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Abstract—It has been suggested that light regulation in the
form of etiquette protocols, device design and bargaining amongst
users will suffice to mitigate a tragedy of the commons in
unlicensed spectrum. In this paper we propose a game theoretic
model to examine this claim. In this game, each user decides
whether or not to set up an access point, which operates on a
particular (single) band. The effect of regulation is modeled in
reduced form through transfers. A user who sets up an access
point, provides payments to each neighbor who does not and
suffers a disutility depending on the number of interfering access
points. A user who does not set up an access point, receives
payments from each neighbor that does. For a suitable model
of payoffs, the game is a potential game and best response
updates converge to a Nash equilibrium of the game. For any
interference parameters, there is a suitable transfer resulting in a
Nash equilibrium which is efficient. However, all Nash equilibria
may not be efficient.

Index Terms—commons model, tragedy of commons, interfer-
ence mitigation, equilibrium, potential game

I. I NTRODUCTION

Due in part to the success ofIEEE 802.11 Wi-Fi networks,
the “commons model” has been proposed as a paradigm for
the efficient use of wireless spectrum [1]–[4]. Anyone may
use spectrum, without a license, provided they obey prescribed
“spectrum etiquette,” such as transmitting with a given peak
power constraint or following a common MAC protocol.

Here we consider a commons model in which users may
install access points (APs) to serve their own as well as other
users’ traffic.1 In the latter case, the AP owner may receive
a payment for this [5]. One concern with such a model is
that as the density of APs increases, the users may eventually
suffer a “tragedy of the commons,” because of increasing
interference [6]. It has been suggested that it is enough to
lightly regulate a commons to mitigate the tragedy. Schemes
such as etiquette protocols, restricted design of devices and
bargaining amongst users have been proposed [7], [8]. In
this paper we model the effect of regulation in reduced form
through a shared rate. Namely, an AP owner can provide

This research was supported in part by NSF under grant CNS-0519935.
1Although this work is motivated by 802.11 systems, here “Access Point”

could refer to other types of systems sharing a common band.

payments to neighboring users to encourage them not to set up
interfering APs. This payment may take the form of providing
discounted service and/or providing a share of revenue to
potential interferers.

Given such a scheme, we study a game theoretic model
to determine potential user behavior. In this game, each user
decides whether or not to set up an AP, which operates
on a particular (single) band. If a user sets up an AP, she
provides payments to each neighbor who does not and suffers
a disutility depending on the number of interfering APs.
On the other hand, if a user does not set up an AP, she
receives payments from each neighbor that does. Clearly, if
the payments are large enough, the user may decide not to set
up an AP and thereby reduce interference. For a given model
of the agents’ payoffs, we show that the resulting game is a
potential gameand that best response updates converge to a
Nash equilibrium of the game.

A game is called a potential game if all players in the game
change their strategy as if they jointly optimize a common
objective function, i.e. a potential function [9]. Potential games
have been used to model various network resource allocation
problems, including distributed power control [10]–[12], non-
cooperative routing in wired networks [13], and multihoming
of users to the APs in WLANs [14].2

Using the potential function of the AP deployment game,
we analyze the Nash equilibrium under various assumptions.
First, we assume that users are located on a two dimension
lattice and that interference only comes from the nearest APs.
This models a situation where either the density of APs or
transmission power of each AP is relatively low. In this case,
we show that Nash equilibrium exist in both pure and mixed
strategies and that at least one Nash equilibrium achieves the
socially optimal density of APs with the appropriate payment.
We then account for interference from outside of the nearest
neighbors. Our results suggest that as the transmission power
increases relative to the node density, implementing such a
commons approach becomes more difficult and other forms

2Other related work, in which a game theoretic approach is used to analyze
the performance of ad hoc networks (including IEEE 802.11), is presented in
[15]–[19].



of spectrum sharing (e.g. a secondary market) may be more
appropriate.

II. T HE MODEL

Consider a two-dimensionalL1 × L2 lattice. Every lattice
point has a selfish agent who decides whether she sets up an
AP or not. Namely, agentlij at lattice point(i, j) chooses
a strategyyij ∈ Yij , based on interference and the shared
data rate from the nearest APs. This shared data rate among
nearest neighbors is the regulatory measure we introduce and
is discussed later in detail. The strategy spaceYij of agentlij
is Yij = {0, 1}, whereyij = 1 if agentlij decides to set up an
AP andyij = 0 if she decides not. If both agentslkl and lij
set up their own APs, the inference fromlkl to lij is given by
Ikl→ij . On the other hand, if agentlij decides not to set up the
AP, then she shares rateγkl→ij from agentlkl’s AP, assuming
agentlkl sets up the AP.3 This rate sharing can be justified by
the fact that agentlij is more likely to set up an AP if there is
no rate sharing resulting in increased interference to agentlkl.
If the rate degradation from this interference is severe enough,
then agentlkl has an incentive to share her rate with agentlij .
For tractability we assume that the nodes are placed at lattice
points in the plane, and that rate sharing occurs only between
nearest neighbors in the lattice.4 Therefore,γkl→ij = 0 if lkl

is not in the set of agentlij ’s nearest neighbors,Hij .5

The payoff function of agentlij depends on her own strategy
as well as those of other agents. Here, we restrict attention to
the following payoff function. If agentlij decides to set up her
own AP given the other agents’ decisions, her payoff becomes

