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Abstract—The throughput and stability properties of wireless
network coding are evaluated for an arbitrary number of termi-
nals exchanging broadcast traffic with the aid of a relay. First,
coding and scheduling schemes are derived that minimize the
number of transmissions needed for each node to broadcast one
packet. For stochastically varying traffic, the stable throughput
is then compared under both digital and analog network coding
schemes. The initial analysis focuses on a network with a single
relay. Extensions to arbitrary terminal-relay configurations are
then outlined for a general multihop network. Backpressure-like
algorithms for jointly achieving throughput optimal scheduling
and network coding are given for each network coding scheme.

Index Terms—Digital Network Coding; Analog Network Cod-
ing; Throughput; Delay; Stability; Network Control.

I. INTRODUCTION

Network coding (NC) generalizes store-and-forward-based

routing by providing the general capability to process traffic

at relay nodes. For single-source multicast in wired networks,

NC achieves the maximum (min-cut) capacity [1]. Multi-

source NC [2] expands the achievable rate region of multiple

(multicast and unicast) flows; however, the characterization of

the general capacity region remains an open problem [3]. The

extension to wireless networks involves the joint design of

NC with medium access control under half-duplex broadcast

communication and interference effects [4]–[7]. Different from

packet-level digital network coding (DNC), a relay can also

amplify and forward the superpositions of signals received in

wireless access (without decoding) thereby performing analog

network coding (ANC) in the physical layer [8], [9].

Much of the work on multi-source wireless NC has focused

on pairwise NC of unicast flows [10]–[13]; the canonical

example being the exchange channel, in which two terminals

transmit packets to each other over a third relay node [14]–

[19]. To gain insights into multi-source inter-session NC,

we consider a star network, which generalizes the exchange

channel by allowing an arbitrary number of sources to ex-

change packets with relay assistance. For star networks with

backlogged unicast traffic, the coding gain of NC has been

illustrated in [7], the information-theoretic capacity region has

been derived in [20], and the effects of MIMO switching have
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been studied with physical-layer NC in [21]. Here, our focus

is on maximizing the broadcast throughput achieved by DNC

and ANC while stabilizing packet queues under stochastic

traffic. This requires the joint design of network codes and

dynamic transmission scheduling.

Our approach for handling stochastic traffic is motivated

by the backpressure algorithm [22]. This approach applies to

multiple unicast flows and extends to multicast flows under

joint scheduling and routing [23]. We consider generalizations

of such policies for broadcast traffic in wireless networks that

employ DNC and ANC. Backpressure algorithms have been

formulated for intra-session NC of packets from the same

source [24] and for the special case of pairwise NC of unicast

flows [25], [26]. The queue stability with multi-source NC has

been studied for other network models, including exchange

channels with one relay [27] or two relays [28], line networks

[6], and butterfly network structures [29].

We consider random broadcast traffic among multiple

source terminals with two possible paths, either by overhearing

of direct transmissions or by two-hop transmissions over a

relay that uses local NC. Such broadcast traffic may be the

dominant form of traffic in some wireless networks such as

one supporting first responders, and may also be a good

model for certain control traffic, video conferencing, and

file synchronization through a relay/access point. The star

network topology we consider in this paper can be used to

interconnect gateway nodes via relays with applications in

satellite backhaul, peer to peer, sensor, and cellular networks

[20], [30]. Our objectives are: 1) to develop network codes

and schedules that minimize the number of transmissions to

exchange broadcast traffic, 2) to characterize the maximum

throughput region, and 3) to derive throughput optimal control

to stabilize the packet queues for rates in this region.

Meeting these objectives is not a straightforward exten-

sion of the plain routing case in [22] because NC serves

packet queues jointly. Hence, the service rates of the relay

and terminal queues depend on each other’s queue backlogs,

preventing us from applying Lyapunov techniques over instan-

taneous queue sizes to show stability as in [22]. Instead, we

consider Lyapunov stability arguments (with state-dependent

step-sizes in Lyapunov drift) over the entire duration of any NC

session to decouple the packet queues. This leads to different

formulations of backpressure algorithms, which are shown

to achieve the maximum stable throughput. They result in

crosslayer queue-based NC and dynamic scheduling without

a priori information on packet arrival statistics.

We consider both DNC and ANC at the relay nodes. DNC

can be viewed as index coding [31], where the relay finds



the minimum number of coded packets needed to exchange

the traffic between terminals with side information. Here, both

traffic demand and side information (from packet overhearing)

vary stochastically, requiring DNC to adapt. In ANC, trans-

missions of terminals are scheduled to ensure that they receive

sufficient degrees of freedom to decode packets after the relay

amplifies and forwards superpositions of the received signals.

Hence, side information is again dynamically built along with

transmission scheduling. We quantify the improvement of

stable throughput rates over plain routing for each NC scheme.

Our initial focus is on a single relay model. We then outline

the extension to multiple relays.

The paper is organized as follows. The single relay model

with DNC and ANC is introduced in Section II. We derive

the maximum throughput region and give a throughput optimal

control for DNC and ANC in Sections III and IV, respectively.

The generalization of the model to multiple relays is given in

Section V. The paper concludes in Section VI.

II. BROADCAST VIA A SINGLE RELAY

Consider K ≥ 2 terminals communicating with the aid of

a single relay R, as in Figure 1. Half-duplex communication

is assumed in a synchronous slotted system, in which each

transmission takes one time-slot. Each terminal has broadcast

traffic that is destined to all others. Any terminal i can overhear

n neighbor terminals on each side, collectively denoted as Ni,

where i ∈ Ni so that |Ni| = 2n+1. Terminals do not forward

packets received from the other terminals. We assume 2n <
K − 1; otherwise, all terminals can overhear each other and

exchange packets over K time-slots without using the relay.

λ2
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overhearing

range n

overhearing

λK

λ1

K 1
2

R

Fig. 1. Star topology with K ≥ 2 terminals (with overhearing range n) and
a single relay R.

