE′ ⊂ E is the set of edges that have two
endpoints in two different sets, then|E′| is minimized, where
| · | is the cardinality of the set. (see [30] for a general version
of this problem). This problem is NP-complete, even with the
restriction thatK = 3.

We give a transformation of the graph partitioning problem
with K = 3 into the spectrum asset allocation problem. Let
V be the set of spectrum assets andG the corresponding
interference graph. For anyVi ⊂ V such that|Vi| ≤ 3,
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introduce an agent withrij = r0 only for j ∈ Vi, and zero
otherwise; also, setci

jj′ = c0 for all edges(j, j′) ∈ E such
that j ∈ Vi or j′ ∈ Vi or both. The number of agents resulting
from this 1

6n3+O(n). Thus, this transformation can be done in
polynomial time. Furthermore, assumer0 > 0 and thatc0 > 0
is small enough so that an agent’s revenue is always greater
than the costs she suffers, as well as the costs she imposes on
the agents owning the neighboring assets. This can always be
done and allows forc0 to be arbitrarily small relative tor0.
As a result, each assetj will be allocated to some agent for
which rij = r0. Hence, the first term in the objective function
in (P1) becomes a constant (= |V |r0) and the optimal solution
is that the one which minimizes the total interference costs
among the assets. Since all interference costs are equal, the
total interference cost of an assignment is the number of edges
whose end nodes belong to different agents. By construction,
the number of assets assigned to a given agent will be no
greater than3 and hence the solution to this also a solution to
the graph partitioning problem.
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