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Abstract—It has been suggested that light regulation in the payments to neighboring users to encourage them not to set up
form of etiquette protocols, device design and bargaining amongst interfering APs. This payment may take the form of providing

users will suffice to mitigate a tragedy of the commons in giseounted service and/or providing a share of revenue to
unlicensed spectrum. In this paper we propose a game theoretic L
potential interferers.

model to examine this claim. In this game, each user decides . )
whether or not to set up an access point, which operates on a Given such a scheme, we study a game theoretic model
particular (single) band. The effect of regulation is modeled in to determine potential user behavior. In this game, each user
reduced form through transfers. A user who sets up an access decides whether or not to set up an AP, which operates
point, provides payments to each neighbor who does not and 5, 4 particular (single) band. If a user sets up an AP, she

suffers a disutility depending on the number of interfering access . h neiah h f
points. A user who does not set up an access point, receivesprOVIdeS payments to each neighbor who does not and suffers

payments from each neighbor that does. For a suitable model @ disutility depending on the number of interfering APs.

of payoffs, the game is a potential game and best responseOn the other hand, if a user does not set up an AP, she

updates converge to a Nash equilibrium of the game. For any receives payments from each neighbor that does. Clearly, if

interference parameters, there is a suitable transfer resultingina e payments are large enough, the user may decide not to set

Nash equilibrium which is efficient. However, all Nash equilibria . .
may not be efficient, up an AP and thereby reduce interference. For a given model

Index Terms—commons model, tragedy of commons, interfer- Of the agents’ payoffs, we show that the resulting game is a

ence mitigation, equilibrium, potential game potential gameand that best response updates converge to a
Nash equilibrium of the game.
|. INTRODUCTION A game is called a potential game if all players in the game

, h o ‘ change their strategy as if they jointly optimize a common
Due in part to the success EEE 802.11 Wi-Fi networks, objective function, i.e. a potential function [9]. Potential games

the “commons model” has been proposed as a paradigm F]%{ve been used to model various network resource allocation

the efficient use of wireless spectrum [1]-{4]. Anyone may,ohems; including distributed power control [10]-[12], non-
use spectrum, without a license, provided they obey prescrifegh e ative routing in wired networks [13], and multihoming
“spectrum etiquette,” such as transmitting with a given peq}f users to the APs in WLANSs [14].

power constralnt_or following a common MAC protocol. Using the potential function of the AP deployment game,

_ Here we consider a commons model in which users Mm@y analyze the Nash equilibrium under various assumptions.
install access points (APs) to serve their own as well as oth&fst we assume that users are located on a two dimension
users’ traffic. In the latter case, the AP owner may receiVgyice and that interference only comes from the nearest APs.
a payment for this [5]. One concemn with such a model ishis models a situation where either the density of APs or
that as the density of APs increases, the users may eventugly,smission power of each AP is relatively low. In this case,
suffer a “tragedy of the commons,” because of increasifgs show that Nash equilibrium exist in both pure and mixed
interference [6]. It has been suggested that it is enough dpategies and that at least one Nash equilibrium achieves the
lightly regulate a commons to mitigate the tragedy. Schemgsiia|ly optimal density of APs with the appropriate payment.
such as etiquette protocols, restricted design of devices aR then account for interference from outside of the nearest
bargaining amongst users have been proposed [7], [8]. Bighbors. Our results suggest that as the transmission power
this paper we model the effect of regulation in reduced forfRcreases relative to the node density, implementing such a
through a shared rate. Namely, an AP owner can providgmmons approach becomes more difficult and other forms

This research was supported in part by NSF under grant CNS-0519935. 2Qther related work, in which a game theoretic approach is used to analyze
1Although this work is motivated by 802.11 systems, here “Access Pointfie performance of ad hoc networks (including IEEE 802.11), is presented in
could refer to other types of systems sharing a common band. [15]-19].



of spectrum sharing (e.g. a secondary market) may be moecomes
appropriate.

T (i = 0,y—ij) = Z Ykl = Vhl—ij- (2)
II. THE MODEL kl€Hi;