Two network coding schemes are considered:

(a) Digital Network Coding (DNC): Terminals take turns

transmitting their packets to the relay. The relay decodes,

re-encodes and broadcasts the incoming packets, performing

linear network coding in finite field Fq with field size q.

(b) Analog Network Coding (ANC): Terminals transmit

first to the relay (possibly over concurrent slots). The relay

amplifies and broadcasts the superpositions of the signals

received from different terminals, and sends them back to all

terminals, without decoding the packets.

We consider a two-phase operation separated in time. In

phase 1 (multiaccess), terminals transmit packets according

to a scheduling matrix G̃, where G̃t,j = 1, if terminal j
transmits in time-slot t, and G̃t,j = 0, otherwise. In plain

routing and DNC, G̃ is IK , the K × K identity matrix. In

phase 2 (broadcast), the relay transmits to the terminals. In

DNC, the relay decodes and re-encodes the packets according

to the coding matrix G, where Gi,j is the linear coding

coefficient for terminal j’s packet in the ith coded packet.

In plain routing, G = IK . In ANC, the relay amplifies and

forwards the received signals without decoding (equivalently,

G = IK ). Here, our focus is on the network-layer aspects

of relaying. The physical-layer rates achieved by DNC and

ANC have been extensively studied for backlogged traffic in

exchange channels (e.g., in [32], [33]) and we can readily

apply them here.

A. Delay-Optimal Coding and Scheduling with the Minimum

Number of Transmissions

To begin we consider minimizing the total delay when all

nodes have one packet to broadcast and can reliably send one

packet in each time-slot. Let T (K,n) denote the number of

successful transmissions to exchange K packets, one packet

from each of K terminals with the overhearing range n. The

minimal value of T (K,n) under different coding assumption

is given in Lemma 1, whose proof is in the Appendix.1

Lemma 1: For K > 2n+1, the minimum value of T (K,n)
for plain routing, DNC, and ANC, respectively, is given by

TR(K,n) = 2K, (1)

TDNC(K,n) = 2K − 1− 2n, (2)

TANC(K,n) = max (2 ⌈K/2⌉ , 2(K − 1− 2n)) . (3)

For DNC, the minimum value of T (K,n) can be achieved

by deterministic NC, as shown in the proof of Lemma 1, or by

random NC for sufficiently large coding field size. Since K−1
packets are broadcast from each terminal over T (K,n) slots,

the broadcast throughput per terminal is λ(K,n) = K−1
T (K,n) ,

assuming no error. For finite n, lim
K→∞

λ(K,n) = 0.5 for

all the three schemes. Next, we consider a geometric model

in which n increases with K . Let d be the distance over

which a terminal can overhear another. If nodes are equally

spaced on a circle of radius r around the relay, we have

n =
⌊

K
π sin−1

(

d
2r

)⌋

, where we assume that r is small enough

so that terminals can always reach the relay. The gain of

DNC and ANC over plain routing (in terms of reducing the

transmission number) is shown in Figure 2, as K grows to

infinity. For d = r, we have n =
⌊

K
6

⌋

and the gain is given

by lim
K→∞

1− TDNC(K,n)
TR(K,n) = 16.67% and lim

K→∞
1− TANC(K,n)

TR(K,n) =

33.33% for DNC and ANC, respectively. This gain increases

with d
r to the maximum value of 50% that is attained by DNC

at d = 2r and by ANC at d =
√
2r.

B. Stochastic Traffic Model

For the remainder of the paper, we assume that the broadcast

traffic at each terminal is generated according to an inde-

1This result first appeared in [33].
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Fig. 2. The gain of DNC and ANC over plain routing, as K → ∞.

pendent stationary random process. For terminal i, let λi be

the average arrival rate and Ai(t) be the number of packets

arriving in time-slot t. We assume that Ai(t) ≤ Ai,max and

the second moment is bounded. Each terminal keeps a packet

queue of infinite capacity. In plain routing and DNC, the relay

maintains different queues for packets of different terminals.

In ANC, the relay amplifies and forwards packets immediately

without queueing at the relay. Transmissions of terminal i
and the relay are allocated over separate time fractions fi
and fr, respectively. Let ft be the total time fraction for

terminal transmissions. The maximum throughput region Λ
is the convex hull of rates {λi}Ki=1 that are achieved by

optimizing over {fi}Ki=1, ft, and fr. Any arrival rate within Λ
can be supported by a fixed schedule, given a priori knowledge

of the arrival rates.

Our goal is to find a throughput optimal policy to stabilize

any set of rates in Λ, when the arrival statistics are not known.

We still assume K > 2n+ 1 as otherwise, the optimal policy

reduces to scheduling the terminal with the longest (non-

empty) queue to transmit without using the relay.2 We gener-

alize the previous example by allowing a different (constant)

channel rate on each link.3 Let Ci,r denote the capacity of

the channel from terminal i to the relay and Cr,i the capacity

of the channel from the relay to terminal i. Any terminal i
can decode transmissions of any terminal j ∈ Ni. Otherwise,

Ci,j = 0. In ANC, the terminal and relay transmissions are

coupled and the end-to-end rates will be considered in Section

IV.

III. STOCHASTIC NETWORK CONTROL WITH DIGITAL

NETWORK CODING

Let Qi and Qr
i be the queues for terminal i’s packets at the

terminal and relay, respectively. The corresponding backlogs

in time-slot t are Ui(t) and U r
i (t). We define µi(t) as the

transmission rate from queue Qi and µr
i (t) as the transmission

2This is similar to the longest connected queue policy for multiple terminals
transmitting to a single receiver [34].

3The analysis also extends to time-varying dynamic channel conditions. We
skip this extension for brevity.

rate from queue Qr
i .4 Plain routing timeshares the terminal and

relay transmissions, achieving the rate region

ΛR =

{

λ > 0 :

K
∑

i=1

λi

(

1

Cr
i

+
1

Ci,r

)

≤ 1

}

, (4)

where Cr
i = min

j:i/∈Nj

Cr,j is the broadcast rate from the relay

for packets from terminal i. In DNC when all nodes are

backlogged, packets in the relay queues are linearly coded

as Gyr , where yr = {yri }Ki=1 and yri is the first packet in Qr
i .

