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Abstract

We study decentralized markets with the presence of middlemen, modeled by a

non-cooperative bargaining game in trading networks. Our goal is to investigate how

the network structure of the market and the role of middlemen influence the market’s

efficiency and fairness. We introduce the concept of limit stationary equilibrium in a

general trading network and use it to analyze how competition among middlemen is

influenced by the network structure, how endogenous delay emerges in trade and how

surplus is shared between producers and consumers.

1 Introduction

In most markets trade does not involve just producers and consumers but also one or more

middlemen serving as intermediaries. For example, brokers and market makers fill this

role in financial markets as do wholesalers and retailers in many manufacturing industries.

Classical economic approaches to studying markets, such as competitive equilibrium analysis,

largely abstract away the role of such middlemen; a point made in the introduction of

Rubinstein and Wolinsky (1987), who attribute this is to a lack of modeling how trade occurs

and the associated frictions involved. Rubinstein and Wolinsky (1987) offer a solution to

this shortcoming by adopting a search theoretic model as in Diamond and Maskin (1979),

Mortensen (1982), Diamond (1982). Agents meet pairwise over time and must wait until

they meet a suitable partner to trade. The time it takes to find a partner is costly thus

introducing a search friction. The role of middlemen is in reducing this friction. Subsequently

there has been much work in studying different models of trade (e.g., various non-cooperative
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bargaining models) and using these to analyze how middlemen influence the formation of

prices and the efficiency of trade.

Much of the aforementioned work has focused on models in which all producers and

consumers have access to the same middlemen. However, often this is not the case due,

for example, to various institutional or physical barriers. One example of this as pointed

out by Blume et al. (2009) is in agricultural supply chains of developing countries. In such

cases, due to inadequate transportation infrastructure, farmers may only be able to trade in

local markets. Such relationships are naturally modeled via a network. Blume et al. (2009)

consider such trading networks with a focus on characterizing how network structure effects

equilibrium prices set by middlemen which have full information and full bargaining power

and so there are no trading frictions. Similar equilibrium questions have also been studied

in the supply chain literature (e.g. Nagurney et al. (2002)).

The first line of work described above focuses on modeling trade and its associated

frictions, assuming simple trading networks (often with a single middleman). On the other

hand, the second line of work focuses on the impact of network structure but does not

account for trade frictions. The interaction of both these effects is not well understood. In

a more complex network, the search problem facing an agent will depend on her location in

the network, and the presence of such frictions will naturally given rise to different equilibria

than in models such as Blume et al. (2009).

This paper provides a starting point to bridge this gap: as in Blume et al. (2009) we

consider a trading network connecting consumers to producers, but as in Rubinstein and

Wolinsky (1987), agents randomly meet over time and engage in non-cooperative bargaining

protocols. Thus, our paper provides a general framework that incorporates three important

features of markets. First is the underlying network structure: not all pairs of agents can

interact in the market. The second is the non-cooperative bargaining setting: no agents have

the power to set prices, the prices are formed through a negotiation process. Finally, the

third is the search cost: agents discount their payoff if they do not find a proper trading

partner or fail to negotiate. The possibility of not finding a proper trading partner is an

important additional search cost in our model.

It is well known that such complex models are often intractable. However, by considering

large markets and adopting a mean-field approach, we show that this type of model becomes

tractable and exhibits many interesting properties. In particular, following Nguyen (2012),

we consider a non-cooperative bargaining game in a finite network, and study the agents’

behavior in the limit as the population at each node of the network increases. We introduce

a notion of a limit stationary equilibrium, and show that it always exists. We then use this

concept to investigate the efficiency of the market, how bargaining with middlemen cause
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endogenous delay in equilibrium, and how network structure influences competition among

middlemen and the share of surplus between producers and consumers. To illustrate these

new insights, next we describe three properties exhibited at equilibrium in our model that

are qualitatively different from the predictions in the existing literature.

Competition among middlemen

Figure 1: An example trading network with producers (1,2); consumers (5,6) and middlemen
(3,4).

First, to illustrate how network structure influences the competition among middlemen,

consider the trading network shown in Figure 1. For simplicity, we assume each producer

produces a unit of an indivisible good, and each consumer desires one item and obtains a

value normalized to 1 dollar upon consuming it. The links in the network represent which

pairs of agents can trade and are assumed to be directional links going from left to right. In

our model, only pairs of agents that are connected can meet and bargain. Unlike a static

model like Blume et al. (2009), we assume1 agents meet and trade over a infinite, discrete

time horizon, where each agent discounts their payoffs by a factor 0 < δ < 1.

In static models without search frictions like Blume et al. (2009), the middleman have all

the bargaining power and they simultaneously suggest prices to the producers and consumers

for trade to occur. The producers and consumers then use these prices to determine the

middlemen they would like to use for the trade. The middlemen never hold the good,

and so need not consider the consequences of any future competition between each other.

