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Abstract—Distributed medium access control (MAC) protocols
are proposed for wireless networks assuming that one-hop peers
can exchange a small amount of state information periodically.
Each station maintains a state and makes state transitions
and transmission decisions based on its state and recent state
information collected from its one-hop peers. A station can adapt
its packet length and the size of its state space to the amount
of traffic in its neighborhood. It is shown that these protocols
converge to a steady state, where stations take turns to transmit in
each neighborhood without collision. An important consequence
of this work is that using such protocols, an efficient time-
division multiple access (TDMA) like schedule can be formed
in a distributed manner, as long as the topology of the network
remains static or changes slowly with respect to the execution of
the protocol.

I. INTRODUCTION

The performance of wireless networks is limited by two
types of collisions: a station transmits to another transmitting
station which is half-duplex; or a station receives simultaneous
transmissions from multiple stations such that all transmis-
sions cannot be decoded correctly. Medium access control
(MAC) protocols are needed to eliminate or reduce both types
of collisions. A typical design of MAC protocols is to let
each station maintain a state variable and make transmission
decisions according to the state, which is updated based on
the station’s observation. Besides eliminating collisions, a
practical MAC protocol should be distributed, i.e., stations
make their decisions based on information available locally in
space. A practical MAC protocol should also be adaptive to
recent changes in time.

We consider static or slow-varying networks and study self-
stabilizing MAC protocols, i.e., protocols that converge to a
collision-free schedule, independent of the initial state. In the
steady state, these protocols behave like time-division multiple
access (TDMA), in which stations take turns to transmit
without collision; while in the transient state, they behave
like carrier-sense multiple access (CSMA), such that stations
contend with each other, trying to find a slot for transmission
and avoid collisions. References [1]–[3] study self-stabilizing
MAC protocols for a single collision domain, in which all sta-
tions can hear each other. By learning transmission decisions
of others, stations are able to find a collision-free schedule
in a decentralized manner. However, the analysis applies only
to a single collision domain. It is pointed out in [1] that the
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protocol therein cannot guarantee the formation of a collision-
free schedule in multiple collision domains.

In practice, most networks have multiple collision domains
and hence the hidden terminal and exposed terminal problems.
For one- and two-dimensional regular networks with links
between nearest neighbors only, distributed, adaptive, self-
stabilizing MAC protocols are introduced in [4] and [5], re-
spectively. The technique is to divide time into periodic cycles,
where each cycle is divided into slots. A station maintains a
state and transmits only over the slot corresponding to its state.
Once the protocols converge, a periodic state pattern is formed
throughout the regular network, and the maximum broadcast
throughput is achieved. If one directly applies these ideas to
networks with arbitrary topologies, sufficiently many states are
needed for stations with many neighbors, but for stations with
few neighbors, the wireless channel is underutilized.

In this paper, we propose multi-resolution MAC protocols
for one- and two-dimensional wireless networks with arbitrary
topologies, i.e., a station having more neighbors uses a fine
resolution (more states are used, each state corresponding to a
shorter slot); while a station with fewer neighbors uses a coarse
resolution (fewer states are used, each state corresponding to a
longer slot). These protocols guarantee every station a chance
to transmit in each cycle. In addition, they achieve approximate
proportional fairness in the sense that two stations with similar
number of neighbors have similar rates. For one-dimensional
networks, stations can determine their resolutions in a dis-
tributed manner. The same also holds for two-dimensional
networks under a mild condition. In case the condition is
not met, we propose a mechanism for stations to dynamically
change their resolutions until collisions do not occur in the
entire network. In all cases, the convergence of such protocols
to a collision-free schedule is rigorously established. We do
not consider maximizing throughput or minimizing the number
of states; these problems are NP-complete [6], [7].

The remainder of this paper is organized as follows. The
system model is described in Section II. Results for one- and
two-dimensional networks are presented in Sections III and IV,
respectively. We comment on the key ideas of the proof for the
theorems but omit details due to space limitations. Section V
concludes the paper.