πA
ij(yij = 1, y−ij) = R− C −

∑
kl∈{L1×L2}

ykl · Ikl→ij

−
∑

kl∈Hij

(1− ykl) · γij→kl,
(1)

where R is the total rate generated from her own AP and
C is the fixed cost for setting up the AP.y−ij denotes the
set of strategies of all agents except agentlij . This payoff
function can be motivated by viewingR as the total rate
an agent can achieve over a coverage area if there are no
interferers, andIkl→ij as the reduction in coverage caused by
each interfering AP. Of course, assuming this linear relation is
a simplification, but it provides a tractable model that captures
the key interaction among agents. On the other hand, if agent
lij decides not to set up her own AP, then she shares the rate
from the APs in her nearest neighborhoodHij and her payoff

3We assume payoff functions that are linear in rate and so this rate sharing
can be equally viewed as a transfer payment.

4We can relax this assumption and allow rate sharing between non-
neighboring agents. This relaxation, however, increases the total amount of
information that an agent should know before she makes a decision, and may
not be practical.

5Depending on the boundary condition, the set of nearest neighbors,Hij

can be different. For a periodic boundary condition in two-dimensional (torus)
lattice, considered in Section IV, the set of nearest neighbors of agentl11
is given by H11 = {(1, 2), (1, L1), (2, 1), (L2, 1)}. Without the periodic
boundary conditionH11 = {(1, 2), (2, 1)}.

becomes

πN
ij (yij = 0, y−ij) =

∑
kl∈Hij

ykl · γkl→ij . (2)

Note that we can write the payoff function of agentlij as the
following:

πij(yij , y−ij) = yij · πA
ij + (1− yij) · πN

ij . (3)

For the preceding payoff functions, we consider a non-
cooperative gameΓ(π11, · · · , πL1L2) among agents in the
lattice. In this game, given fixed actions for all other agents,
a rational agent decides whether or not she sets up an AP as
follows. If πA

ij ≥ πN
ij , then agentlij sets up the AP at her

lattice point. Otherwise, she chooses to share the rate from
the APs in nearest neighborhood instead of setting up her own
AP. We show later that this gameΓ is a potential game under
certain conditions. This allows us to assert the existence of
a Nash equilibrium and characterize the efficiency of Nash
equilibria as a function of the amount of rate sharing.

No coordination or no regulatory measure among agents
can be represented byγ = 0. Without rate sharing, agent
lij ’s payoff if she decides not to set up the AP becomes
πij(0, y−ij) = 0 from (2). Therefore, an agent is encouraged
to set up her own AP unless interference from other APs is
large enough such that her payoff with the AP is negative.
This can lead to a situation where a large number of agents in
the lattice set up the APs and experience severe interference.
As we see later in Section VI, the payoffs of all agents can
become very low, especially when the density of agents is
high. This is an example of the so called a “tragedy of the
commons” [6].

A. Model Limitations

Here we briefly discuss the limitations imposed by the
simplifications used to contruct the preceding model, which
is analyzed in subsequent sections. First, we assume that the
wireless nodes are placed in a lattice, whereas in practice
the agents are likely to be randomly distributed over the
geographic area of interest. The regular spacing of nodes in
a lattice implies that the interference externality imposed by
each active node on its nearest neighbor is the same. This
enables us to characterize properties of the AP deployment
game, such as the existence of equilibria along with the
associated efficiency, with asingle transfer price.6 Of course,
the transfer payment scheme can be applied to more general
configurations of AP nodes, but then it is likely that different
transfer prices would be needed to prove similar results. Such
an analysis would be significantly more complicated than that
presented here.

The second simplifying assumption is that each AP in the
lattice uses the same set of frequencies. Namely, if an agent
decides to set up an AP, then she transmits over the entire
band. Our model therefore does not directly account for the

6Also, in Section V we show that the AP deployment game on a lattice is
a potential game with different transfer prices across the network.



possibility of using dynamic channel assignment schemes to
avoid interference, such as those proposed forIEEE 802.11 in
[20]–[23]. (An alternative interpretation of our model is that
the particular band considered has already been assigned to
each AP by such a channel assignment algorithm, and that
the transfer payment scheme is subsequently being used to
mitigate interference within that band.)