Such models predict that the “bargaining power” of middlemen at nodes 3 and 4 in this

network should be the same, because the roles of agents at these nodes can be interchanged

if we change the role of producers and consumers. In our model, because of search friction,

middlemen do not meet both producers and consumers at the same time and so cannot

1A precise description, with a more general model, is given in Section 2.
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simultaneously propose prices to each of them. Only after buying a good from producers, can

the middlemen resell it to consumers. Assuming this type of market structure significantly

changes the outcome. In the network in Figure 1, for example, our results show that there

is no symmetry between nodes 3 and 4. In particular, the bargaining power of middlemen

at node 3 is higher than that of a middlemen at node 4. Middleman 3 has a competitive

advantage on the consumer side: it has access to more consumers than middleman 4. Thus,

when holding a good, middlemen 3 can find a consumer in an easier and faster manner

than 4. This has an important effect for trade in previous rounds between producers and

middlemen. Here, even though 4 has access to more producers (1 and 2), after buying the

good from these producers, middleman 4 is aware that he needs to compete and cannot get

as high a surplus as middleman 3, resulting in him not being able to offer good prices to

producers 1 and 2. In other words, competition on the consumers’ side has an influence back

along the trading network to the competition on the producers’ side, and this disadvantages

middleman 4. See Theorem 4.1 for a precise statement.

Endogenous Delay

Figure 2: A network exhibiting endogenous delay.

The second distinguishing property of our model is endogenous delay in trade due to the

sunk cost problem. Consider the network shown in Figure 2. The producer has to trade with

one middleman in order for the good to reach the consumer. Assume that the consumer has

a value of V units for consuming the good, and trade on the two links incurs transaction

costs of a and b units, respectively.

In an efficient market, if V > a + b, so that trade is beneficial, producers would trade

with middlemen and middlemen would trade with consumers whenever these agents meet

one another. However, in our model, after buying a good from the producer, middlemen

needs to bargain with a consumer to resell the good. At this point, the transaction cost a is

sunk and is irrelevant in the negotiation. Wong and Wright (2011) consider a model for such

a setting, where each node represents a single agent. In such a model, the expected payoff

of the middlemen from the re-sale might not be enough to recover the sunk cost, leading

to market failure2. In our model each node consists of a large population of agents and the

2Mathematically, this happens when V < (1 +α)a+ b for a positive α that depends on other parameters
of the model.
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“bargaining power” of a middleman agent at location 2 compared with a consumer agent at

location 3 depends on the competition with other middlemen that are also trying to sell3.

In particular, if the fraction of middlemen that are selling is small, then when negotiating

with consumers, they obtain a higher payoff, which will overcome the sunk cost problem of

trading with 1. However, to maintain the small fraction of middlemen looking to sell, the

rate of trades between 1 and 2 needs to be smaller than the rate between 2 and 3. This

then implies that when producers and middlemen meet, they do not trade with probability

1. This can only be rationalized if the surplus of trade is the same as the producers’ outside

option, which we normalize to be 0. In other words, in this case the producers are indifferent

between trading and not trading. When two agents meet, even though they can potentially

trade, if they only enact a successful negotiation with a probability p ∈ (0, 1), we interpret

this as endogenous delay. This result is formally stated in Theorem 5.2 in Section 5.2.

Contrast with Double Marginalization

Lastly, we contrast the outcome of our model with the classical theory of double marginal-

ization, see for example Lerner (1934) and Tirole (1988). Double marginalization appears

in a similar market structure like ours, where producers sell the good to middlemen and

middlemen continue to sell to the consumers downstream. The market protocols in these

environments, however are different from our model. Namely, in the double marginalization

literature, it is assumed that when selling the good producers and middlemen have total

market power, and charge a monopoly price to their downstream market. As a consequence,

middlemen earn a non-negligible profit, consumers pay higher prices and producers have

lower profits.

On the other hand, here we assume no agents have a monopoly market power. The prices

are formed through a negotiation process. Furthermore, we assume middlemen are long lived,

while producers and consumers exit the game after trading4. This captures the contrast

between different type of agents: middlemen often stay in the market for a long period,

while producers and consumers have limited supply and demand for a certain good and do

not participate in the market after getting rid of the supply or having satisfied the demand.

This assumption captures many realistic markets among small producers and consumers,

who are faced with search problems and need to trade through middlemen; examples of such

markets include the following: agricultural markets with farmers, consumers and grocery

3In our model, we assume each middlemen can hold at most one item at a time, thus middlemen that are
holding an item need to sell before buying again.

4The assumption of long-lived middlemen and short-lived producers and consumers is also made in Ru-
binstein and Wolinsky (1987) and Wong and Wright (2011).
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stores; e-commerce markets with sellers, buyers and entities like Ebay or Amazon; and

financial markets involving investors, borrowers and banks.

We will show that these assumptions have a fundamental impact on the price formation

in the economy. In particular, as the discount rate goes to 1, so that it does not cost

agents to wait, the total equilibrium payoff of producers and consumer approaches the total

value of trade. What this means is that as agents are more patient, middlemen earn a

negligible fee per transaction. The intuition is that in our model, we assume middlemen stay

in the game forever, but do not consume. They instead earn money by flipping the good.