With stochastic traffic, the service rates of relay queues are

coupled in DNC and in any slot t they depend on qbr(t) =
∑K

i=1 1{Ur
i (t)>0}, the number of backlogged relay queues with

at least one packet to transmit (where (1{·} is the indicator

function). Here, we consider a relay which operates in one

of two broadcast modes. One broadcast mode corresponds

to using DNC with a coding matrix G corresponding to the

minimum number of m = K − 1 − 2n coded transmissions

given in Lemma 1. The relay includes dummy packets from all

empty queues and serves all backlogged queues at a rate of Cr

m ,

where Cr = min
i=1,...K

Cr
i is the capacity of the weakest channel

(used for relay transmissions of packets from every terminal).

The second broadcast mode is to simply employ plain routing.

If qbr(t) > m, either DNC or plain routing may achieve a

higher rate depending on the channel capacities. If qbr(t) ≤ m,

plain routing is optimal. We define [U ]+ = max(U, 0) and

µr
i

(

[τ ]t+m−1
τ=t

)

as the service rate of relay queue Qr
i over the

m slots, [τ ]t+m−1
τ=t .

In any time-slot, the scheduler chooses one from three

possible transmission strategies: 1) only terminal i transmits

to the relay, 2) the relay forwards plain packets from terminal

i, 3) the relay transmits network-coded packets over m time-

slots. Here, DNC refers to joint digital NC and routing such

that when the relay does not have enough packets to code with,

it proceeds with routing only5. For each of the three cases, the

queue lengths evolve over time as follows:

1) Ui(t+ 1) = [Ui(t)− µi(t)]
+
+Ai(t),

U r
i (t+ 1) = U r

i (t) + min(µi(t), Ui(t)).
2) Ui(t+ 1) = Ui(t) +Ai(t),

U r
i (t+ 1) = [U r

i (t)− µr
i (τ)]

+
.

3) Ui(t+m) = Ui(t) +
t+m−1
∑

τ=t
Ai(τ),

U r
i (t+m) =

[

U r
i (t)− µr

i

(

[τ ]t+m−1
τ=t

)]+
.

A. Maximum Throughput Region

Let ΛDNC denote the stable throughput region with DNC,

which is characterized next.

Theorem 1: A rate vector {λi}Ki=1 lies in ΛDNC if and

only if there exist non-negative constants ft, frr, frn, and φi

for i = 1, . . . ,K with ft + frr + frn = 1 and φi ∈ [0, 1] for

4Note that µi(t) = 0, if Ui(t) = 0, and µr
i (t) = 0, if Ur

i (t) = 0.
5Strategy 2) with plain routing is necessary for DNC to stabilize relay

queues. It was shown in [35] that the two-terminal relay system that operates
only with strategies 1) and 3) cannot sustain positive throughput with finite
delay for both sources.



all i, that satisfy the following equations

K
∑

i=1

λi

Ci,r
≤ ft, (5)

K
∑

i=1

φiλi

Cr
i

≤ frr, (6)

(1 − φi)λim

Cr
≤ frn, ∀i = 1, ...,K. (7)

Proof: This proof follows from the relationship between

the stability region and a multi-commodity flow problem as

in [37]. The key difficulty here is that the capacity constraints

from the relay to the terminals depend on if DNC or plain

routing is used. This can be addressed by first viewing the

choice between DNC and routing as a choice between two

possible “routes” and noting that given the arrival rates, we can

a priori decide what fraction of traffic is served via each route.

In the theorem, φi denotes this fraction for relay transmissions

of packets from terminal i. The flows are then subject to

the “conservation equations” in (5)-(7), where ft denotes the

fraction of time the system operates in phase 1, frr denotes

the fraction of time that the system operates in phase 2 using

plain routing, and frn denotes the fraction of time the system

operates in phase 2 using DNC. Note that (7) follows since,

with DNC a flow can always be served at rate Cr

m regardless

of the number of other backlogged flows.

In the broadcast phase it may be possible to achieve the rate

Cr
i individually for any terminal i by advanced channel coding

and physical layer NC techniques [16], [18], [32] beyond

DNC. In that case the rate region increases by replacing

Ci in (7) with the node dependent rate Cr
i . There may be

also a trade-off between Cr
i , i = 1, ...,K , i.e., the broadcast

capacities form a region of their own. We do not consider such

generalizations and continue assuming a common broadcast

rate Cr for all terminals.

B. The Throughput Optimal Control

Next we give a backpressure-like control policy which

dynamically makes scheduling and DNC decisions based on

the queue backlogs.

DNC Backpressure Policy: For each time-slot t for which

there is no on-going DNC session, compare {Ci,r [Ui(t) −
U r
i (t)]

+}Ki=1, {Cr
i U

r
i (t)}Ki=1 and 1

m

K
∑

i=1

Cr U r
i (t), and sched-

ule

1) terminal i to transmit a packet from queue Qi, if

Ci,r [Ui(t)− U r
i (t)]

+ is the largest,

2) the relay to transmit a plain packet from queue Qr
i , if

Cr
i U r

i (t) is the largest, or

3) the relay to transmit linearly network-coded packets

from queues Qr
i , i = 1, . . . ,K , over m time-slots, if

1
m

K
∑

i=1

Cr U r
i (t) is the largest.

Theorem 2: The DNC backpressure policy is throughput

optimal, i.e., it can stabilize the system for any arrival rates in

the stability region ΛDNC characterized in Theorem 1.