II. SYSTEM MODEL

Consider a simple model for wireless networks where two
stations have a direct radio link between them if their distance
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Fig. 1. A multi-resolution MAC protocol in a one-dimensional network.
In (b), there are 6 stations at positions r0, . . . , r5. The circles represent the
transmission ranges of the stations. The values of wr and lr for different
stations are shown on top of the corresponding circles. A possible schedule
over a cycle is shown in (a).

is within a given range. Precisely, the network is modeled by
a finite undirected unit disk graph GR = (V,AR), where V =

{ri}|V |−1i=0 is the set of stations labeled by their coordinates,
AR = {(ri, rj) ∈ V × V : i 6= j and d(ri, rj) ≤ R} is the set
of undirected links, d(ri, rj) denotes the Euclidean distance
between ri and rj , and R is the transmission range. Let Vr
denote the set of (one-hop) peers or neighbors of station r.
It is assumed that every station broadcasts packets to all its
one-hop peers and has saturated traffic.

Next we formalize the concept of multiple resolutions
alluded to above. Consider Fig. 1(a). Station r5 uses a coarse
resolution consisting of four states, 00, 01, 10, 11. It transmits
in state 10, i.e., the third quarter of the cycle. Station r3 uses
a finer resolution consisting of eight states. It transmits in
the sixth slot of the cycle when its state is 101. Station r3’s
resolution can be seen as a refinement of that of station r5,
where every slot is reduced by half. Formally, the state of
station r assumes values in Flr2 , the set of binary lr-tuples,
where 2lr is the total number of states available for station r to
choose and it depends on its local topology. Let Ω =

∏
r∈V Flr2

denote the configuration space. Let Xr(t) ∈ Flr2 be the state
of station r in the t-th cycle, and XXX(t) = {Xr(t)}r∈V ∈ Ω
be the configuration in the t-th cycle. Xr(t) = s ∈ Flr2 means
that station r divides the t-th cycle into 2lr slots of equal
length, and it transmits in slot s. For this reason, we will use
states and slots interchangeably. We assume that all stations
are synchronized. Therefore, a fine resolution can be obtained
by ‘splitting’ or ‘refining’ a coarse resolution, as shown in
Fig. 1(a).

We assume that packets transmitted by a station fit in a slot
of its own resolution. Stations using coarse resolutions can also
transmit multiple packets of smaller sizes in a slot. A collision
occurs at some receiver when two stations that are one-hop
or two-hop peers transmit at the same time. Mathematically,

neighboring stations ri and rj , with lri ≤ lrj , collide in the
t-th cycle when

the binary string Xri(t) is a prefix of Xrj (t). (1)

For example, in Fig. 1(a), since 10 is a prefix of 101, stations
r3 and r5 collide. In a collision-free configuration, (1) does
not hold for any pair of one-hop and two-hop peers.

We assume that at the end of each cycle, each station
acquires the current states of its one-hop and two-hop peers,
error-free. The careful reader may object that this itself re-
quires a collision-free schedule. However, since this control
information is relatively low-rate, we assume that other tech-
niques can be utilized for sending it. For example, the rapid
on-off division duplex (RODD) scheme in [8] can enable all
stations to exchange their control messages simultaneously.

Let stations choose their next states based only on the cur-
rent states of their one-hop and two-hop peers and themselves.
The state process of the MAC protocol can be modeled as a
Markov Chain of Markov Fields (MCMF) [9], i.e., a process
for which the states XXX = {XXX(t)}t∈N satisfy
• XXX(1),XXX(2), . . . is a Markov chain on Ω, and
• for every t, XXX(t) is a Markov field on Ω conditioned on
XXX(t− 1).

In fact, XXX(t) is a set of independent random variables con-
ditioned on XXX(t − 1) in our case. Here, we only consider
protocols in which stations make identically distributed deci-
sions conditioned on the same previous states of their one-hop
and two-hop peers and themselves.1

The performance measure we use is the one-hop broadcast
throughput ρ, the average proportion of time a station receives
packets in each cycle. With proper scaling, this also implies a
lower bound on the unicast or multicast throughput. A station
receives a packet if and only if it does not transmit and only
one of its peers transmits. If there is no collision,

ρ =
〈∑

r′∈Vr
2−lr′

〉
r

=
〈
|Vr|2−lr

〉
r

(2)

where 〈·〉r in (2) is the spatial average over all stations,
i.e., 〈g(r)〉r = 1

|V |
∑

r∈V g(r) for any function g. The two
expressions are obtained by counting throughput from the
receiver side and the transmitter side respectively.