Thus, middlemen have an incentive to buy and sell the good relatively fast. On the other

hand as the discount rate goes to 1, producers and consumer can engage in costless search

and bargaining. This brings down the intermediary fee, and helps the market work more

efficiently5. Theorem 5.1 states this finding rigorously.

Naturally, when the discount rate is not close to 1, then the above property does not hold.

More generally, how the agents share the trade surplus depends on a complex combination

of the network structure and the discount rate. We will rigorously study this question in the

rest of our paper.

1.1 Related Work

As discussed previously, one line of work that this paper draws upon originates from Ru-

binstein and Wolinsky (1987) who give a model for search frictions in decentralized trade

involving middlemen. The setting in Rubinstein and Wolinsky (1987) can be viewed in terms

of our model as a simple three node network, with the nodes corresponding to producers,

consumers and middelmen, respectively; trade may occur either directly between a producer

and consumer or via a middlemen. As in our model, the market evolves in a sequence of

periods, where in each period agents are matched and discount future profits. However, in-

stead of considering a strategic bargaining model as we do, Rubinstein and Wolinsky (1987)

consider a model in which if trade is profitable, it occurs with the net surplus being split

between the agents. The equilibrium of this market is studied under a steady-state assump-

tion. This is similar to the limit-stationary equilibrium that we consider, except here we

show that such a stationary equilibrium emerges naturally in a limiting sense.

The articles Wong and Wright (2011) and Nguyen (2012) extend this type of model to

line networks, i.e. networks consisting of a sequence of nodes v1, v2, . . . , vm in which trade

occurs only between nodes vn and vn+1, for n = 1, . . . ,m − 1 (here, v1 is a producer, vm

a consumer and the remaining nodes are middlemen). Wong and Wright (2011) consider a

5This however does not imply that the total aggregate payoff of middlemen approaches 0. Their limit
payoff is

∑∞
k=1 δ

k · fee can be positive as δ approaches 1 and fee approaches 0.
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more extensive bargaining model and study both a model with one agent per node and a

model with many agents per node, under a steady-state assumption similar to Rubinstein

and Wolinsky (1987). Nguyen (2012) considers a similar bargaining model as in this paper

but does not model search friction in the same way. Specifically, in Nguyen (2012) the

matching process proceeds by first selecting one agent to be a proposer. The proposer is

then always able to find a feasible trading partner if one exists (i.e. if the proposer has a

good, it is able to find either a consumer or middleman without the good to trade with). In

contrast, in the matching model considered here, a proposing agent may be matched with

another agent with whom trade is infeasible, even if a feasible trading partner exists. This

increases the search costs and has important consequences. Namely, in Nguyen (2012), it

is shown that a limit stationary equilibrium might not exist, while here we show that one

always does.

The Rubinstein and Wolinsky (1987) paper and the aforementioned references focus on

the role of middlemen in reducing search frictions (see also Yavaş (1994)). Other works have

considered a middleman’s role in mitigating information frictions, including Biglaiser (1993),

Li (1998); such considerations are not addressed here.

Other related models of decentralized trade in networks include Manea (2011), which con-

siders distributed bargaining in a network consisting of only producers and consumers as well

as earlier work including Rubinstein and Wolinsky (1985), Binmore and Herrero (1988), Gale

(1987), which consider decentralized bargaining between producer and consumers, where any

consumer can potentially trade with any producer without involving any middlemen.

The other line of work this paper draws on is work such as Blume et al. (2009) that

focuses on general trading networks and seeks to understand how network structure impacts

the division of the gains from trade. As in this paper, Blume et al. (2009) consider general

networks with the restriction that all trade must go through a middleman and middlemen

do not trade with each other. Here, we also do not consider networks in which middlemen

trade with each other, but we do allow for trade routes that do not involve any middlemen.

As noted previously, in Blume et al. (2009) middlemen can simultaneously announce prices

to buyers and sellers. The full information Nash equilibrium of the resulting pricing game

is characterized. Somewhat related equilibria questions have been studied in the context of

supply chains (see e.g. Nagurney et al. (2002)), where in this case, producers are able to

produce and ship multiple units of a product to middlemen and consumers.

On the technical side, our solution concept of limit stationary equilibria is closely related

to work on mean field equilibrium6 for dynamic games (see e.g. Graham and Méléard (1994),

6In this line of work, the convergence of finite-player games to mean-field equilibria is rigorously analyzed
so that any spurious mean-field equilibria can be rejected. See Gomes et al. (2010), Adlakha et al. (2010),
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Lasry and Lions (2007), Guéant et al. (2011), Benaim and Boudec (2011)). As in our analysis,

the theme in this work is characterizing a notion of equilibria for a “large market,” in which

users make decisions based on a steady-state view of the market, where this steady-state view

is asymptotically consistent with the user’s actions. In most of the mean field literature, all

users are statistically identical, while in our model each user has a fixed type depending on

his location in the trading network. This notion is similar to work in Huang et al. (2010),

which considers a mean field limit for the control for linear quadratic Gaussian systems where

the interaction between users depends on their “locality.”