Proof: The standard for proof for such results relies

on defining a Lyapunov function over the joint buffer-states

and then showing that for sufficiently large backlogs, the

expected one-step drift of this function is negative. The key

difficulty in applying such an argument here is that whenever

the relay decides to use DNC, there cannot be another control

decision for m time-slots; however, when either a terminal

transmits or the relay employs plain routing, one can make

another control decision in the next time-slot. Furthermore,

when DNC is chosen at time t, the queue backlog (and

thus the one-step Lyapunov drift) is not well-defined at times

t+1, . . . , t+m−1. To circumvent this, we use a generalization

that applies when the drift is evaluated using state-dependent

step-sizes [38]. Specifically, we define the quadratic Lyapunov

function L(U(t)) =
K
∑

i=1

(

(Ui(t))
2 + (U r

i (t))
2
)

for the set of

queue backlogs U(t) in time-slot t. Let g(U(t)) be the state-

dependent step-size, such that g(U(t)) = m for any time t
where the relay chooses DNC, and g(U(t)) = 1 for any time

t when either the relay employs plain routing or a terminal

transmits. Since g(U(t)) is bounded, we can show that the

system is stable under the DNC backpressure policy provided

that ∆(U(t)) = E [L(U(t+ g(U(t))) − L(U(t)) |U(t)] is

negative for sufficiently large backlogs [38].

The backlogs in terminal and relay queues Qi and Qr
i , i =

1, . . . ,K , over the g(U(t)) time-slots into the future can be

bounded in terms of the current backlogs as

Ui(t+ g(U(t))) (8)

≤
[

Ui(t)−
t+g(U(t))−1

∑

τ=t

µi(τ)
]+

+

t+g(U(t))−1
∑

τ=t

Ai(τ),

U r
i (t+ g(U(t))) (9)

≤
[

U r
i (t)− µr

i

(

[τ ]
t+g(U(t))−1
τ=t

)]+

+

t+g(U(t))−1
∑

τ=t

µi(τ),

where the service rates satisfy µr
i

(

[τ ]
t+g(U(t))−1
τ=t

)

≤ mCr
i

or µr
i

(

[τ ]
t+g(U(t))−1
τ=t

)

= Cr, when the relay proceeds with

plain routing or DNC, respectively. The conditions (8) and (9)

are upper bounds, because new arrivals may depart before the

interval of g(U(t)) time-slots is finished and µi(τ) contributes

to (9) only if Ui(τ) > 0.

Note that for any non-negative real numbers V , U , µ and

A, V 2 ≤ U2+µ2+A2−2U(µ−A), if V ≤ [U −µ]++A, as

given in [37]. Also note that µi(t) ≤ 1, µr
i

(

[τ ]
t+g(U(t))−1
τ=t

)

≤
m, Ai(t) ≤ Amax

i , E[g(U(t))] ≤ m, E[g2(U(t))] ≤ m2,

and terminal and relay queues are separately served. Then,

from (8)-(9) the Lyapunov drift is bounded as (10), where

B = m2(2+
∑K

i=1(A
max
i )2) and g(U(t)) and h(U(t)) denote

the remaining terms in (10). If the terminals are scheduled to

transmit for a given realization of U(t), we have

h(U(t)) ≤ max
i=1,...,K

(

Ci,r [Ui(t)− U r
i (t)]

+
)

. (12)



∆(U(t)) ≤ m2
(

2 +

K
∑

i=1

(Amax
i )2

)

− 2

K
∑

i=1

Ui(t)E

[ t+g(U(t))−1
∑

τ=t

µi(τ)−
t+g(U(t))−1

∑

τ=t

Ai(τ)
∣

∣

∣
U(t)

]

−2

K
∑

i=1

U r
i (t)E

[

µr
i

(

[τ ]
t+g(U(t))−1
τ=t

)

−
t+g(U(t))−1

∑

τ=t

µi(τ)
∣

∣

∣
U(t)

]

(10)

:= B − 2g(U(t))
(

h(U(t)) −
K
∑

i=1

Ui(t)λi

)

(11)

On the other hand, if the relay is scheduled, we have

h(U(t)) ≤ max

(

max
i=1,...,K

(

Cr
i U r

i (t)
)

,
1

m

K
∑

i=1

CrU r
i (t)

)

.

(13)

From (12)-(13), it can be seen that the DNC backpressure

policy minimizes h(U(t)) at all times t. Now consider any

rate {λi}Ki=1 in the interior of the maximum throughput

region ΛDNC . For such a rate, there must exist a stationary

control policy independent of the backlogs that, for an arbi-

trary small ǫ, satisfies the following flow constraints [37] for

i = 1, . . . ,K:

E [µi(t) | U(t)] = ǫ+ λi,

E

[

µr
i

(

[τ ]
t+g(U(t))−1
τ=t

)

−
t+g(U(t))−1

∑

τ=t

µi(τ)

∣

∣

∣

∣

U(t)

]

= mǫ.

Substituting these into (10) and (11), the Lyapunov drift

∆s(U(t)) is bounded by

B − gs(U(t))
(

hs(U(t)) −
K
∑

i=1

Ui(t)λi

)

= B − 2mǫ

K
∑

i=1

(Ui(t) + U r
i (t)) , (14)

where the subscript s denotes this stationary policy.

Since the DNC backpressure policy maximizes h(U(t)), it

follows that

gs(U(t))
(

hs(U(t)) −
K
∑

i=1

Ui(t)λi

)

≤ mgb(U(t))
(

hb(U(t)) −
K
∑

i=1

Ui(t)λi

)

,

where the subscript b denotes the backpressure policy. Hence,

∆b(U(t)) ≤ B − 2ǫ

K
∑

i=1

(Ui(t) + U r
i (t))

showing that when
∑K

i=1 (Ui(t) + U r
i (t)) is large enough, the

Lyapunov drift under the backpressure policy must be negative

and so the system is stable.

If random NC is used with finite field size, the coding block

length, m, becomes a random variable and then we need to

bound the expected Lyapunov drift, where the expectation is

taken over m. As m has bounded second moment, the previous

Lyapunov stability arguments follow and the DNC backpres-

sure policy stabilizes the rate region using instantaneous values

of m.