Consider a two-dimensiondl,; x L, lattice. Every lattice Note that we can write the payoff function of agéptas the

point has a selfish agent who decides whether she sets udoéquwmg:
AP or not. Namely, agent;; at I_attice point(i, j) chooses i (Yigs Y—if) = Yij '”7‘3 +(1- ) ny ©)
a strategyy;; € Y;;, based on interference and the shared
data rate from the nearest APs. This shared data rate amongor the preceding payoff functions, we consider a non-
nearest neighbors is the regulatory measure we introduce &a@perative game(r1,--- ,71,1,) among agents in the
is discussed later in detail. The strategy spegeof agentl;; lattice. In this game, given fixed actions for all other agents,
isY;; = {0,1}, wherey,; = 1 if agentl;; decides to set up an a rational agent decides whether or not she sets up an AP as
AP andy;; = 0 if she decides not. If both agents andl;; follows. If =5 > =¥, then agent;; sets up the AP at her
set up their own APs, the inference frdm to /;; is given by lattice point. Otherwise, she chooses to share the rate from
I1u—i;. On the other hand, if agefy; decides not to set up thethe APs in nearest neighborhood instead of setting up her own
AP, then she shares raig;_.;; from agently;’s AP, assuming AP. We show later that this ganieis a potential game under
agentl,,; sets up the AR.This rate sharing can be justified bycertain conditions. This allows us to assert the existence of
the fact that agent; is more likely to set up an AP if there isa Nash equilibrium and characterize the efficiency of Nash
no rate sharing resulting in increased interference to algent equilibria as a function of the amount of rate sharing.
If the rate degradation from this interference is severe enoughNo coordination or no regulatory measure among agents
then agenty; has an incentive to share her rate with aggnt can be represented by = 0. Without rate sharing, agent
For tractability we assume that the nodes are placed at latticés payoff if she decides not to set up the AP becomes
points in the plane, and that rate sharing occurs only between(0,y—;;) = 0 from (2). Therefore, an agent is encouraged
nearest neighbors in the lattiteTherefore,y;;_.;; = 0 if I, to set up her own AP unless interference from other APs is
is not in the set of agerit;’s nearest neighborsy;;.> large enough such that her payoff with the AP is negative.
The payoff function of agerit; depends on her own strategyThis can lead to a situation where a large number of agents in
as well as those of other agents. Here, we restrict attentiontli@ lattice set up the APs and experience severe interference.
the following payoff function. If agent;; decides to set up her As we see later in Section VI, the payoffs of all agents can

own AP given the other agents’ decisions, her payoff becomiegcome very low, especially when the density of agents is
high. This is an example of the so called a “tragedy of the

Wi =Ly i) =R—=C— >y Tui commons” [6].
kle{L1x Ly} o
S 1) ’ (1) A. Model Limitations
KicH,, YRt gkt Here we briefly discuss the limitations imposed by the

simplifications used to contruct the preceding model, which
where R is the total rate generated from her own AP ang@ analyzed in subsequent sections. First, we assume that the
C is the fixed cost for setting up the AR._;; denotes the wireless nodes are placed in a lattice, whereas in practice
set of strategies of all agents except aggnt This payoff the agents are likely to be randomly distributed over the
function can be motivated by viewing as the total rate geographic area of interest. The regular spacing of nodes in
an agent can achieve over a coverage area if there areangttice implies that the interference externality imposed by
interferers, andy,;—.;; as the reduction in coverage caused byach active node on its nearest neighbor is the same. This
each interfering AP. Of course, assuming this linear relationdsables us to characterize properties of the AP deployment
a simplification, but it provides a tractable model that capturgaime, such as the existence of equilibria along with the
the key interaction among agents. On the other hand, if ageskociated efficiency, with single transfer pricé. Of course,
l;j decides not to set up her own AP, then she shares the g€ transfer payment scheme can be applied to more general
from the APs in her nearest neighborholig; and her payoff configurations of AP nodes, but then it is likely that different

transfer prices would be needed to prove similar results. Such

3We assume payoff functions that are linear in rate and so this rate sharimg analysis would be significantly more complicated than that
can be equally viewed as a transfer payment. resented here

“We can relax this assumption and allow rate sharing between nd‘%— " . . . .
neighboring agents. This relaxation, however, increases the total amount ofl N€ second simplifying assumption is that each AP in the

information that an agent should know before she makes a decision, and faftice uses the same set of frequencies. Namely, if an agent
not be practical. decides to set up an AP, then she transmits over the entire

5Depending on the boundary condition, the set of nearest neighbgss, .
can be different. For a periodic boundary condition in two-dimensional (toru?find' Our model therefore does not directly account for the

lattice, considered in Section IV, the set of nearest neighbors of dgent
is given by Hi1 = {(1,2),(1,L1),(2,1),(L2,1)}. Without the periodic 6Also, in Section V we show that the AP deployment game on a lattice is
boundary conditionH11 = {(1,2), (2,1)}. a potential game with different transfer prices across the network.



possibility of using dynamic channel assignment schemes toLemma 1 and Corollary 2 show the existence of a Nash
avoid interference, such as those proposedE&E 802.11 in  equilibrium and how to compute it using the potential function.
[20]-{23]. (An alternative interpretation of our model is that | the potential game with a finite set of strategies, Nash
the particular band considered has already been assignegdgilibrium can be reached by best response updates [9]. Best

each AP by such a channel a_ssignment algorithm, and thadponse updates of the gaffery,,--- , 7, L,) are described
the transfer payment scheme is subsequently being usedyjothe following. At timet¢ + 1, an agentl;; is randomly
mitigate interference within that band.) selected among all agents in the lattife x L, and she

Finally, as discussed earlier, the payoff depends lineagyooses her strategy, which maximizes her payoff for given
on the interference. A more accurate model might accouifategies of the other agents at timeNamely, agentl;;

for the degradation due to interference by computing th&ooses the best responge(t + 1) according to
received Signal-to-Interference Plus Noise Ratio at each node.