The remainder of the paper is organized as follows. Section 2 introduces the baseline non-

cooperative bargaining model. Section 3 discusses the solution concept of limit stationary

equilibrium. Sections 4 and 5 uses this equilibrium to provide comparative analysis of several

networks. Section 6 concludes.

2 The Model

In this section we introduce the model that we will use. We start by defining the concept of

a trading network.

Trading Network:

We consider a group of producers, consumers and middlemen interconnected by an under-

lying trading network, which is modeled as a directed graph, G = (V , E) (see Figure 3).

Each node i ∈ V represents a population of Ni agents, all of which are either consumers,

producers or middlemen. Hence, we can partition the set of vertices into the following three

disjoint sets: a set of producers denoted by P , a set of middlemen denoted by M, and a

set of consumers denoted by C. An agent from the population at a node i will sometime

be referred to as a type i agent. Trade occurs over directed edges, i.e., a directed edge

(i, j) ∈ E indicates that a type i agent can potentially directly trade with any type j agent

with the good going from i to j as a result of the trade. With a slight abuse of terminology,

we often refer to two such agents as being connected by the edge (i, j). For a consumer to

acquire a good from a producer, there must be a (directed) path from the consumer to the

producer. If this path has length 1, then the two can directly trade, otherwise they must

rely on middlemen to facilitate the trade. For simplicity, we consider networks in which any

path between a consumer and producer contains at most one middleman, i.e all such paths

are either length 1 or 2. An example of such a network is shown in Figure 3. With this

for example.
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assumption, the set of directed edges, E can also be partitioned into three disjoint sets: those

that directly connect producers to consumers (denoted by E1), those that connect producers

to middlemen (denoted by E2), and those that connect middlemen to consumers (denoted

by E3).

Figure 3: A network among producers, consumers and middlemen.

We assume that there is one type of indivisible good in this economy7. All producers

produce identical goods and all consumers want to acquire these goods. The value that each

consumer of type c ∈ C gets from an item is Vc ≥ 0. In every period each agent can hold at

most one unit of the good (an item)8. Thus, in every time period, a middleman either has

an item or does not have one. Hence, if there is a directed edge from node i to node j, a

specific agent of type i can only trade with an agent of type j if the type i agent has a copy

of the good and the type j agent does not; we refer to such a pair of agents as feasible trading

partners. Note that producers are assumed to always have a good available to trade and

consumers are always willing to purchase a good. So, for example, any two agents connected

by an edge in the set E1 are always feasible trading partners. For every edge (i, j) ∈ E , we

associate a non-negative transaction cost Cij ≥ 0; this cost is incurred when trade occurs

between an agent at node i and one at node j.

Next we discuss the bargaining process that determines the trading patterns for how

goods move through the network.

The Bargaining Process:

We consider an infinite horizon, discrete time repeated bargaining game, where agents dis-

count their payoff at rate 0 < δ < 19. Each period has multiple steps and is described as

follows.
7The analysis easily extends to a finite number of distinguishable goods.
8Again the analysis easily extends to allowing agents to hold a finite number of goods, albeit at the cost

of more notation and laborious book-keeping.
9The model can be extended to allow for heterogeneous discount rates.
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Step 1. One among all pairs of directly connected nodes (i, j) ∈ E is selected at random

with a predetermined probability distribution πij) on the set of edges E and one node from

each of the corresponding populations is selected uniformly at random. One of these agents

is further selected to be a proposer, again chosen at random10.

Step 2. If the agents are not feasible trading partners, then the game moves to the next

period and restarts at step 1. Recall that this will occur if neither agent has the good or if

both have the good.

Step 3. The proposer makes a take-it-or-leave it offer of a price at which he is willing

to trade. If the trading partner refuses, the game moves to the next period. Otherwise, the

two agents trade: one agent gives the item to and receives the money from the other, and

the proposer pays for the transaction cost Cij
11. If a consumer or producer participates in

a trade, they exit the game and are replaced by a clone. On the other hand, middlemen are

long lived and do not produce nor consume; they earn money by flipping the good.

Step 4. The game moves to the next period, which starts from Step 1.

The game is denoted by Γ(G, ~C, ~V , ~N, δ), where ~C denotes the vector of links costs, ~V

denotes the vector of consumer valuations and ~N denotes the vector of population sizes at

each node. Sometimes, we will simply refer to this game as Γ.

Remarks: We assume middlemen are long lived, on the other hand, producers and con-

sumers exit the game after trading. This captures an extreme contrast between different

type of agents: middlemen often stay in the market for a long period, while producers and

consumers have limited supply and demand for a certain good. The assumption that we

make about the replacement of producers and consumers capture a steady state of an ex-

tended economy, where there are incoming flows of producers and consumers at certain rates.

Here, to focus on the solution in a steady state, we assume these incoming rates are equal to

the rates at which these agents successfully trade. This can be made endogenous as in Gale

(1987). However, in a fully endogenous model, a characterization of equilibrium is difficult.

Here, we shortcut this problem by assuming the economy is already in a steady state.