Finally, as discussed earlier, the payoff depends linearly
on the interference. A more accurate model might account
for the degradation due to interference by computing the
received Signal-to-Interference Plus Noise Ratio at each node.
The linear payoff assumed here facilitates tractability while
providing insight into the benefits of using transfer payments
for more realistic scenarios. We also point out that although we
initially consider rate sharing between nearest neighbors in the
lattice, we relax this assumption in Section III and show that
the AP deployment game is a potential game if rates are shared
between non-neighboring agents. However, that increases the
total amount of information that an agent needs to make a
decision.

III. POTENTIAL GAMES

We begin by giving some background on potential games.
There are class of games with several desirable properties
which we will exploit. First, pure Nash equilibrium strategies
exist (assuming finite strategy sets) and are relatively easy to
compute using a potential function. Second, in these games,
Nash equilibrium can be justified as being the outcome of
a boundedly rational learning process such as best response
updates.

Let Γ(π1, π2, . . . , πn) be a game with a finite number of
players. The set of players isN = {1, 2, . . . , n}, the set of
strategies of playeri is Yi, and the payoff function of player
i is πi : Y → R, whereY = Y1 × Y2 × · · · × Yn is the set
of strategy profiles. A functionP : Y → R is a potential
function for Γ, if for every i ∈ N and for everyy−i ∈ Y−i

πi(x, y−i)− πi(z, y−i) = P (x, y−i)− P (z, y−i) (4)

for everyx, z ∈ Yi, whereY−i is the Cartesian product of the
strategy space of all players except playeri.

Definition 1: A game Γ is called apotential gameif it
admits a potential function.

Namely, a game is considered a potential game if the
improvement of the player’s payoff by changing her strategy
can be expressed in terms of the potential function which is
the same for all players. This definition leads to the following
Lemma.

Lemma 1 ( [9]): Let P be a potential function
for Γ(π1, π2, . . . , πn). Then the equilibrium set of
Γ(π1, π2, . . . , πn) coincides with the equilibrium set of
Γ(P, P, . . . , P ). That is,y ∈ Y is an equilibrium point forΓ
if and only if for everyi ∈ N

P (y) ≥ P (x, y−i) for everyx ∈ Yi. (5)

Corollary 2 ( [9]): Every finite potential game possesses a
pure-strategy equilibrium.

Lemma 1 and Corollary 2 show the existence of a Nash
equilibrium and how to compute it using the potential function.

In the potential game with a finite set of strategies, Nash
equilibrium can be reached by best response updates [9]. Best
response updates of the gameΓ(π11, · · · , πL1L2) are described
by the following. At time t + 1, an agentlij is randomly
selected among all agents in the latticeL1 × L2 and she
chooses her strategy, which maximizes her payoff for given
strategies of the other agents at timet. Namely, agentlij
chooses the best responseyij(t + 1) according to

yij(t + 1) = arg max
yij∈Yij

πij(yij , y−ij(t)). (6)

Initial strategiesyij(0) for all agents are randomly chosen.
This best response at timet + 1 is repeated fort = 0, 1, 2, . . .
with a randomly selected agent. Note that agentlij ’s best
responseyij(t) at time t might be different from her best
responseyij(t′) at time t′ 6= t. For the AP deployment game,
changing actions in this way is reasonable when the fixed cost
C is small enough.

Lemma 3: In every finite potential game, a Nash equilib-
rium can be reached by best response updates.

The following Lemma is useful when we discuss the mixed
Nash equilibrium in the potential game considered later.

Lemma 4 ( [9]): Let Γ be a finite game. ThenΓ is a
potential game if and only if the mixed extension ofΓ is
a potential game.

IV. PERIODIC BOUNDARY CONDITION WITH NEAREST

NEIGHBOR INTERFERENCE

Initially we study the game discussed in Section II, as-
suming a periodic boundary condition for the latticeL1 ×
L2.7 Namely, L1 + 1 = 1 and L2 + 1 = 1; Then,
the set of the nearest neighbors of(1, 1), for example,
is H11 = {(1, 2), (1, L2), (2, 1), (L1, 1)}. This assumption
simplifies our analysis by removing boundary effects. (In
Section V we consider a gamewithout this periodic boundary
condition.) Furthermore, we assume that interference comes
only from the nearest neighbor APs. This nearest neighbor
interference models a situation where either the density of APs
or transmission power of each AP is relatively low. Therefore,

Ikl→ij =
{

I, (k, l) ∈ Hij ,
0, (k, l) /∈ Hij ,

(7)

whereI is a constant which represents the interference level
between two neighboring APs. The payoff function (3) of

7The resulting lattice is also called a torus-lattice.



agentlij , then, is given by

πij(yij , y−ij)

= yij ·

R− C −
∑

kl∈Hij

ykl · I −
∑

kl∈Hij

(1− ykl) · γ


+ (1− yij) ·

 ∑
kl∈Hij

ykl · γ


= yij ·

R− C −
∑

kl∈Hij

ykl · I −
∑

kl∈Hij

γ


+
∑

kl∈Hij

ykl · γ.