The linear payoff assumed here facilitates tractability while

providing insight into the benefits of using transfer payments Yij(t+1) = arg hax i (Yij> Y—i5(1))- (6)
for more realistic scenarios. We also point out that although we v

initially consider rate sharing between nearest neighbors in the . )

lattice, we relax this assumption in Section Il and show thifiitial strategiesy;;(0) for all agents are randomly chosen.
the AP deployment game is a potential game if rates are shafgls Pest response at tinier- 1 is repeated for = 0,1,2, ...
between non-neighboring agents. However, that increases il & randomly selected agent. Note that aggfis best

total amount of information that an agent needs to make@SPONsey:;(t) at time ¢ might be different from her best
decision. responsey;; (') at timet’ # t. For the AP deployment game,

changing actions in this way is reasonable when the fixed cost
[1l. POTENTIAL GAMES C'is small enough.

We begin by giving some background on potential games.Lemma 3:In every finite potential game, a Nash equilib-
There are class of games with several desirable propertign can be reached by best response updates.
which we will exploit. First, pure Nash equilibrium strategies e following Lemma is useful when we discuss the mixed

exist (assuming finite strategy sets) and are relatively easyNigsh equilibrium in the potential game considered later.
compute using a potential function. Second, in these games

Nash equilibrium can be justified as being the outcome of Lem'ma 4( [9].): Let T be_a f|n|te_ game. Thgrf IS a
a boundedly rational learning process such as best respo%gteem'al. game if and only if the mixed extension bfis
updates. a potential game.

Let I'(my, o, ..., m,) be a game with a finite number of
players. The set of players & = {1,2,...,n}, the set of
strategies of playef is Y;, and the payoff function of player IV. PERIODIC BOUNDARY CONDITION WITH NEAREST
iism : Y — R, whereY =Y} xY; x --- xY, is the set NEIGHBORINTERFERENCE
of strategy profiles. A function? : Y — R is a potential

i T, i ) - i o . . .
function for I, if for every i € \V-and for everyy; € Y- Initially we study the game discussed in Section IlI, as-

mi(x,y—i) — mi(z,y—;) = P(z,y—;) — P(z,y—;) (4) suming a periodic boundary condition for the lattiég x
) . L, Namely, Ly +1 = 1 and Ly + 1 = 1; Then,
f(ir etzverya;,z < Yif’ V\I/IhelreY_i is the i:alrtg5|an product of thethe set of the nearest neighbors ¢f, 1), for example,
ngigyt_spai?/g a palyﬂ/e.rs exlcleg pa;:ert_ | it it is H1 = {(1,2),(1, L2),(2,1),(L1,1)}. This assumption
efinition 1. A game 1 1S called apotential gameit 1 simplifies our analysis by removing boundary effects. (In

ad’ilnlts al potential f“r.‘c“"”- idered tential i tSeCtion V we consider a gamvdthout this periodic boundary
amely, a game 1S considered a potential game | tE:%ndition.) Furthermore, we assume that interference comes

improvement of the player's payoff by changing her strateqynly from the nearest neighbor APs. This nearest neighbor

can be expressed in terms of the potential function which ifterference models a situation where either the density of APs

the same for all players. This definition leads to the foIIowingr transmission power of each AP is relatively low. Therefore

Lemma.
Lemma 1l ([9]):Let P be a potential function
for T(my,72,...,m). Then the equilibrium set of T — { I, (k1) € Hy, %
[(my, 72, ...,m,) coincides with the equilibrium set of - 0, (k)¢ Hij,
(P, P,...,P). Thatis,y € Y is an equilibrium point fol’
if and only if for everyi € N where[ is a constant which represents the interference level
P(y) > P(z,y_;) for everyz € Y;. (5) between two neighboring APs. The payoff function (3) of

Corollary 2 ( [9]): Every finite potential game possesses a
pure-strategy equilibrium. "The resulting lattice is also called a torus-lattice.



agentl;;, then, is given by Note thataaTi does not depend og;. If the strategy space is
restricted to{0, 1} for all agents, the best response of agent
1;; for 5’71; >0 (%i_ <0)isy;; = 1 (y;; = 0). By Lemma 3,

best response updates of randomly selected agents converge to

Tij (yw" y—ij)