III. ONE-DIMENSIONAL NETWORKS

A. Determining the number of states

Station r determines its resolution (in bits) lr as follows:
1) station r computes wr = 1+|Vr|, the number of stations

within r’s one-hop neighborhood, and exchanges this
with all its one-hop peers (e.g., using techniques of [8]),

2) station r sets lr = dlog2(maxr′∈Vr∪{r} wr′)e.
The intuition is that the size of the state space of a station
should be at least equal to the size of the largest one-hop
neighborhood to which the station belongs. Fig. 1(b) illustrates
the procedure.

1This rules out protocols in which stations, for example, are simply assigned
to transmit or not based on their location (e.g., in [10]).
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Fig. 2. Throughput of one-dimensional networks versus node intensity.

Theorem 1: For any one-dimensional network, if station r
uses lr = dlog2(maxr′∈Vr∪{r} wr′)e, where wr = 1 + |Vr|,
then it is possible for each station to choose a state such
that collision-free configurations exist. The resulting one-hop
broadcast throughput is

ρ =
〈
|Vr|2−dlog2(maxr′∈Vr∪{r}(1+|Vr′ |))e

〉
r
. (3)

Consider finite segments of one-dimensional networks
where stations are distributed following a Poisson point pro-
cess with intensity λ, and the transmission range is R = 1.
We evaluate (3) by averaging over different realizations of the
networks. How the throughput ρ varies with the intensity λ is
shown in Fig. 2. The throughput oscillation is due to the fact
that the size of any state space is a power of 2. In a worst-case
scenario, if a station determines that it needs 2n + 1 states, it
actually has to use a resolution of 2n+1 states, meaning that
potentially almost half of the cycle will be left idle, hence the
throughput can be very close to 0.5. After forming a collision-
free configuration, there may still be many idle slots in certain
neighborhoods. How stations reclaim these idle slots is left to
future work.

For comparison, we also compute the throughput for slotted
ALOHA. Consider a segment of a one-dimensional network
of length 2R with a station at the center. This station has
k peers with probability exp(−λ2R) (λ2R)k

k! . Assume stations
transmit with a fixed probability p. This station receives a
packet successfully with probability kp(1− p)k. Then,

ρ(p) =

∞∑
k=1

exp(−λ2R)
(λ2R)k

k!
kp(1− p)k

= λ2Rp(1− p) exp(−λ2Rp).

Optimizing over all p, the throughput is

ρ =
λ2R

2 +
√

4 + (λ2R)2
exp

(
− 2λ2R

2 + λ2R+
√

4 + (λ2R)2

)
.

Protocol 1 Multi-Resolution MAC Protocol
1: r sets the votes on all states to zero.
2: for r′ ∈ Vr ∪ {r} do
3: if r is the only station occupying its current state in

station r′’s one-hop neighborhood then
4: r’s current state is assigned a single vote of

weight one.
5: else
6: r determines which states (according to r’s

resolution) are idle or have collisions in r′’s one-
hop neighborhood.

7: A vote of weight 1
n is given to each such state,

where n is the number of such states.
8: end if
9: end for

10: r selects state s with a probability proportional to f(ns),
where ns is the total weight state s receives.

This optimized throughput, with R = 1, is plotted in Fig. 2.
The multi-resolution MAC protocol provides 46.7% to 112.2%
improvement in terms of throughput over slotted ALOHA.

B. A Multi-Resolution MAC Protocol

In the following we propose a multi-resolution protocol
that leads to a collision-free configuration starting from an
arbitrary initial configuration. Stations can learn two-hop
state information in each cycle as follows. In the t-th cy-
cle, station r collects

{
(Xr′(t))

}
r′∈Vr

, and then broadcasts{
(Xr′(t))

}
r′∈Vr∪{r}

. Hence, station r knows Xr′(t) for all
one-hop and two-hop peers r′, and selects its state at the
(t+ 1)-st cycle following Protocol 1.