IV. STOCHASTIC NETWORK CONTROL WITH ANALOG

NETWORK CODING

We now consider two transmission modes for the terminals.

One mode corresponds to using ANC with a scheduling

matrix G̃ corresponding to the minimum number of m =
max(⌈K/2⌉,K − 1 − 2n) transmissions, given in Lemma

1, in each of the multiaccess and broadcast phases. The

relay includes dummy transmissions from all empty terminal

queues. The second transmission mode is to simply schedule

one terminal with amplify-and-forward (AF) relaying. We

consider immediate forwarding at the relay without queueing

so that every slot of terminal transmissions in multiaccess

phase is followed immediately by a slot of relay transmission

in broadcast phase.

The channel rates in the multiaccess and broadcast phases

are fully coupled for each transmission mode. Therefore, we

express the end-to-end rate for any terminal pair and partition

it between the two phases to satisfy the Max-Flow Min-Cut

condition. Given a scheduling matrix G̃, we define Ci→j(G̃)
as the end-to-end rate from terminal i to terminal j over two

hops (via AF scheme) for i /∈ Nj .6 The rate Ci→j strongly

depends on the physical layer properties (e.g., studied in [32],

[33] for AWGN channels). Then, the broadcast rate for packets

from terminal i to the rest of terminals is given by C̃i(G̃) =
min

j:j /∈Ni

Ci→j(G̃), with overhearing taken into account.

The service rates of terminal queues are coupled in ANC

and in any slot t they depend on qbt(t) =
∑K

i=1 1{Ui(t)>0},

the number of backlogged terminal queues with at least one

packet to transmit. If qbt(t) > m, ANC or plain routing may

achieve a higher rate depending on the channel capacities. If

qbt(t) ≤ m, plain routing is optimal. We define µi

(

[τ ]t+m−1
τ=t

)

as the service rate of terminal queue Qi achievable over the

interval [τ ]t+m−1
τ=t of m time-slots.

In any time-slot, the scheduler chooses one from two

possible transmission strategies: 1) terminal i transmits to the

6We can further improve the end-to-end rates by excluding terminals with
empty queues from ANC and replacing the scheduling matrix with G̃D, where
the diagonal matrix D is given by Di,i = 1 for backlogged terminal i.



relay that amplifies and forwards the received signal over the

next time-slot, 2) terminals transmit with scheduling matrix

G̃ over m time-slots to the relay that amplifies and forwards

the received signals over the next m time-slots. Here, ANC

refers to joint analog NC and routing such that when there

are not enough terminals with packets to transmit, backlogged

terminals transmit separately and the relay proceeds with

routing only. For each of the two cases, the queue lengths

evolve over time as follows:

1) Ui(t+ 2) = [Ui(t)− µi(t)]
+ +

t+1
∑

τ=t
Ai(t),

2) Ui(t+ 2m)

=
[

Ui(t)− µi

(

[τ ]t+2m−1
τ=t

)

]+

+
t+2m−1
∑

τ=t
Ai(τ).

Following any terminal transmission, no terminal can trans-

mit (since the relay is) over the next time-slot, if plain routing

is used, or over the next m time-slots, if ANC is used. Hence,

in these times the queue dynamics do not have any departures.

A. The Maximum Throughput Region

Let ΛANC denote the stable throughput region with ANC,

which is characterized next.

Theorem 3: A rate vector {λi}Ki=1 lies in ΛANC if and only

if there exist non-negative constants ftr and ftn, and φi for

i = 1, . . . ,K with ftr + ftn = 1 and φi ∈ [0, 1] for all i, that

satisfy the following equations

K
∑

i=1

φiλi

C̃i([IK ]i)
≤ 1

2
ftr, (15)

(1− φi)λim

C̃i(G̃)
≤ 1

2
ftn, ∀i = 1, . . . ,K. (16)

Proof: The proof of this theorem follows again from

the relationship between the stability region and a multi-

commodity flow problem as in [37]. In this case the key

difficulty is that the end-to-end achievable rates depend on

if ANC or simple AF is used. We again view this as a choice

between two possible “routes”. In the theorem, φi denotes the

fraction of terminal i’s traffic for each route. The resulting

flows are then subject to the “conservation equations” in (15)-

(16), where ftr denotes the fraction of time that the system

operates using plain routing and ftn denotes the fraction of

time the system operates using ANC. Note that (16) follows

since, with ANC a flow from terminal i can always be served

at rate
C̃i(G̃)
2m regardless of the number of other backlogged

flows.

B. The Throughput Optimal Control

Next we give a backpressure-like control policy for our

model which dynamically makes scheduling and ANC deci-

sions based on the queue backlogs.

ANC Backpressure Policy: For each time-slot t for which

there is no on-going ANC session, compare C̃i([IK ]i)Ui(t)

and 1
m

K
∑

i=1

C̃i(G̃) Ui(t), and schedule

1) terminal i to transmit a packet from queue Qi, if

C̃i([IK ]i)Ui(t) is the largest, or

2) terminals i = 1, . . . ,K to transmit cooperatively

(i.e., they start ANC session) over m time-slots, if

1
m

K
∑

i=1

C̃i(G̃) Ui(t) is the largest.

Theorem 4: The ANC backpressure policy is throughput

optimal, i.e., it can stabilize the system for any arrival rates in

the stability region ΛANC characterized in Theorem 3.