(8)

For the time being, we assume that the shared rate from the
AP of each agentlkl ∈ Hij to each agentlij is γkl→ij = γ.
Namely, it is the same for all agents in the lattice.

Let ΓPBNN denote the resulting game under these assump-
tions.

Lemma 5:

P (y11, y12, . . . , yL1L2)

= (R− C)

 L1∑
i=1

L2∑
j=1

yij

−
L1∑
i=1

L2∑
j=1

yij

 ∑
kl∈Hij

γ


− 1

2

L1∑
i=1

L2∑
j=1

yij

 ∑
kl∈Hij

ykl · I

 .

(9)

is a potential function forΓPBNN .
The proof of this follows by noting that for giveny−ij ,

πij(y′ij , y−ij)− πij(yij , y−ij)
= P (y′ij , y−ij)− P (yij , y−ij),

(10)

for all yij , y
′
ij ∈ Yij and all agents in the LatticeL1 × L2.

Therefore, according to Definition 1,ΓPBNN is a potential
game with the potential functionP given by (9).

On the other hand, the social welfare is the sum of the
payoffs of all agents and is not affected by the shared rateγ
since it is an exchange between two agents. The social welfare
of all agents in theL1 × L2 lattice is, therefore, given by

SW (y11, y12, . . . , yL1L2)

= (R− C)

 L1∑
i=1

L2∑
j=1

yij

−
L1∑
i=1

L2∑
j=1

yij

 ∑
kl∈Hij

ykl · I

 .

(11)

We next compare a Nash equilibrium strategy with a strategy
which maximizes the social welfare and discuss the efficiency
loss at the Nash equilibrium.

A. Pure Nash Equilibrium

The first-order derivative of the potential function (9) is
given by

∂P

∂yij
= (R− C)−

∑
kl∈Hij

γ −
∑

kl∈Hij

ykl · I. (12)

Note that ∂P
∂yij

does not depend onyij . If the strategy space is
restricted to{0, 1} for all agents, the best response of agent
lij for ∂P

∂yij
> 0 ( ∂P

∂yij
< 0) is yij = 1 (yij = 0). By Lemma 3,

best response updates of randomly selected agents converge to
a Nash equilibrium. In a similar way, if∂SW

∂yij
> 0 (∂SW

∂yij
< 0),

then yij = 1 (yij = 0) to maximize the social welfare given
by (11).

Let HA
ij be the set of nearest neighbors of agentlij which

set up an AP. Then from (12), it can be seen that agentlij ’s
action in a Nash equilibrium is to set up an AP if

R− C −
∑

kl∈Hij
γ

I
> |HA

ij | (13)

and not to set up an AP when

R− C −
∑

kl∈Hij
γ

I
< |HA

ij |. (14)

The agent is indifferent when equality holds. ForΓPBNN ,∑
kl∈Hij

γ = 4γ for all lij , and so the above threshold on the
number of neighbors is

Hth =
R− C − 4γ

I
. (15)

There are5 cases of interest for this quantity.
1) 0 < Hth < 1: In this case, an agent will set up an AP

in a Nash equilibrium only if none of her neighbors does. For
fixed value ofR− C, this is true ifγ andI satisfy{

R− C − 4γ − I · 0 > 0,
R− C − 4γ − I · 1 < 0.

(16)

In addition, we assumeγ ≤ I. Otherwise, an agent would
always prefer having a neighboring AP over sharing the rate.
Similarly, the following conditions must hold for an agent to
set up an AP to maximizeSW only when there is no AP in
the nearest neighborhood:{

R− C − 2I · 0 > 0,
R− C − 2I · 1 < 0.

(17)

2) 1 < Hth < 2: In this case, an agent will set up an AP in
a Nash equilibrium only if no more than one of her neighbors
does.γ andI must satisfy{

R− C − 4γ − I · 1 > 0,
R− C − 4γ − I · 2 < 0.

(18)

The analogous conditions for the social welfare must hold:{
R− C − 2I · 1 > 0,
R− C − 2I · 2 < 0.

(19)

3) 2 < Hth < 3: An agent will set up an AP in a Nash
equilibrium only if no more than two her neighbors do. For
this case,γ andI must satisfy{

R− C − 4γ − I · 2 > 0,
R− C − 4γ − I · 3 < 0,

(20)

and {
R− C − 2I · 2 > 0,
R− C − 2I · 3 < 0,

(21)



Fig. 1. InterferenceI and shared rateγ for pure Nash equilibrium depending
on the maximum number of APs allowed in the nearest neighbors.

Fig. 2. InterferenceI and shared rateγ for the optimal social welfare
depending on the maximum number of APs allowed in the nearest neighbors.

gives the same condition for the social welfare.
For the remaining two cases (3 < Hth < 4 andHth > 4),

similar conditions for the potential functionP and the social
welfareSW can be obtained easily and we omit them here.