=y (R=C—= Dy I— Y (L-uyw)7 a Nash equilibrium. In a similar way, i%f]—vy > 0(5% <0),
ke, ki€ Hi, theny;; = 1 (y;; = 0) to maximize the Social welfare given
by (11).
+ (1 —yij) - Z Ykl =Y ©) Let H{} be the set of nearest neighbors of agkntwhich
kleH; set up an AP. Then from (12), it can be seen that aggist
action in a Nash equilibrium is to set up an AP if
kleHy; kl€H;; IS |H,A,| (13)
I "
+ Z Ykt -7 and not to set up an AP when
kl€H;;
For the time being, we assume that the shared rate from the R-C- ZleHu v < ‘HA . (14)
AP of each agent; € H,; to each agent;; is vk—i; = 7. I Y
Namely, it is the same for all agents in the lattice. The agent is indifferent when equality holds. FOpg N,
LetI' ppn v denote the resulting game under these assumEkleHm ~ = 4 for all I;;, and so the above threshold on the
tions. number of neighbors is
Lemma 5:
R—-C—4y
P(y11,y12, -+, YL, L,) Hep = 7 : (15)
Ll L2 L1 Lg . . .
There areb cases of interest for this quantity.
=(R-0) Zzy” - Zzyij Z v 1) 0 < Hy, < 1: In this case, an agent will set up an AP
i=1j=1 i=1j=1 kl€H:; (®)  in a Nash equilibrium only if none of her neighbors does. For
1 L Lo fixed value of R — C, this is true ify and I satisfy
i i I
2223“ PRRTY R-C—4y—1-0 > 0,
i=1 j=1 kl€eH;; R_C— 4/_)/ 71 < 0 (16)
is a potential function fol’ p N . N )
The proof of this follows by noting that for given_;;, In addition, we assume < I. Otherwise, an agent would
, always prefer having a neighboring AP over sharing the rate.
i (Yijr Y—i5) = Tij (Yig> Y—is) (10) Similarly, the following conditions must hold for an agent to
= P(Y;,Y—ij) — P(Yij: y—ij); set up an AP to maximiz€ W only when there is no AP in
for all y;;,4;; € Vi; and all agents in the Lattic&, x L. the nearest neighborhood:
Therefore, according to Definition I,ppxy iS @ potential R—-C—-2I-0 > 0,
game with the potential functiof® given by (9). { R—C—-2I-1 < 0. 17

On the other hand, the social welfare is the sum of the ) . )
payoffs of all agents and is not affected by the sharedyate 2) ! < Hen < 2: Inthis case, an agent will set up an AP in
since it is an exchange between two agents. The social welf@-dash equilibrium only if no more than one of her neighbors
of all agents in thel., x Lo lattice is, therefore, given by ~ does.y and I must satisfy

SW(y117y127"'3yL1L2) { R_C_4PY_11 > 0, (18)
Ly Ly L Lo R-C—-4y-1-2 < 0.
=@R-C) Y > wii | =>.> wis | D ww-I|. The analogous conditions for the social welfare must hold:
o A 0 R-C-2[-1 > 0, 19
R-C-2I-2 < 0.

We next compare a Nash equilibrium strategy with a strategy

which maximizes the social welfare and discuss the efficiency3) 2 < Hi < 3: An agent will set up an AP in a Nash
loss at the Nash equilibrium. equilibrium only if no more than two her neighbors do. For

o this case;y and I must satisfy
A. Pure Nash Equilibrium

The first-order derivative of the potential function (9) is { r-C _47_?3 z 8’ (20)
given by

oP and
*(R*O)* v — Yrl - 1. (12) R—-C-2I- > 0,
Z Z R—-C-2I < 0 (1)

Oy
yl] k’leHi]‘ k}lGHij



Y a Nash equilibrium achieves the optimal social welfare. For
example, iff > £2€ a set ofy which satisfies the conditions

R-C i of the potential function in case < H,; < 1 induces a Nash
4 T - . . . .
5 equilibrium which might correspond to the optimal strategy.
— 0 On the other hand, if € [£5¢, £2C], a set ofy which
200 1 satisfies the conditions of the potential function in case
7 H;, < 3 might generate a Nash equilibrium in which there
ReRcRrce &£ R-C exists an AP with two APs in the nearest neighborhood. This
_ _ Nash equilibrium can not be the socially optimal strategy.
0: No AP in the nearest neighborhood T . .
1: : : Nash equilibrium may not be unique in the game. Let us
:up to one AP in the nearest neighborhood . : . L .
2: up to two APs in the nearest neighborhood consider3 x 3 lattice with the periodic boundary condition as
3: up to three APs in the nearest neighborhood an example. Ify and I are such that no AP in the nearest
4: up to four APs in the nearest neighborhood neighborhoodH;; is allowed when agen; sets up an AP

(0 < Hyp, < 1), there exists only one Nash equilibrium with
Fig. 1. Interferencd and shared rate for pure Nash equilibrium depending three APs in the lattice. Namely, three among 9 agents decide
on the maximum number of APs allowed in the nearest neighbors. to set up the APs at Nash equilibrium. On the other hand,
if up to two APs are allowed in the nearest neighborhood
(2 < Hyy, < 3), there exist two Nash equilibria with either 5
Y or 6 APs in the lattice.