Proof: As with DNC, we use a state-dependent drift now

over 2m time-slots for ANC and 2 time-slots for the AF case

in plain routing, since this is the time before another control

choice can be made. Let 2g(U(t)) be the state-dependent step-

size, such that g(U(t)) = m for any time t when terminals

transmit in ANC , and g(U(t)) = 1 for any time t when one

terminal transmits in plain routing. The backlogs in terminal

queues Qi, i = 1, . . . ,K , over 2(g(U(t)) time-slots into the

future can be bounded in terms of the current backlogs as

Ui(t+ 2g(U(t)))

≤
[

Ui(t)− µi

(

[τ ]
t+2g(U(t))−1
τ=t

)]+

+

t+2g(U(t))−1
∑

τ=t

Ai(τ),

where µi

(

[τ ]
t+2g(U(t))−1
τ=t

)

≤ mC̃i([IK ]i) or

µi

(

[τ ]
t+2g(U(t))−1
τ=t

)

= C̃i(G̃), when the terminal i transmits

separately in plain routing or participates in an ANC session,

respectively.

Consider the quadratic Lyapunov function

L(U(t)) =
∑K

i=1(Ui(t))
2. Since g(U(t)) is

bounded, we can show that the system is stable

under the ANC backpressure policy provided that

∆(U(t)) = E [L(U(t+ 2g(U(t))) − L(U(t)) |U(t)] is

negative for sufficiently large backlogs [38]. The rest of the

proof is similar to the proof of Theorem 2 and omitted here

for brevity.

C. Stable Throughput Comparison

Consider symmetric channels with Ci,r = Cr,i = ci
for plain routing and DNC. For K = 2, Figure 3 shows

the throughput region for DNC, ANC and plain routing.

DNC expands the throughput region of plain routing and the

potential gain of ANC depends on the AF-based achievable

channel rates.

Next, we increase K and evaluate the physical channel

effects in the symmetric case, where λi = λ and ci = c
for all i. We consider AWGN channels with channel rate

C(γ) = log(1 + γ) for SNR γ. In DNC and plain routing,

the channel rate between any terminal and the relay is C(γ).
In ANC, the end-to-end rate C̃i is a function of scheduled

transmissions. In particular, if one or two terminals transmit at

a time for K = 2, the end-to end rate is C( γ2

2γ+1 ) or C( γ2

3γ+1 ),
respectively. Figures 4 and 5 show how the achievable rates

change with SNR and K , respectively. The corresponding sum

rates are shown in Figures 6 and 7 for different values of SNR

γ and K . As the number of terminals increases, new trade-

offs emerge since more terminals contribute to the sum rate

but each terminal is allocated less time for transmission. As

shown in Figure 6 for high SNR, the sum rate of routing is
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Fig. 3. Stable throughput region for K = 2 and n = 0.

smaller than the sum rate of ANC or DNC for any K and

n. However, Figure 4 shows that the individual rates may be

better with routing compared to ANC or DNC depending on

the values of K and n.
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In general, ANC amplifies the noise when relaying so it

performs better as SNR increases. The individual rate achieved

by ANC for each terminal exceeds the rate of plain routing

at SNR γ∗
1 and the rate of DNC at SNR γ∗

2 ≥ γ∗
1 . Figure 8

illustrates γ∗
1 and γ∗

2 as a function of K and n. Both γ∗
1 and γ∗

2

increase with K , i.e., ANC needs higher SNR to mitigate the

throughput decrease as the interference increases. In addition,

both γ∗
1 and γ∗

2 decrease with n, i.e., ANC makes better use

of overheard terminal transmissions in general.

We also evaluated the effects of routing and NC strategies

on queueing dynamics as a function of packet arrival rate.
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For different values of SNR, Figures 9 and 10 show the

average packet delay for K = 2 and K = 3, respectively,

under Poisson packet arrivals. For smaller values of SNR,

DNC extends the maximum stable throughput and reduces

the average packet delay, whereas ANC improves both stable

throughput and packet delay for larger values of SNR.

V. EXTENSION TO MULTIPLE RELAYS

We next consider multihop operation with multiple relays as

in Figure 11. Let the network be connected and the set of nodes

be denoted by N . Nodes with one neighbor are called the

end terminals. Nodes with more than one neighbors are called

relays, the set of which is denoted by R. Each node (relay or

end-terminal) is a source with broadcast packets for all others.

We focus on DNC here. A similar approach applies to ANC,

where relays do not decode packets and end-terminals are the

destinations. We define Sr as the set of one-hop neighbors of

relay r ∈ R (that have packets to be relayed by relay r). Sr

is predetermined by a given set of paths P without cycles.

Packets of nodes in Sr are exchanged over relay r ∈ R. For
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any relay r, we define λ̃i,r as the total rate of traffic from i ∈
Sr that is relayed by r. This rate includes self-generated traffic

and relay traffic incoming from neighbors such that λ̃i,r = λi,

i /∈ R, i ∈ Sr , r ∈ R, and λ̃i,r = λi +
∑

l∈Si\{r}
λ̃l,i, i ∈ R,

i ∈ Sr, r ∈ R.

The source and relay traffic can be transmitted separately

(without the need to code across the source and relay traffic).

Therefore, we define Qi
i as the queue at (relay or end terminal)

node i for the self-generated packets and Qr
j as the queue at

relay r for the relay packets incoming from node j ∈ Sr.

The backlogs of queues Qi
i and Qr

j in time-slot t are U i
i (t)

and U r
j (t), respectively. We define N r

k as the set of nodes

Sr, r ∈ R, that a node k ∈ Sr can overhear, and we define

mr = |Sr| − 1 − 2nr, where nr is the number of hops any

node i ∈ Sr can overhear on each side from the neighbors of

relay r ∈ R.

The rate regions (5)-(7) for the single relay generalize to

multiple relays as follows. For each relay r, there are four

types of transmissions that need to be separated over time to

satisfy the half-duplex condition: 1) relay r transmits its own
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Fig. 10. Average packet delay as a function of arrival rate for different values
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packets to Sr with rate Cr = min
i∈Sr

Cr,i over time fraction

f r
1 , 2) end terminal i ∈ Sr transmits to relay r with rate

Ci,r over time fraction f r
2,i,

7 3) relay r transmits uncoded

7This model can also be extended to simultaneous transmissions from end
terminals in Sr to relay r.