Figure 1 and Figure 2 summarize these cases. Figure 1
shows the values ofI andγ for pure strategy Nash equilibria to
exist in each case. These values lie in one of five regions; each
region is labeled with the maximum number of neighboring
APs for which an agent’s best response will be to set up an
AP (e.g., region0 corresponds to case0 < Hth < 1). Figure 2
shows the values ofI andγ for the socially optimum solution
to have the same structure.

Proposition 6: Consider the gameΓPBNN with the set of
strategiesYij = {0, 1}. For given interference levelI, there
exist a set ofγ such that a Nash equilibrium achieves the
optimal social welfare.

For given interference levelI, there exist a set ofγ such that

a Nash equilibrium achieves the optimal social welfare. For
example, ifI ≥ R−C

2 , a set ofγ which satisfies the conditions
of the potential function in case0 < Hth < 1 induces a Nash
equilibrium which might correspond to the optimal strategy.
On the other hand, ifI ∈ [R−C

4 , R−C
2 ], a set ofγ which

satisfies the conditions of the potential function in case2 <
Hth < 3 might generate a Nash equilibrium in which there
exists an AP with two APs in the nearest neighborhood. This
Nash equilibrium can not be the socially optimal strategy.

Nash equilibrium may not be unique in the game. Let us
consider3× 3 lattice with the periodic boundary condition as
an example. Ifγ and I are such that no AP in the nearest
neighborhoodHij is allowed when agentlij sets up an AP
(0 < Hth < 1), there exists only one Nash equilibrium with
three APs in the lattice. Namely, three among 9 agents decide
to set up the APs at Nash equilibrium. On the other hand,
if up to two APs are allowed in the nearest neighborhood
(2 < Hth < 3), there exist two Nash equilibria with either 5
or 6 APs in the lattice.

B. Mixed Nash Equilibrium

We next consider the mixed extension of the potential game
ΓPBNN . In this game, each agentlij can be viewed as having
strategy spaceYij = [0, 1], where an actionyij ∈ Yij can be
viewed as the probability thatlij sets up an AP. An agent’s
payoff is then the expected value of (3) with respect to the
actions chosen by every other agent. Since the payoff is linear
in the action, it can be seen that the first-order derivative of
the potential function is given by (12) and the second-order
derivative is given by

∂2P

∂yij∂ykl
=
{
−I, (k, l) ∈ Hij ,
0, (k, l) /∈ Hij .

(22)

Since the Hessian of the potential functionP is negative semi-
definite,P is a concave function with a unique global maxi-
mum. In addition, ∂P

∂yij
= ∂πij

∂yij
for all agentslij ∈ L1 × L2.

Therefore, best response updates of agents in the potential
game reach this global maximum of the potential function,
which corresponds to the unique mixed Nash equilibrium. This
gives the following proposition.

Proposition 7: ΓPBNN has a unique mixed strategy Nash
equilibrium, which is symmetric.

The mixed extension ofΓPBNN can be interpreted as a
game in which all agents install an AP, but only use it a
fraction of the time, indicated byyij . Individual agents do
not coordinate their usage.

Assume each agent chooses the same strategy, namely,
y11 = y12 = · · · = yL1L2 = y. We can then rewrite the
potential function as

P (y) = (L1 · L2){(R− C − 4γ)y − 2Iy2}, (23)

and so

∂P (y)
∂y

= (L1 · L2){(R− C − 4γ)− 4Iy}. (24)



Fig. 3. InterferenceI and shared rateγ for mixed Nash equilibrium and
social optimum.

It follows that the mixed Nash equilibrium strategies are given
by yNE

ij = yNE for all agents, where

yNE =


0, R−C−4γ

4I < 0,

1, R−C−4γ
4I > 1,

R−C−4γ
4I , otherwise.

(25)

Similarly, assuming symmetric strategies, the social wel-
fare8 and its first-order derivative are given by

SW (y) = (L1 · L2){(R− C)y − 4Iy2}, (26)

and
∂SW (y)

∂y
= (L1 · L2){(R− C)− 8Iy}. (27)

It follows that the social welfare is maximized ifyij = y∗ for
all lij , where

y∗ =


0, R−C

8I < 0,
1, R−C

8I > 1,
R−C
8I , otherwise.

(28)

Figure 3 shows the values ofI and γ corresponding to
different mixed Nash equilibria and the optimal social welfare.
The overlapped region whereyNE = 1 and y∗ = 1 is
such that the mixed Nash equilibrium achieves the optimal
social welfare. In general, however, the social welfare at Nash
equilibrium does not correspond to the optimal social welfare.
We consider the efficiency of the Nash equilibrium for three
possible range ofI next.

1) I ∈ [0, R−C
8 ]: As we can see from Figure 3, for

given interferenceI ∈ [0, R−C
8 ], the mixed strategy Nash

equilibrium is yNE = 1 and the probability for setting up an
AP to achieve the optimal social welfare isy∗ = 1. Therefore,
the efficiency at the Nash equilibrium, defined by the ratio of
the social welfare atyNE vs. aty∗ is given by

ε =
SW (yNE = 1)
SW (y∗ = 1)

= 1, (29)

regardless ofγ ∈ [0, I].