B. Mixed Nash Equilibrium

We next consider the mixed extension of the potential game
I'ppn . In this game, each ageh} can be viewed as having

41312 ! 0 strategy spac&’;; = [0,1], where an actiony;; € Y;; can be
i viewed as the probability thdt; sets up an AP. An agent’s
R CR-CR_C R_C 1 payoff is then the expected value of (3) with respect to the
8 6 4 2 actions chosen by every other agent. Since the payoff is linear
) _ in the action, it can be seen that the first-order derivative of
0: No AP in the nearest neighborhood the potential function is given by (12) and the second-order
1: up to one AP in the nearest neighborhood derivative is given by
2: up to two APs in the nearest neighborhood
3: up to three APs in the nearest neighborhood o’P { -1, (k1) e H,,, 22)
4: up to four APs in the nearest neighborhood 0Oy | 0, (k1) ¢ Hyy.

Since the Hessian of the potential functiBris negative semi-
Fig. 2. _ Interferencel_ and shared ratey for the op_timal social welfgre definite, P is a concave function with a unique global maxi-
depending on the maximum number of APs allowed in the nearest neighbors. . opP ATy ;
mum. In addition, 5= = 7 for all agentsl;; € Ly x Lo.
Therefore, best response updates of agents in the potential
game reach this global maximum of the potential function,
gives the same condition for the social welfare. which corresponds to the unique mixed Nash equilibrium. This

For the remaining two case8 & H;, < 4 andH;, > 4), gives the following proposition.
similar conditions for the potential functioR and the social  Proposition 7:T'ppxyx has a unique mixed strategy Nash
welfare SW can be obtained easily and we omit them hereequilibrium, which is symmetric.

Figure 1 and Figure 2 summarize these cases. Figure IThe mixed extension of ppyy Can be interpreted as a
shows the values df and- for pure strategy Nash equilibria togame in which all agents install an AP, but only use it a
exist in each case. These values lie in one of five regions; edgdction of the time, indicated by;;. Individual agents do
region is labeled with the maximum number of neighboringot coordinate their usage.

APs for which an agent's best response will be to set up anAssume each agent chooses the same strategy, namely,
AP (e.g., regior corresponds to case< Hy, < 1). Figure 2 4, = 45 = ... = gy, ;. = y. We can then rewrite the
shows the values af and~ for the socially optimum solution potential function as

to have the same structure.

Proposition 6: Consider the gam& ppxy With the set of P(y) = (L1 - Ly){(R— C —4y)y — 2Iy*},  (23)
strategiesY;; = {0,1}. For given interference level, there
exist a set ofy such that a Nash equilibrium achieves th@1d SO
optimal social welfare. dP(y)

For given interference levd|, there exist a set of such that oy

= (L1 Loa){(R—C —4y) —4ly}.  (24)



2) I € B9, E2C): In this case, there are two possible

regions depending on the shared ratdf 0 < y < £=¢=41,

Y ¥ =0 Y the Nash equilibrium strategy ig'€ = 1, while the optimal
R_C probability isy* = Rg—IC. The efficiency is then given by
yre R=Cody L BT
OUE , , L SWENE=1) 161 641 (30)
R;(' R;[‘ SW(y* = %) (R - O) (R - 0)2’
(a) Mixed Nash Equilibrium (b) Optimal Sacial Welfare and, therefore, the efficiency does not depend on the shared

rate v. On the other hand, ifi=¢=4 < 4 < [, the Nash

Fio 3. Interferencel and shared rate for mixed Nash eaili d equilibrium strategy and the optimal probability agtlf =
1g. o. nterrerencel and shareda ratg tor mixe asn equiibrium an R—C—4~ andy* _ RS_IC reSpeCthely The eff|C|ency |S

social optimum. a7
R—C—4
_ SW(yNE = Tv)
: —_ . . SW(y* = %)
It follows that the mixed Nash equilibrium strategies are given ) (31)
by yij = yNE for all agents, where 4 { R-C—-4y (R - C - 47) }
0, R-C—ty R-C R-C
yPNE=1 L e >, (25) since £=C=4L < 4 < I, the range of the efficiency for given
B-C—i - otherwise 1S emin < € < 1, whereemin is given by (30).