Relay

r

Sr

End Terminal

Fig. 11. General topology with multiple relays R, where Sr is the set of
one-hop neighbors of relay r.



packet from node i ∈ Sr with rate Cr
i = min

k:k∈Sr\{i},i∈Nr
k

Cr,k

over time fraction f r
3,i, and 4) relay r transmits network-coded

packets with rate Cr = min
i∈Sr

Cr
i over time fraction f r

4 . The

throughput region ΛDNC of DNC is achieved by time sharing

the rate regions R1, R2, R3 and R4 for transmissions 1),

2), 3) and 4), respectively. Let φr
i ∈ [0, 1] denote the fraction

of time where node i’s packets are relayed by relay r via

plain routing. Then, the rate regions are given by R1 =
{

λr ≥ 0 : λr

Cr
≤ f r

1

}

, R2 =
{

λ ≥ 0 : λi

Ci,r
≤ f r

2,i, i ∈ Sr

}

,

R3 =
{

λ ≥ 0 :
φr
i λ̃i,r

Cr
i

≤ f r
3,i, i ∈ Sr

}

, and R4 =
{

λ ≥ 0 :

(1−φr
i )λ̃i,rmr

Cr ≤ f r
4 , i ∈ Sr

}

.

The throughput optimal control requires a new formulation

of differential backlogs:

1) For transmissions from r ∈ R to Sr, we define, Br
1(t) =

[

U r
r (t)−

∑

k:r∈Sk,k∈R\{r} U
r
k (t)

]+

,

2) For transmissions from i (where i ∈ Sr and i /∈ R) to

r ∈ R, we define Br
2,i(t) =

[

U i
i (t)− U r

i (t)
]+

,

3) For uncoded transmissions of packets of i ∈ Sr from

r ∈ R to Sr\{i}, we define Br
3,i(t) =

[

U r
i (t) −

∑

k:r∈Sk\{i},k∈R\{i,r} U
r
k (t)

]+

, and

4) For coded transmissions from r ∈ R, we define Br
4 =

1
mr

∑

i∈Sr

[

U r
i (t)−

∑

k:r∈Sk\{i},k∈R\{i,r} U
r
k (t)

]+

.

In time-slot t, throughput optimal control follows from

choosing the set of transmitting nodes to bound the time-

average value of total queue length
∑

i∈N
U i
i (t)+

∑

r∈R

∑

i∈Sr

U r
i (t)

by maximizing

W (t) =
∑

r∈R

W r
1 (t)B

r
1(t) +

∑

r∈R,i∈Sr,i/∈R

W r
2,i(t)B

r
2,i(t)

+
∑

r∈R,i∈Sr

W r
3,i(t)B

r
3,i(t) +

∑

r∈R

W r
4 (t)B

r
4(t),

where we set the weights W r
1 (t) = Cr, W r

2,i(t) = Ci,r,

W r
3,i(t) = Cr

i and W r
4 (t) = Cr if the corresponding

transmissions are successful; otherwise, they are set to zero.

For illustration purposes, we consider a ring network of

N > 3 relays, each attached to K different end terminals.

Each node generates traffic broadcast to the rest at the common

rate of λ. For each relay, only K end terminals and two

relays on both sides may overhear each other depending on

the overhearing range n (where m = K + 1 − 2n > 0).

Because of half-duplex model, nodes are scheduled to transmit

over four time fractions of equal length, three for relays

(without interference at neighbors on both sides) and one for

end terminals. Using the shortest paths, every node receives

traffic with rate
(

N−3
2

)

(K+1)λ from each neighbor. In plain

routing, the time for each relay is separated to (i) transmissions

of end-terminals to relay with rate Kλ, (ii) transmissions of

self-generated traffic of relay with rate λ, and (iii) relaying of

traffic incoming from two relays on both sides with total rate

(N − 3)(K + 1)λ and from K terminals with total rate Kλ.

Then, the maximum throughput achieved by plain routing is

λ = (4((N − 2)(K + 1) +K))−1
.

In DNC, the set of neighbors with m largest rates includes

two neighbor relays and K − 1 − 2n end terminals, if

K ≥ 2n + 1, and each relay needs to carry with DNC the

traffic incoming at rate
(

(N − 3)(K + 1) + K − 1 − 2n
)

λ.

Then, the maximum throughput achieved by DNC is λ =
(4((N − 2)(K + 1) +K − 1− 2n))

−1
. DNC improves the

rate of plain routing and this gain increases with overhearing

range n. The maximum gain is achieved for K = 2n when

DNC carries the relay traffic with rate
(

N−3
2

)

(K + 1)λ and

DNC maximizes the throughput to λ =
(

4(N−1
2 )(K + 1)

)−1
.

VI. CONCLUSIONS

We have derived the maximum throughput region for relay-

assisted wireless broadcast with digital and analog network

coding. For stochastic packet traffic, variations of the maxi-

mum differential backlog policy are shown to be throughput

optimal. We started with the case of a single relay and

extended the analysis to the simultaneous operation of multiple

relays. The results quantify the stable throughput gain of digi-

tal and analog network coding over plain routing. Throughput

optimal control relies on centralized scheduling with full queue

backlog information. Future work should look at distributed

control with limited or delayed information on queue and

channel properties. In addition, it would be interesting to

analyze the trade-offs of stable throughput with delay and

energy measures with joint network coding and scheduling.

APPENDIX: PROOF OF LEMMA 1

A. Plain Routing

Plain routing requires K packets to be separately delivered

to the relay in phase 1 and then forwarded to terminals

over additional K transmissions in phase 2. Therefore, the

minimum number of transmissions TR(K,n) for plain routing

is given by (1).

B. Digital Network Coding

Phase 1 requires K transmissions. In Phase 2, each trans-

mission represents a linear equation in terms of the K packets.