In Protocol 1, f : R 7→ R is an increasing function with
f(0) = 0, e.g., f(ns) = exp(Jns)1{ns>0}, where 1{·} is the
indicator function and J > 0 is the strength of interaction
(discussed later). The idea of Protocol 1 is that a station
‘reserves’ a slot for a peer if it knows that this peer does not
collide with other peers, and notifies any peer experiencing
collisions to stay away from these ‘reserved’ slots. We have
the following convergence result for this protocol.

Theorem 2: If each station in a one-dimensional network
chooses its resolution following Theorem 1 and executes
Protocol 1, then a collision-free configuration will be formed
after a sufficiently long time, regardless of the initial state.

This is proved by showing that with a nonzero probability
each station arrives at an optimal state and remains there since
it is an absorption state.

C. Simulations: Convergence Speed-up by Annealing

Simulations of the proposed protocol show that it may
take a long time for a collision-free configuration to appear.
Here we propose speeding up the convergence by annealing,
i.e., we consider the multi-resolution protocol with f(ns) =
exp(J(t)ns)1{ns>0}, where J(t) = γJ(t−1), γ > 1 controls
the increase in the strength of interaction, and J(0) = 1.
Define the convergence time to be the first time that a certain
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Fig. 3. Simulations of the multi-resolution protocol with annealing on one-
dimensional networks.

configuration is observed and remains unchanged till the end
of the simulation, and the convergence percentage to be the
proportion of stations that do not collide in that configuration.
This configuration may not be collision-free, hence, there is
a nonzero probability that the network transits to another
configuration, but this probability is so small (as J(t) is
very large, resulting in every station staying in the state with
maximum vote) that this transition is practically impossible.
We consider a line segment of length 50 on which stations are
distributed following a Poisson point process with intensity
λ. The transmission range is R = 1. The convergence time
and percentage are plotted in Fig. 3. When γ is too small, the
effect of annealing is not significant. When γ is too large, the
convergence time is reduced drastically, but the convergence
percentage is also reduced.

IV. TWO-DIMENSIONAL NETWORKS

A. Determining the number of states

Unlike in one-dimensional networks, the resolution lr can-
not be completely determined by two-hop topology informa-
tion in two-dimensional networks. An example is shown in the
left part of Fig. 4(a). If the rule in Theorem 1 is used here,
all stations should use a resolution of four states. But since
every station is within two hops of every other station, at least
five states are needed to resolve any collision. This situation
can be remedied if the network GR is ‘well-connected’ and
the protocol is modified as follows: lr is determined by
the size of the maximum clique in G2

R containing r, where
G2
R = (V,A2

R) is the square of GR, i.e., (ri, rj) ∈ A2
R if ri

and rj are one-hop or two-hop peers in GR.
Theorem 3: Suppose a two-dimensional network GR has a

chordal square, i.e., G2
R is chordal. If station r uses resolution

lr = dlog2|Cr|e, where Cr is the maximum clique in G2
R

containing r, then it is possible for each station to choose a
state such that collision-free configurations exist.
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Fig. 4. Intricacies for two-dimensional networks: (a) determining the number
of states (‘??’ labels stations that are unable to pick a state without collision),
(b) converging to a collision-free configuration.

A graph is chordal if in any cycle of at least four vertices,
there must exist an edge between some two nonadjacent
vertices. Furthermore, a graph is chordal if and only if it
has a perfect elimination ordering of vertices [11]. A perfect
elimination ordering is constructed by repeatedly finding a
vertex such that all its neighbors form a clique, and then
removing it along with all incident edges. The order that
the vertices are removed is a perfect elimination ordering.
Theorem 3 is true because stations can pick their states
following the reverse of a perfect elimination ordering, and
so guarantee no collisions occur.