In Steps 1 and 2, it is possible that trade is not possible between agents identified at

the ends of the chosen link. This leads to additional search friction as it results in a loss

of trading opportunity for these two agents. By appropriately choosing the distribution π

and the choice of proposing agent when trade takes place, we can equivalently view the

dynamics from the perspective of the nodes such that the agents are picked independently

(following some distribution) to be proposers and depending on the state of the agent (i.e.,

10The model easily generalizes to allow for different but fixed probabilities of picking each end-point of a
link as the proposer of a trade.

11Actually, it does not matter who pays for this transaction cost, because, in equilibrium, the transaction
cost is reflected in the proposed price.
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if the agent possesses the good or not), one among the appropriate edges is chosen following

a distribution. Note that even from the node perspective, there is a possibility that the

proposing agent might pick an edge along which no trade is possible owing to the picked

agent having the same state as the proposing agent; once again, this leads to additional

search friction. We prefer to model the dynamics from the perspective of edges as it is more

general and fully subsumes the node perspective.

Since we are interested in analyzing the bargaining process defined earlier, as the number

of agents in each location increases without bound, we proceed to precisely define the effect

of increasing the population size.

Replicated Economy:

Given the bargaining game Γ(G, ~C, ~V , ~N, δ), the game’s kth replication is defined as a game

of the same structure except the population size is increased by a factor of k at each node,

and the time gap between consecutive periods is reduced by a factor of Tk. Formally, this is

defined as follows:

Definition 2.1 Given the game Γ(G, ~C, ~V , ~N, δ) and k, Tk ∈ N+, let δ′ = δ1/Tk . Then the

(k, Tk)-replication of Γ, denoted by ΓkTk(G, ~C, ~V , ~N, δ) is defined as Γ(G, ~C, ~V , k ~N, δ′).

Remark: The scaling of the discount rate δ in this definition is commonly used in the

study of dynamical systems. It is clear that without changing δ, in the replicated economy

each agent will need to wait for a longer and longer time to get selected, and thus his pay-off

approaches 0. If initially each period takes one unit of time, then note that changing the

discount rate to δ′ = δ1/Tk is mathematically equivalent to changing the time gap between

periods to become 1/Tk time units and keeping the discount rate fixed. Hence, for example,

if we choose Tk = c · k, it means we keep the rate that each agent sees trading opportunities

on the same order as in the original finite game. On the other hand Tk >> k models a

setting in which the rate at which agents trade is increasing. In this paper, for simplicity,

we will focus on the case Tk = k. Other choices of Tk do not affect our results, qualitatively.

3 Solution Concept And Existence Of Equilibrium

Next we turn to the solution concept considered in this paper, that we call a limit stationary

equilibrium. To define this equilibrium, we follow Nguyen (2012) and consider the limit

of finite agent games as the population increases. In particular, in each game with finite

population, we consider a semi-stationary equilibrium in which each agent believes that the
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economy is already in a steady state and behaves according to a stationary strategy profile.

This is certainly not enough. To “close the loop,” a limit stationary equilibrium is defined

as a limit of semi-stationary equilibria, whose dynamics converge to the presumed state.

To be more precise, we have the following definitions.

Definition 3.1 The state of the economy is a vector ~µ ∈ [0, 1]|M|, where µm denotes the

fraction of middlemen at node m that hold an item.

Definition 3.2 A strategy profile (possibly mixed strategy) is called a stationary strategy

if it only depends on an agent’s identity, his state (owning or not owning and item) and

the play of the game (which agent he is bargaining with, who the proposer is and what is

proposed). More precisely, suppose that agent i and agent j are selected to bargain, and

assume i owns an item, j does not, furthermore i is the proposer. In this case, a stationary

strategy of agent i is a distribution of proposed prices to agent j and a stationary strategy of

agent j is a probability of accepting the offer.

In the rest of the paper, given a stationary strategy, for each link (i, j) ∈ E we let λij

denote the conditional probability that i and j trade when they are matched and trade is

feasible, that is i owns an item and j does not.

In the following, we first start with the definition of a semi stationary equilibrium in a

finite economy, we then use this concept to define limit-stationary equilibria as the size of

the economy increases.

3.1 Semi-stationary equilibria

Informally, given a finite game and a state ~µ, a stationary strategy profile is a semi-stationary

equilibrium of the game with respect to ~µ, if under the hypothesis that agents believe the

state of the economy is always ~µ, no agent can strictly improve his payoffs by changing his

strategy12.

To define this concept more precisely, we need to introduce the expected pay-offs of

agent i depending on whether he possesses or does not possess a good, which we denote

by u0(i) and u1(i), respectively. Notice that because of the assumption that producers and

consumers exit the market after a successful trade, we have u0(p) = 0 for all p ∈ P and

12This stationary belief discounts the impact of certain strategic behaviors that will vanish owing to
competition between agents at each node as the population size increases, when determining the incentive
constraints. In particular, consider the case where there are exactly two consumers each of a different type
connected to a single middleman with one consumer being better than the other, both in terms of a higher
value for the good and a lower transaction cost. Then, the better consumer could refuse to trade unless he
gets a higher payoff by being offered the same price as the other consumer.
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u1(c) = Vc for all c ∈ C. Furthermore, we assume that all agents believe that the state of the

economy is captured by ~µ. For the present, we will assume that ~µ is given. After deriving

the incentive conditions depending on ~µ, we will discuss the second type of conditions that

give ~µ endogenously.