BR—C __1- Qimi ; ;
Similarly, assuming symmetric strategies, the social wel-3) I € [77—0c]: Similarly, there are two poss}i‘{b_lg regions
fareé® and its first-order derivative are given by depending on the shared rate If 0 < 7 < ==, the

efficiency is given by (31) and the range(is< € < 1. On the

SW(y) = (L1 - Lo){(R — C)y — 4Iy?}, (26) other hand, ifi5¢ < v < I, the efficiency isc = 0 because
and sy yNEZO' ition 8: F R, C, and I, th st
) o roposition 8: For any R, C, and I, there exist ay so
oy (L1~ L2){(R =€) = 81y} @7 that the unique mixed strategy Nash equilibriumIgfs y v
It follows that the social welfare is maximizedyf; = y* for IS €fficient. _ o _
all I,;, where If the interference level i € [0, “5=], the mixed strategy
! R Nash equilibrium is efficient for any < I. If I > R%C, the
0, st <0, rate sharing should be = £-¢ to have an efficient Nash
* R=C S 8
yr=9q 1 o > L (28)  equilibrium.
£-C " otherwise

: . V. GENERALIZATION
Figure 3 shows the values df and v corresponding to G ©

different mixed Nash equilibria and the optimal social welfare. In this section, we generalize the previous results. First, we
The overlapped region whergNE = 1 and y* = 1 is relaxthe constraint on the same shared faaénong all agents
such that the mixed Nash equilibrium achieves the optimi the lattice and allow this rate to pe different. The shared
social welfare. In general, however, the social welfare at Nag¥e from the AP of agerif; to agent;; is denoted byyy;.i;.
equilibrium does not correspond to the optimal social welfar@SSUmiNgyx—.i; = Yij—ki,) We can show that the potential
We consider the efficiency of the Nash equilibrium for thre®inction is now given by
possible range of next. P

1) I € [0,559]: As we can see from Figure 3, for W1, 912, - YLaLa)

L1 Lo L1 Lo

given interferencel € [O,R%C], the mixed strategy Nash
equilibrium is yNE = 1 and the probability for setting up an — (R-0C) ZZ%J - Zzyw Z Trl—ij

AP to achieve the optimal social welfareyjs = 1. Therefore, =15=1 =14=1 klIEH:;
the efficiency at the Nash equilibrium, defined by the ratio of 1 & L2
the social welfare agNE vs. aty* is given by -3 S v | DD v I
i=1 j=1 kleHy,
SW(yNE = 1) J
= 1 29 32
T SW(yr =1 (29) (32)

Second, we can remove the periodic boundary condition and
consider edge effects in the lattice. We can still show that the
8The social welfare function is also a concave function since its Hessi@i@Me is a potential game with the potential function in (32).

is given by Note thatH,;; does not always contaifi nearest neighbors as

025w —2I, (k1) € Hyj with th i0di it it Ta—
22 J ) i e periodic boundary condition. In addition, if mixed
8yij8yk, { 07 (kv l) §é Hij p y

and is a negative semi-definite. 91f this condition does not hold, (32) is not a potential function anymore.

regardless ofy € [0, I].



strategy Nash equilibria are considered (as in Section IV-B
the potential function (32) can be simplified to
P(z,y,2)
=(R—-C)L* — 4(L — 2)*yz — 12(L — 2)yy — 872
—2(L* = 5L +6)I2* — 4(L — 2)Ixy
—4(L - 3)Iy* — 81yz,

(33)

wherex € [0, 1] is the strategy of an agent who hasiearest
neighbors,y € [0,1] is that of an agent who ha% nearest
neighbors, and € [0, 1] is that of an agent who h&snearest
neighbors. Here, we assumig = L, = L for simplicity.
Since the potential function (33) is a concave function, th
mixed Nash equilibrium can again be found easily. ® setupar () NoAP

Finally, we can include interference from APs beyond the
nearest neighbors. This might be relevant when the density
of APs increases or the transmission power of each AR. 4. Agents in the lattice decide whether or not to set up their own APs.
increases relative to the node density. Assuming interfereritgse we only consider interference from the nearest neighbor APs.
only depends on the distance between two APs, interference
from the AP of agenty,; to the AP of agent;; is given by