8The social welfare function is also a concave function since its Hessian
is given by

∂2SW

∂yij∂ykl
=


−2I, (k, l) ∈ Hij

0, (k, l) /∈ Hij

and is a negative semi-definite.

2) I ∈ [R−C
8 , R−C

4 ]: In this case, there are two possible
regions depending on the shared rateγ. If 0 ≤ γ ≤ R−C−4I

4 ,
the Nash equilibrium strategy isyNE = 1, while the optimal
probability isy∗ = R−C

8I . The efficiency is then given by

ε =
SW (yNE = 1)

SW (y∗ = R−C
8I )

=
16I

(R− C)
− 64I2

(R− C)2
, (30)

and, therefore, the efficiency does not depend on the shared
rate γ. On the other hand, ifR−C−4I

4 ≤ γ ≤ I, the Nash
equilibrium strategy and the optimal probability areyNE =
R−C−4γ

4I andy∗ = R−C
8I respectively. The efficiency is

ε =
SW (yNE = R−C−4γ

4I )
SW (y∗ = R−C

8I )

= 4

{
R− C − 4γ

R− C
−
(

R− C − 4γ

R− C

)2
}

.

(31)

Since R−C−4I
4 ≤ γ ≤ I, the range of the efficiency for given

I is εmin ≤ ε ≤ 1, whereεmin is given by (30).
3) I ∈ [R−C

4 ,∞]: Similarly, there are two possible regions
depending on the shared rateγ. If 0 ≤ γ ≤ R−C

4 , the
efficiency is given by (31) and the range is0 ≤ ε ≤ 1. On the
other hand, ifR−C

4 ≤ γ ≤ I, the efficiency isε = 0 because
yNE = 0.

Proposition 8: For any R, C, and I, there exist aγ so
that the unique mixed strategy Nash equilibrium ofΓPBNN

is efficient.
If the interference level isI ∈ [0, R−C

8 ], the mixed strategy
Nash equilibrium is efficient for anyγ ≤ I. If I > R−C

8 , the
rate sharing should beγ = R−C

8 to have an efficient Nash
equilibrium.

V. GENERALIZATION

In this section, we generalize the previous results. First, we
relax the constraint on the same shared rateγ among all agents
in the lattice and allow this rate to be different. The shared
rate from the AP of agentlkl to agentlij is denoted byγkl→ij .
Assumingγkl→ij = γij→kl,9 we can show that the potential
function is now given by

P (y11, y12, . . . , yL1L2)

= (R− C)

 L1∑
i=1

L2∑
j=1

yij

−
L1∑
i=1

L2∑
j=1

yij

 ∑
kl∈Hij

γkl→ij


− 1

2

L1∑
i=1

L2∑
j=1

yij

 ∑
kl∈Hij

ykl · I

 .

(32)

Second, we can remove the periodic boundary condition and
consider edge effects in the lattice. We can still show that the
game is a potential game with the potential function in (32).
Note thatHij does not always contain4 nearest neighbors as
with the periodic boundary condition. In addition, if mixed

9If this condition does not hold, (32) is not a potential function anymore.



strategy Nash equilibria are considered (as in Section IV-B),
the potential function (32) can be simplified to

P (x, y, z)

= (R− C)L2 − 4(L− 2)2γx− 12(L− 2)γy − 8γz

− 2(L2 − 5L + 6)Ix2 − 4(L− 2)Ixy

− 4(L− 3)Iy2 − 8Iyz,

(33)

wherex ∈ [0, 1] is the strategy of an agent who has4 nearest
neighbors,y ∈ [0, 1] is that of an agent who has3 nearest
neighbors, andz ∈ [0, 1] is that of an agent who has2 nearest
neighbors. Here, we assumeL1 = L2 = L for simplicity.
Since the potential function (33) is a concave function, the
mixed Nash equilibrium can again be found easily.

Finally, we can include interference from APs beyond the
nearest neighbors. This might be relevant when the density
of APs increases or the transmission power of each AP
increases relative to the node density. Assuming interference
only depends on the distance between two APs, interference
from the AP of agentlkl to the AP of agentlij is given by

Ikl→ij =
I

|(k, l)− (i, j)|a
, (34)

wherea is the path-loss exponent. Note thatIkl→ij = Iij→kl.
The potential function of the game is then given by

P (y11, y12, . . . , yL1L2)

= (R− C)

 L1∑
i=1

L2∑
j=1

yij

−
L1∑
i=1

L2∑
j=1

yij

 ∑
kl∈Hij

γkl→ij


− 1

2

L1∑
i=1

L2∑
j=1

yij

 ∑
kl∈{L1×L2}

ykl · Ikl→ij

 .