The basic structure of the incentive constraints can be captured by the following argu-

ment. Assume two agents i and j meet, where i holds the good and j wants it. Also assume

that i is the proposer. If the trade is successfully completed, then j possesses the item, thus

agent i will demand from agent j the difference of the payoffs between the states before and

after the trade (discounted by δ). Note that the state of i also changes, and therefore, if

trade is successfully completed, then i’s payoff is

δu0(i) + δ
(
u1(j)− u0(j)

)
− Cij.

However, agent i has the option of not proposing a trade (or proposing something that will

necessarily be rejected by the other party) and earn a payoff of δu1(i). Thus, in this situation,

the continuation payoff of agent i is

max{δu1(i), δu0(i) + δ
(
u1(j)− u0(j)

)
− Cij}.

For ease of exposition define the difference between the two terms in this maximization

to be

zij := δ
(
u1(j)− u0(j)−

(
u1(i)− u0(i)

))
− Cij. (1)

Thus, the continuation payoff of agent i when he is proposing to j is

δu1(i) + max{zij, 0}.

From this we also obtain the following conditions on the dynamics of trade:

1. If zij < 0, then agent i will never sell an item to agent j and will wait for a future

trade opportunity;

2. If zij > 0, then agent i will sell the item to agent j with probability one whenever they

are matched;13 and finally

13Note that when zij > 0 in equilibrium, it has to be the case that if agent i proposes to trade agent j will
agree to the trade. This is because if j only agrees with a probability 0 < p < 1, i can improve his payoff by
decreasing the proposing price by a small ε > 0. However, for any such ε > 0, i again has a better deviation
by decreasing the proposing price by a smaller amount, say ε/2.
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3. If zij = 0, then agent i is indifferent between selling and waiting, thus, the trade can

occur with some probability λij ∈ [0, 1]. Conversely, if trade between agents i and j

occurs with probability 0 < λij < 1, then we must have zij = 0.

Similarly, assume now that instead of i, agent j is the proposer, then the continuation

payoff of j in this case is δu0(j) + max{zij, 0}. Furthermore, the same conditions concerning

the dynamic of trade between i and j, which depends on zij hold as above, but with the

roles of i and j interchanged.

These conditions can be delineated for the general network model introduced in the

previous section by considering each type of agent, the state of the agent in terms of holding

a good or not, and the probability that he is selected as a proposer. In our model, we have

three types of agents: producers, consumers and middlemen. Middlemen are active in the

game regardless of having or not having an item. Thus, we will need four types of equations

expressing the expected payoff of these agents given their states.

We consider these conditions in detail for the case of producers; the rest follows in similar

fashion using the logic outlined earlier. For each producer of type p ∈ P who has an item to

sell in each period, an agent p’s continuation payoff depends on which type of link is selected,

the pair of agents that are selected to trade, and whether p is selected as the proposer. Thus,

agent p’s expected continuation payoff is∑
c:(p,c)∈E1

πpc
2Np

(δu1(p) + max{zpc, 0}) +
∑

m:(p,m)∈E2

πpm
2Np

(1− µm)(δu1(p) + max{zpm, 0})+ (2)

+
(
1−

∑
c:(p,c)∈E1

πpc
2Np

−
∑

m:(p,m)∈E2

πpm
2Np

(1− µm)
)
δu1(p)

Here, zpc and zpm are defined as in (1). The first term of (2) represents the case where p

is the proposer to a consumer c. The second term represents p proposing to a middlemen

m, who currently does not own a good. Finally, the last term describes the case where p is

not a proposer. Here, recall that Np is the size of population at node p, and thus, πpc
2Np

, is

the probability that the specific agent of type p is the proposer14 for a consumer c. On the

other hand, because only a fraction of middlemen are looking to buy, for every middlemen

node m ∈ M, πpm
2Np

(1 − µm) is the probability that p is matched with m, m does not hold

a good and p is the proposer. One can interpret this as a form of search friction, that is

the probability that a producer can find a trade-able middlemen depends on the state of the

economy, which, in turn, impacts the transaction dynamics between the producer and the

middleman.