The condition in Theorem 3 is sufficient but not necessary.
For example, the right part of Fig. 4(a) shows that a collision-
free configuration cannot be found using the resolutions pre-
dicted in Theorem 3. Consider also the right part of Fig. 4(b),
which is a 4 × 4 square lattice where multiple stations are
collocated on some lattice points. Theorem 3 predicts that
every station uses a resolution of eight states, and a collision-
free configuration exists, as shown in the figure. For illustrative
purposes, we use octal representation of the states, e.g., state
101 is denoted as 5. In both cases, G2

R is not chordal.
Since the sizes of all state spaces are powers of 2, additional

states are provisioned in many cases. Therefore, a collision-
free configuration can be formed using local information
exchange even for many networks without chordal squares.

B. A Modified Multi-Resolution MAC Protocol

The multi-resolution protocol for one-dimensional networks
may not work for all two-dimensional networks. An example
is illustrated in Fig. 4(b). Every station uses a resolution of
eight states. The right part of Fig. 4(b) shows that a collision-
free configuration exists. But, if the initial configuration is the
one shown in the left part of Fig. 4(b), and the protocol in
Section III is used, then the following occurs:



1) All stations in initial states 1, 2, 3, 4, 5 remain in their
current states with probability one, since they do not
collide. All stations in initial state 0 can only choose
0, 6, 7 as their next states, because all other states are
not available. This repeats for all subsequent iterations.

2) Consider the four stations in the middle of the network,
which have initial states 0. They are within two hops of
each other, so they must use different states. However,
only states 0, 6, 7 are available to them in any cycle.
Hence, collision-free configurations cannot be reached.

A simple modification prevents the preceding deadlock. For
any station, if the votes received do not all point to a single
state, then the station increases the total weight of the votes
received for any state by a nonzero constant. A station in
this situation will have nonzero probability of choosing any
state to be its next state. This randomization does not affect
any absorption configuration, and is necessary to establish the
counterpart of Theorem 2 for two-dimensional networks.

Theorem 4: For a two-dimensional network, suppose each
station uses a sufficiently fine resolution so that the existence
of collision-free configurations is guaranteed. Then, starting
from an arbitrary initial configuration, the modified multi-
resolution protocol will, after a sufficiently long time, result
in a collision-free configuration.

Theorem 4 is established by showing that there is a nonzero
probability to reach the all-zero configuration and then reach
a collision-free configuration in the next cycle.

C. Simulations: Dynamically Adjusting the Number of States

For a general two-dimensional network, it is difficult for
stations to predict the resolutions they need. It may still
be difficult even for networks with chordal squares, since it
is not known whether it is possible to find the maximum
clique in the square of a unit disk graph efficiently. Therefore,
we propose the following dynamic algorithm. Initially, every
station follows the rule proposed in Theorem 1 and executes
the modified multi-resolution protocol with annealing. If a
station knows that the local configuration within its two-hop
neighborhood remains the same for a number of iterations
(10 in our simulations), but it still experiences collisions,
then it checks if there are any idle states within its two-hop
neighborhood. If such states exist, it selects one of these states;
otherwise, it doubles the size of its state space (i.e., it ‘refines’
its resolution), picks its state randomly, resets the strength of
interaction it uses and continues executing the protocol.

For simulation, we consider 10 × 10 square area of two-
dimensional networks where stations are distributed following
a Poisson point process with intensity λ. All other simulation
settings are the same as those for one-dimensional networks.
The convergence time and percentage are plotted in Fig. 5.
The convergence time is longer compared to one-dimensional
networks, since stations may need to adjust their resolutions.
When γ is too large, the convergence time increases drasti-
cally. For large γ, the interaction between stations is so large
that the protocol behaves like majority vote shortly after the
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Fig. 5. Simulations of the modified multi-resolution protocol with annealing
on two-dimensional networks.

protocol is executed. This makes the randomization of states
after each refinement not effective in resolving collisions.

V. CONCLUSION

In this paper, we have proposed multi-resolution MAC
protocols for wireless networks with arbitrary topologies. We
have shown that collisions can be eliminated in a distributed
manner, by letting stations make their transmission decisions
based on recent transmission decisions of their peers. These
protocols do not require all stations to use the same resolution,
i.e., the same state space or the same length of each slot.
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