(35)

Here, we are still assuming that rate sharing is only between
nearest neighbors. As discussed in Section II, we can relax this
constraint. The social welfare function is the same as in (11)
except that the interference from the APs beyond the nearest
neighbors is included. As we see in Section VI, if interference
is severe, then an agent is less likely to set up her own AP
at a Nash equilibrium even whenγ > 0 and this reduces
the sum of the agents’ payoffs in the lattice. This suggests
that as interference becomes severe due to the increase of
AP density, implementing such a commons approach becomes
more difficult and other forms of spectrum sharing (e.g. a
secondary market) may be more appropriate.

VI. SIMULATION RESULTS

We now present simulation results to illustrate properties of
the AP deployment game. We begin with a game with periodic
boundary conditions and nearest neighbor interference, as in
Figure 4. The strategy space of an agent in the game is
Yij = {0, 1} for all agentslij . Figure 5 shows one realization
of the convergence of best response updates to a pure Nash
equilibrium with parametersL1 = L2 = 100, R = 10, C =
3, I = 1.6 and γ = 0.7. Initial decisions of agents in the

Fig. 4. Agents in the lattice decide whether or not to set up their own APs.
Here we only consider interference from the nearest neighbor APs.

Fig. 5. Game in the lattice with a periodic boundary condition.L1 = L2 =
100, R = 10, C = 3, I = 1.6 andγ = 0.7. (a) Average number of APs per
agent (b) Average payoff per agent for different decisions.

lattice are randomly chosen. At each iteration, all agents in
the lattice are randomly ordered and sequentially choose their
best response. Therefore, during one iteration in Figure 5,
100× 100 = 104 agents make their decisions.

The parameters considered above allow up to two nearest
APs at a pure Nash equilibrium, which corresponds to case
2 < Hth < 3 in Section IV-A3. As we can see easily,
the optimal configuration with these parameters is to have
chess board like deployment of APs in the lattice and there
is no AP in the nearest neighborhood when a user sets up
her own AP. Therefore, the average number of APs per agent
(per lattice point) at the optimal configuration is0.5 with the
average payoff per agent10−3

2 = 3.5. On the other hand,
in the commons model without shared rate (γ = 0), every



Fig. 6. Histogram of average number of APs and average payoff per agent
at Nash equilibrium. Total number of simulation run is1000. L1 = L2 =
100, R = 10, C = 3, I = 1.6 andγ = 0.7.

selfish agent in the lattice sets up her own AP. This reduces
the average payoff per agent to10 − 3 − 4 × 1.6 = 0.6,
which is substantially lower than the payoff at the optimal
configuration. As discussed in Section II, this outcome can be
viewed as a “tragedy of commons”.

Now we consider the shared rateγ = 0.7. From Section IV,
this allows up to two APs in the nearest neighborhood at a
Nash equilibrium. Best response updates of agents in the game
converge to a Nash equilibrium with more desirable average
payoff per agent. After transition period, Figure 5 shows that
the average number of APs per agent converges to∼ 0.527
and the average payoff per agent to∼ 3.1, which are closer
to the socially optimal configuration of APs. In addition, it
shows the average payoff per agent with and without an AP.
We achieve this near optimality simply by introducing the rate
sharing among agents.

Note that the Nash equilibrium is not unique as we discussed
before and the final results (average number of APs and
average payoff per agent) might be different at each simulation
run. With large lattice size, however, these differences are
relatively small. We simulated1000 times with the same
parameters and our results (See Figure 6) show that the means
of the average number of APs and the average payoff per agent
over 1000 realizations are0.5287 (standard deviation0.0011)
and3.1254 (standard deviation0.0116) respectively. However,
this does not mean we sampled all possible Nash equilibria in
the simulation. In fact, we did not realize the optimal density
0.5 even though it is possible with the parameters we consider.

Figure 7 shows one realization of the average number
of APs and the average payoff per agent as a function of
the shared rateγ. If we consider many realizations of the
simulation, each point in the figure should be replaced by a
distribution such as Figure 6. The overall trend of the figure
with mean values, however, will be the same. From the figure,
we can see that over a wide range ofγ, the average payoff

Fig. 7. Average number of APs and average payoff per agent at Nash
equilibrium as a function of the shared rateγ. Every point in the Figure
is one particular realization. Other parameters are the same (L1 = L2 =
100, R = 10, C = 3, I = 1.6).

per agent is close to the optimal value.
Now we remove the periodic boundary condition from the

game. Agents at the edge of the lattice have fewer nearest
neighbors and this encourages them to set up the APs. One
realization shows that the average APs per agent increases to
∼ 0.546. Average payoff per agent does not change much. We
further generalize this game and include interference from the
APs beyond the nearest neighbors. As we expect, less agents
decide to set up their own APs due to excessive interference.
If the path-loss exponent in (34) is assumed to bea = 4, the
average number of APs per agent is∼ 0.475 (average payoff
per agent∼ 2.15). With the path-loss exponenta = 3, the
average number of APs per agent becomes∼ 0.357 (average
payoff per agent∼ 1.30).