14It is in this calculation that the generalization to different probabilities for the choice of a proposer can
be added.
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Now, because ~u are assumed to be values of a stationary equilibrium, u1(p) needs to

equal the expression in (2). After some algebraic manipulation, this is equivalent to

u1(p) =
∑

c:(p,c)∈E1

πpc
2Np(1− δ)

max{zpc, 0}+
∑

m:(p,m)∈E2

πpm
2Np(1− δ)

(1− µm) max{zpm, 0}. (3)

Similarly, for the two type of middlemen (either owning an item or not) and the con-

sumers, we have the following set of equations:

∀m ∈M u0(m) =
∑

p:(p,m)∈E2

πpm
2Nm(1− δ)

max{zpm, 0}, (4)

∀m ∈M u1(m) =
∑

c:(m,c)∈E3

πmc
2Nm(1− δ)

max{zmc, 0}, (5)

∀c ∈ C u0(c) =
∑

p:(p,c)∈E1

πpc
2Nc(1− δ)

max{zpc, 0}+
∑

m:(m,c)∈E3

πmc
2Nc(1− δ)

µm max{zmc, 0},

(6)

where zpm, zmc, zpc are defined as

zij = δ
(
u1(j)− u0(j)−

(
u1(i)− u0(i)

))
− Cij ∀(i, j) ∈ E1 ∪ E2 ∪ E3. (7)

Once again, the state ~µ appears in the incentive equations above owing to the particular

search model that we consider. As mentioned earlier, since producer and consumers exit the

game after trading successfully, we have

∀p ∈ P u0(p) = 0, (8)

∀c ∈ C u1(c) = Vc. (9)

We are now ready to define a semi-stationary equilibrium.

Definition 3.3 Given a finite game Γ(G, ~C, ~V , ~N, δ) and a state ~µ, a stationary strategy

profile is a semi-stationary equilibrium with respect to ~µ if and only if there exists ~u, ~z sat-

isfying (3)-(9), and furthermore,

• If zij < 0, then irrespective of who the proposer is, agent i will never sell an item to

agent j, so that he will wait for a future trade opportunity;

• If zij > 0, then irrespective of who the proposer is, agent i will sell the item to agent j

with probability one whenever they are matched; and finally
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• If zij = 0, then proposer of the trade is indifferent between trading and waiting. Thus,

the trade occurs with some probability 0 ≤ λij ≤ 1. In addition, if trade between agents

i and j occurs with probability 0 < λij < 1, then zij = 0.

3.2 Limit stationary equilibrium

As the economy gets large, we need to consider the behavior of equations (3)-(9), where Ni

is replaced by kNi and δ is replaced by δ1/k, as k increases without bound. Note that

lim
k→∞

k(1− δ1/k) = ln(1/δ) and lim
k→∞

δ1/k = 1.

Hence, in the limit, the set of equations (3)-(9) yield the following:

∀p ∈ P u0(p) = 0;

u1(p) =
∑

c:(p,c)∈E1

πpc
2Np ln(1/δ)

max{zpc, 0}+
∑

m:(p,m)∈E2

πpm
2Np ln(1/δ)

(1− µm) max{zpm, 0};

(10)

∀m ∈M u0(m) =
∑

p:(p,m)∈E2

πpm
2Nm ln(1/δ)

max{zpm, 0}; (11)

∀m ∈M u1(m) =
∑

c:(m,c)∈E3

πmc
2Nm ln(1/δ)

max{zmc, 0}; (12)

∀c ∈ C u0(c) =
∑

p:(p,c)∈E1

πpc
2Nc ln(1/δ)

max{zpc, 0}+
∑

m:(m,c)∈E3

πmc
2Nc ln(1/δ)

µm max{zmc, 0};

u1(c) = Vc; and

(13)

zij =
(
u1(j)− u0(j)−

(
u1(i)− u0(i)

))
− Cij ∀(i, j) ∈ E1 ∪ E2 ∪ E3. (14)

Using these limiting equations, we now define our solution concept of limit stationary

equilibrium. Intuitively, a limit stationary equilibrium is a stationary strategy that can be

associated with ~u, ~z satisfying (10)-(14) in an similar way to the definition of semi-stationary

equilibrium. However, here another condition is added to guarantee that the dynamic given

by the stationary strategy will actually converge to the presumed state of the economy ~µ.

In particular, recall that a stationary strategy is given by a set of probabilities λij for every

edge (i, j) ∈ E , which denotes the probability of trade occurring among a pair of feasible

trading partners of type i and j. If λij = 1, trade always occurs and if λij = 0 it never

occurs. Given any such stationary strategy, the resulting dynamics can be modeled by a

Markov process, with the state space being the number of agents at each node holding a

16



good. As the population at each node of the network increases, we want the limit of the

stationary distributions of these Markov process to be ~µ. We elaborate on the convergence

issue in much greater detail in Section 3.4.

More formally, we have the following definition for a limit stationary equilibrium.

Definition 3.4 Given a finite game Γ(G, ~C, ~V , ~N, δ) a stationary strategy profile is a limit

stationary equilibrium if the stationary distribution of the associated Markov process con-

verges to a point-mass15 on the state ~µ, and there exists ~u, ~z satisfying (10)-(14), moreover

• If zij < 0, then irrespective of who the proposer is, agent i will never sell an item to

agent j, so that he will wait for a future trade opportunity and λij = 0;

• If zij > 0, then irrespective of who the proposer is, agent i will sell the item to agent j

with probability one whenever they’re matched so that λij = 1; and finally

• If zij = 0, then proposer of the trade is indifferent between trading and waiting. Thus,

the trade occurs with some probability 0 ≤ λij ≤ 1. In addition, if trade between agents

i and j occurs with probability 0 < λij < 1, then zij = 0.