I 1 . . +
Ikl—>ij = . (34)
kD) = (@) 1! 2
whereaq is the path-loss exponent. Note thal_.;; = I;; 1. 1 |
The potential function of the game is then given by ] V4 1
% 25 7’
P(y11, 412, -+ YLiL,) 2ul IS
L1 Lo Ly Lo § \'H—o-o—o-o-n—o—o—o-n—o— g :A‘{e’age
oSt 1 2 2 With AP
=(R-C ii | — i i ;, s -8~ Without AP
( ) Z Z y” Z Z y” Z Tkt " £ ol 5 + No rate sharing
i=1 j=1 i=1 j=1 kleH;; E 5t
1 L1 La 0al i
=1 j=1 kle{LixLy} gl PEEEEE R b
(35) ]
Here, we are still assuming that rate sharing is only betwee R R

nearest neighbors. As discussed in Section I, we can relax tt

constraint. The social welfare function is the same as in (11)

except that the interference from the APs beyond the nearBigt5. Game in the lattice with a periodic boundary conditibn.= L2 =
neighbors is included. As we see in Section VI, if interferen g}f(; ;%e?a;eg";;yjﬁlbifgggnt:f&Ei]ffi)re/?]‘{eéiggigﬁgfber of APs per

is severe, then an agent is less likely to set up her own A

at a Nash equilibrium even when > 0 and this reduces

the sum of the agents’ payoffs in the lattice. This suggests

that as interference becomes severe due to the increasdaiiice are randomly chosen. At each iteration, all agents in
AP density, implementing such a commons approach becontiég lattice are randomly ordered and sequentially choose their
more difficult and other forms of spectrum sharing (e.g. Rest response. Therefore, during one iteration in Figure 5,

Secondary market) may be more appropriate_ 100 x 100 = 104 agents make their decisions.
The parameters considered above allow up to two nearest
VI. SIMULATION RESULTS APs at a pure Nash equilibrium, which corresponds to case

We now present simulation results to illustrate properties 8f < H;, < 3 in Section IV-A3. As we can see easily,
the AP deployment game. We begin with a game with periodibe optimal configuration with these parameters is to have
boundary conditions and nearest neighbor interference, asciress board like deployment of APs in the lattice and there
Figure 4. The strategy space of an agent in the gameissno AP in the nearest neighborhood when a user sets up
Y;; = {0,1} for all agents;;. Figure 5 shows one realizationher own AP. Therefore, the average number of APs per agent
of the convergence of best response updates to a pure Ngsr lattice point) at the optimal configuration(ss with the
equilibrium with parameterd; = L, = 100, R = 10, C = average payoff per agerﬁ%;?’ = 3.5. On the other hand,
3,1 = 1.6 and~y = 0.7. Initial decisions of agents in thein the commons model without shared rate € 0), every
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Fig. 6. Histogram of average number of APs and average payoff per agéig. 7. Average number of APs and average payoff per agent at Nash

at Nash equilibrium. Total number of simulation run1l800. L; = Ly = equilibrium as a function of the shared raje Every point in the Figure

100, R =10,C =3,I = 1.6 andy = 0.7. is one particular realization. Other parameters are the sdme={ Ly =
100, R =10,C = 3,1 = 1.6).

selfish agent in the lattice sets up her own AP. This reduces _ _

the average payoff per agent 1 — 3 — 4 x 1.6 = 0.6, Per agent is close to the optmal value. N

which is substantially lower than the payoff at the optimal Now we remove the periodic boundary condition from the

configuration. As discussed in Section II, this outcome can B8Me. Agents at the edge of the lattice have fewer nearest

viewed as a “tragedy of commons”. neighbors and this encourages them to set up the APs. One
Now we consider the shared rate= 0.7. From Section IV realization shows that the average APs per agent increases to

this allows up to two APs in the nearest neighborhood at"a0-546. Average payoff per agent does not change much. We

Nash equilibrium. Best response updates of agents in the gaa‘hl{éher generalize this game and include interference from the
converge to a Nash equilibrium with more desirable avera%sl beyond the nearest neighbors. As we expect, less agents
payoff per agent. After transition period, Figure 5 shows th cide to set up their own APs d_ue to excessive interference.
the average number of APs per agent converges 527 If the path-loss exponent in (34) is _assumed toabe 4, the

and the average payoff per agent~o3.1, which are closer average number of APs per agentis).475 (average payoff

to the socially optimal configuration of APs. In addition, iP®" @gent~ 2.15). With the path-loss exponeni = 3, the
shows the average payoff per agent with and without an AP/€rage number of APs per agent becomes 357 (average

We achieve this near optimality simply by introducing the raf@2yoff per agent- 1.30). _
sharing among agents. As interference increases, more agents decide not to set up