As interference increases, more agents decide not to set up
the AP even there is no APs around with which she can share
the rate. This configuration with relatively low density of APs
in the lattice is close to the optimal configuration with severe
interference. Our calculations in Appendix A show that the
optimal density of APs per agent is∼ 0.424 whena = 4 and
∼ 0.330 whena = 3. However, even if the shared rate scheme
achieves the near optimal configuration, overall average payoff
per agent becomes small because of the commons model
itself. When interference becomes severe, a frequency division
scheme with some frequency reuse factor might increase the
average payoff substantially compared to the commons model.

VII. C ONCLUSION

We have considered a game theoretic model of a spectrum
commons where non-cooperative users in a lattice decide
whether or not to set up their own APs. A simple regulatory
measure, the rate sharing, is proposed to mitigate the tragedy
of the commons. We have shown that the AP deployment
game in the lattice under the periodic boundary condition



with nearest neighbor interference is the potential game and
there exist pure and mixed Nash equilibrium. Moreover, by
choosing the shared rate appropriately, we achieve a Nash
equilibrium in the game which is efficient. However, with
pure strategies other non-efficient equilibria may also exist.
The potential game is also generalized to the case where
interference comes from the APs beyond the nearest neighbors.
The density of APs in the lattice decreases at the Nash equi-
librium as interference becomes severe. This result suggests
that as interference becomes severe due to the increase of
AP density, implementing such a commons approach becomes
more difficult and other forms of spectrum sharing (e.g. a
secondary market) may be more appropriate.

APPENDIX A
OPTIMAL DENSITY OF APS WITH LONG RANGE

INTERFERENCE

We would like to compute the optimal density of APs when
there exists interference from APs beyond the nearest neigh-
bors. This is, however, difficult because of integer optimization
nature of the problem. Here, we introduce the mean-field
theory in physics [24] and solve this problem approximately.10

Since interference from the AP at distancer is proportional
to 1/ra as shown in (34), we ignore interference from the APs
at distancer > Dm. In addition, the effective interference
radius, denoted byDm, is assumed to beDm � L1 and
Dm � L2. The social welfare function is, then, given by

SW (y11, y12, . . . , yL1L2)

= (R− C)

 L1∑
i=1

L2∑
j=1

yij


−

L1∑
i=1

L2∑
j=1

yij

 ∑
|kl−ij|≤Dm

ykl · Ikl→ij

 .

(36)

If we focus on a particular lattice site(i, j), the interactions
of this site with others are described by

SWij = (R− C) yij − yij

 ∑
|kl−ij|=D1

ykl · ID1

+
∑

|kl−ij|=D2

ykl · ID2 + · · ·+
∑

|kl−ij|=Dm

ykl · IDm

 ,

(37)

whereDn is the distance of n-th nearest neighbors from the
site (i, j) and IDn

= I
|Dn|a is interference from the n-th

nearest neighbor AP. As an approximation we replace the sum
over these neighbors in the second term by its mean value, i.e.,

10We can have the exact solution of the optimal density for one-dimensional
lattice.

we put

Hm ≡

〈 ∑
|kl−ij|=D1

ykl · ID1 + · · ·+
∑

|kl−ij|=Dm

ykl · IDm

〉

=< y > ·

(
m∑

n=1

NDn
· IDn

)
,

(38)

where< · > represents an ensemble average andNDn
is the

number of nearest neighbors at distanceDn.
Hm should be determined in such a way that it leads to

a self-consistent solution of the statistical problem. First, we
define the energy of the lattice(i, j) by

eij ≡ −SWij = −(H −Hm) · yij , (39)

whereH = R− C. Sinceyij ∈ {0, 1}, the ensemble average
of the strategy, or< y > is given by

< y > = 1× Prob(eij = −(H −Hm))
+ 0× Prob(eij = 0)

=
eβ(H−Hm)

1 + eβ(H−Hm)

(40)

from statistical physics. From (38) and (40), we can compute
Hm and, therefore,< y >. The parameter should beβ →∞
to get < y >opt, the average number of APs per user when
the optimal social welfare is achieved. Therefore,< y >opt is
given by

< y >opt=


1,

∑m
n=1 NDn

· IDn
≤ H,

HPm
n=1 NDn ·IDn

,
∑m

n=1 NDn · IDn > H.

(41)
We consider the same example as in Section VI. If we

assumea = 4 and m = 10, then total interference within
the effective interference radiusD10 is

∑10
n=1 NDn

· IDn
=

16.5307 and, therefore, the average density of APs per user
when the optimal social welfare is achieved is< y >opt=
7/16.5307 = 0.4235. With m = 30, on the other hand,
< y >opt= 7/16.5653 = 0.4226. In addition, total interfer-
ences withm = 10 and m = 30 are not much different and
this justifies the assumption of the effective interference radius
Dm.
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