If n = 0, each user requires K−1 independent equations to be

able to solve for the K − 1 needed packets. This requires that

coding matrix G has at least K − 1 rows. G = [IK−1,1K−1]
meets this bound as an example, where 1K−1 is the (K − 1)-
dimensional column vector of all 1’s. This coding matrix G has

the minimum number of K−1 rows needed to have the rank of

K−1. If terminals overhear each other’s transmissions over n
neighbor hops in phase 1, 2n degrees of freedom are delivered

to each terminal in phase 1. Here, a degree of freedom received

at node i represents the change in the rank of coding matrix

(one row for the coding coefficients of each received packet).

Then, at least K−1−2n transmissions are necessary in phase

2 to deliver K− 1 linearly independent coded packets to each

terminal i.
Next, we show that K − 1 − 2n coded transmissions are

sufficient to form the decoding matrix of rank K at any

terminal. Define gi as the ith column of G, and define matrix

Ĝi by removing the consecutive columns gi and gj , for all

j ∈ Ni, from G. If Ĝi has full column rank, terminal i can



decode K−2n−1 packets missing from phase 1. The optimal

coding matrix is not unique. We can use the generator matrix

of [K,K − 1 − 2n] Maximum Distance Separable (MDS)

Code for a sufficiently large field size, since any K − 1− 2n
columns of this matrix are independent [39]. Here, we can

also use random NC to construct coding matrix G with entries

uniformly and randomly chosen from a finite field. As the field

size grows to infinity, any m columns out of matrix G become

independent from each other and Ĝi becomes full-rank.

To construct G for a general field size, we define the ri×si
matrix Ui = [ Iri , . . . , Iri , Vi ], where ri+1 = mod(ri, si+1)
and si+1 = mod(si, ri) follows extended Euclidean algorithm

with the initial conditions of r0 = K−1−2n and s0 = K . The

ri×si+1 matrix Vi is defined as Vi = [Isi+1
, . . . , Isi+1

, UT
i+1]

T ,

where {·}T is the matrix transpose. The (K − 1 − 2n) × K
coding matrix is given by G = U0. As an example, for K = 4
and n = 1, we have m = 1, r0 = 1, s0 = 4, s1 = 0 (V0

does not exist), and the corresponding coding matrix is G =
[1 1 1 1], and for K = 5 and n = 1, we have m = 2, r0 = 2,

s0 = 5, s1 = 1, r1 = 0, and the corresponding coding matrix

is G = [I2, I2, V0], where V0 = [1, 1]T .

Any K−2n−1 adjacent columns of matrix G are indepen-

dent, i.e., the matrix Ĝi is full-rank, and any terminal i can

decode K − 1− 2n missing packets. Therefore, the minimum

number of transmissions TDNC(K,n) for DNC is given by

(2).

C. Analog Network Coding

For n = 0, the relay needs to deliver K − 1 degrees of

freedom in phase 2 to each terminal over at least K − 1
transmissions, i.e., TANC(K,n) ≥ 2(K−1). If the scheduling

matrix G̃ is chosen as [IK−1,1K−1], each terminal i receives

K−1 linearly independent combinations of K signals and can

decode K − 1 missing signals by using its own signal. Then,

TANC(K,n) is 2(K−1). For n > 0, we define Yi = HiX as

the received signals, where X denotes the transmitted signals,

one signal from each terminal, and Hi is the end-to-end

transfer matrix at terminal i. For random channel gains, the

rank of Hi is K − 1 with probability one, if all terminals

transmit over K − 1 slots in phase 1. However, continuous

transmissions do not allow packet overhearing because of half-

duplex constraints on the terminals. At most 2n degrees of

freedom can be delivered to each terminal by overhearing

in phase 1 and we need at least K − 1 − 2n transmissions

in phase 2 such that TANC(K,n) ≥ 2(K − 1 − 2n). Since

at least K transmissions are needed to exchange K packets

and each transmission of phase 1 is repeated in phase 2,

TANC(K,n) ≥ 2 ⌈K/2⌉. The optimal scheduling matrix G̃
is not unique.

Consider the m×K scheduling matrix G̃ = [U, V ], where

m = max (⌈K/2⌉ ,K − 1− 2n), and the m × m matrix U
and the m × r matrix V are given by Ui,j = 1, if i = j or

i = m−s+1, . . . ,m and j = 1, . . . , n+1, else Ui,j = 0, and

V = [ Ir, . . . , Ir,W
T ] T , where r = K −m, s = mod(m, r),

and Wi,j = 1 if i = 1, . . . , s and j = r−n, . . . , r, else Wi,j =
0. As an example, for K = 4 and n = 1, we have m = 2,

r = 2, s = 0, (W does not exist), and the corresponding

scheduling matrix is G̃ = [I2, I2], and for K = 5 and n = 1,

we have m = 3, r = 2, s = 1 (W = [1, 1]), and the rows of

the corresponding scheduling matrix G̃ are G̃1 = [1, 0, 0, 1, 0],
G̃2 = [0, 1, 0, 0, 1], and G̃3 = [1, 1, 1, 1, 1].

Note that G̃ ensures that all terminals transmit once over a

period of m time-slots. After the first 2(m−s) slots (i.e., after

m− s terminal transmissions, each followed by forwarding at

the relay), terminals 1, . . . n+1 and K−n, . . . ,K can decode

K − s packets. Then, these terminals continuously transmit

for the rest of s time-slots (since they do not need to overhear

transmissions of other terminals) and decode s more packets

from relay transmissions. The rest of terminals (i.e., terminals

n+2, ...,K−n−1) miss at most m degrees of freedom from

the packets transmitted in the first 2(m − s) slots and they

also need to decode s − 1 of remaining packets (since every

terminal knows its own packet). So, at most 2s−1 packets are

missing at these terminals. Each of them transmits once in the

last 2s slots and receives 2s−1 degrees of freedom to decode

the remaining (at most 2s− 1) packets. Then, s− 1 of these

packets are decoded from the terminal transmissions that are

overheard (no overhearing is possible in the time-slot when the

terminal transmits) and s of these packets are decoded from

the relay transmissions.
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