Note that the Nash equilibrium is not unique as we discussk¥ AP €ven there is no APs around with which she can share

before and the final results (average number of APs amp rate. This_ configuration with reIativeI)_/ low Qensit_y of APs
average payoff per agent) might be different at each simulatiBhthe lattice is close to thg opt!mal conflguratlon with severe
run. With large lattice size, however, these differences afgerference. Our calculations in Appendix A show that the
relatively small. We simulated000 times with the same OPtimal density of APs per agent is 0.424 whena = 4 and
parameters and our results (See Figure 6) show that the mear{s330 whena = 3. However, even if the shared rate scheme
of the average number of APs and the average payoff per ag%ﬂ@eves the near optimal configuration, overall average payoff
over 1000 realizations ar@.5287 (standard deviation.0011) Per agent becomes small because of the commons model
and3.1254 (standard deviation.0116) respectively. However, itself. When interference becomes severe, a frequency division

this does not mean we sampled all possible Nash equilibria§fheme with some frequency reuse factor might increase the
the simulation. In fact, we did not realize the optimal densit§Verage payoff substantially compared to the commons model.

0.5 even though it is possible with the parameters we consider.
Figure 7 shows one realization of the average number
of APs and the average payoff per agent as a function ofWe have considered a game theoretic model of a spectrum
the shared ratey. If we consider many realizations of thecommons where non-cooperative users in a lattice decide
simulation, each point in the figure should be replaced byvehether or not to set up their own APs. A simple regulatory
distribution such as Figure 6. The overall trend of the figumaeasure, the rate sharing, is proposed to mitigate the tragedy
with mean values, however, will be the same. From the figuref, the commons. We have shown that the AP deployment
we can see that over a wide rangegfthe average payoff game in the lattice under the periodic boundary condition

VIl. CONCLUSION



with nearest neighbor interference is the potential game awe put
there exist pure and mixed Nash equilibrium. Moreover, by
choosing the shared rate appropriately, we achieve a Nagh -
equilibrium in the game which is efficient. However, with

>

Ykt Ip, ++

>

< Ykl * IDm>

The density of APs in the lattice decreases at the Nash equi- (38)

librium as interference becomes severe. This result sugges re< - > represents an ensemble average Afg, is the
that as interference becomes severe due to the increas ber of nearest neighbors at distarie "

AP density, implementing such a commons approach become% should be determined in such a way that it leads to

“ppe . m
more difficult and other forms of spectrum sharing (e.g. & self-consistent solution of the statistical problem. First, we
define the energy of the lattide, j) by

. . . L s . |kl—ij|=D1 |[kl—ij|=Dm,
pure strategies other non-efficient equilibria may also exist. m
The potential game is also generalized to the case where ——, . ZND Ip. |,
interference comes from the APs beyond the nearest neighbors. el ' '

secondary market) may be more appropriate.

ei-EfSWi-:foHm *Yigs 39

APPENDIX A ! ’ ( ) Y (39)

OPTIMAL DENSITY OF APS WITH LONG RANGE whereH = R — C. Sincey;; € {0,1}, the ensemble average
INTERFERENCE of the strategy, ok y > is given by

<Yy>= 1x Prok(eij = —(H — Hm))

We would like to compute the optimal density of APs when +0 x Prob(e;; = 0)

there exists interference from APs beyond the nearest neigh-
bors. This is, however, difficult because of integer optimization
nature of the problem. Here, we introduce the mean-field

eﬁ(H_Hm) (40)

T 1 PH-H,)

theory in physics [24] and solve this problem approximately. from statistical physics. From (38) and (40), we can compute
Since interference from the AP at distances proportional [,, and, therefore< y >. The parameter should bg— co

to 1/r* as shown in (34), we ignore interference from the AP® get < y >opt, the average number of APs per user when

at distancer > D,,. In addition, the effective interferencethe optimal social welfare is achieved. Therefotey >opt IS

radius, denoted byD,,, is assumed to bé,, < L; and given by

D,, < Ls. The social welfare function is, then, given by

L, Y1 Np, - Ip, < H,
SW(y11, 912, - - - » <Y Zopt=
(yll Y12 yL1L2) ——a———— II\/:I 7> Efnnfl NDn . IDn > H.
L1 Lo n=1""Dn Dn - (41)
=(R-0C) Zzyu 36 We consider the same example as in Section VI. If we
==t (36)  assumea = 4 andm = 10, then total interference within
L Lz the effective interference radiug, is 31, Np, - Ip, =
- Zzyu Z Ykt - Lri—ij 16.5307 and, therefore, the average density of APs per user
i=1j=1 |kl—ij|< Dy, when the optimal social welfare is achieved<dsy >op=

7/16.5307 = 0.4235. With m 30, on the other hand,
< Y >op= 7/16.5653 = 0.4226. In addition, total interfer-
ences withm = 10 andm = 30 are not much different and
this justifies the assumption of the effective interference radius

If we focus on a particular lattice sitg, j), the interactions
of this site with others are described by

D,,.

SWij = (R—C)yij — uij yu - Ip

i = VY5 = Yia " ; b ! REFERENCES
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