3.3 Existence of a Limit stationary equilibrium

We next show that a limit stationary equilibrium always exists.

THEOREM 3.5 For a bargaining game, Γ(G, ~C, ~V , ~N, δ), a limit stationary equilibrium

always exists.

Proof: Proof of Theorem 3.5: See Appendix 7.2.

The proof of this theorem is based on a standard fixed-point theorem argument for

the best-response correspondences of a fictitious game that is obtained from the incentive

constraints and the trading dynamic. The existence of limit stationary equilibria follows as

a consequence of the Markov dynamic resulting from our search model, a point that will be

elaborated on in the next section. We note, however, that the limit stationary equilibrium

might not be unique. In Section 4 we will give a method to compute and check if a stationary

strategy is a valid a limit stationary equilibrium.

15In a general mean-field analysis setting Sznitman (1991), the final object is typically a product measure
over the different types, instead of a point-mass as here. Then, the analysis of (10)-(14) would be carried
out by taking expectations over the corresponding product measure.

17



3.4 Convergence of state of the trading process

As mentioned earlier, one of the key technical lemmas needed to prove the existence of a

limit equilibrium is to show that given any stationary strategy profile, the corresponding

Markov process in the replicated system will always converge to an unique state, which

is also a continuous function of the parameters. This, in return, allows us to define a

continuous mapping between two product state-payoff spaces, that can be used in a fixed

point argument. In this section, we discuss how to define the state of the trading process

and how to determine the ~µ used for defining both a semi-stationary equilibrium and a limit

stationary equilibrium. The formulation of the converging state given our particular Markov

process will allow us to compute and construct an equilibrium in various networks in the

next section16.

We will prove the existence of ~µ by analyzing the Markov process that drives the state

of the system, for a given set of stationary strategies {λij} for (i, j) ∈ E . Since the state of

middlemen can change with time, the entire system can be represented by a vector-valued

random process {Xk
m(t) : m ∈ M}∞t=1 where for the kth replicated system we keep track of

the number of agents who have the item at each middleman type m ∈M. For mathematical

convenience, we will append {Xk
p (t) : p ∈ P} where Xk

p (t) ≡ kNp and {Xk
c (t) : c ∈ C} where

Xk
c (t) ≡ 0 for the states of the producers and the consumers, respectively. Since producers

exit the game as soon as they sell their good and are replaced by a clone with a good, at

any given time any producer always possesses a good. A similar reasoning holds for the

consumers never having a good.

For the kth replication, the state transitions are given as follows for each m ∈M

Xk
m(t+ 1) =


min(kNm, X

k
m(t) + 1) w. p. ρkm(+1)

max(0, Xk
m(t)− 1) w. p. ρkm(−1)

Xk
m(t) w. p. 1− ρkm(+1)− ρkm(−1),

where

ρkm(+1) =

(
1− Xk

m(t)

kNm

) ∑
p∈P:(p,m)∈E2

πpmλpm

is the probability that an agent of type m acquires a good in a given period, and

ρkm(−1) =
Xk
m(t)

kNm

∑
c∈C:(m,c)∈E3

πmcλmc

16Readers who are familiar with Markov processes and their mean-field analysis may skip this part.
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is the probability that a type m agent sells a good in a given period. As noted above, the

states corresponding to producers in P and consumers in C are fixed for all time. This shows

that we have a Markov process, and it is easily verified that the process is irreducible.

Since the transition matrix of our Markov process satisfies Lipschitz conditions (see Ethier

and Kurtz (2005)), we can analyze the fluid limit that is obtained by scaling time and space,

i.e., by considering the process {X̃k
v (t) : v ∈ V}, where

X̃k
v (t) :=

Xk
v (dkte)
k

, ∀v ∈ V ,

where dxe for real x is the smallest integer greater than x. We will analyze the behavior of

the scaled process {X̃k
v (t) : v ∈ V}t∈R+ when k increases without bound. Note that this is

the exact scaling considered by the replicated systems discussed earlier. We then have the

following result.

Lemma 3.6 Given a set of probabilities for trade {λij, (i, j) ∈ E}, the stationary distribution

of the trading dynamic process described above converges to a point-mass on a unique state

~µ, which is the unique solution of∑
c∈C

πmcµm (1− µc)λmc =
∑
p∈P

πpmµp (1− µm)λpm ∀m ∈M, (15)

and which is given by

∀p ∈ P , µp = 1; ∀c ∈ C, µc = 0; (16)

∀m ∈M, µm =

∑
p∈P:(p,m)∈E2 πpmλpm∑

p∈P:(p,m)∈E2 πpmλpm +
∑

c∈C:(m,c)∈E3 πmcλmc
. (17)

Proof: Proof of Lemma 3.6: See Appendix 7.1 for details.

For any fixed k, the Markov process {X̃k
v (t) : v ∈ V} is irreducible and has finite-

states. Therefore, it has a unique stationary distribution. Note that Lemma 3.6 asserts that

these stationary distributions converge to a point-mass17 which is determined by stationary

behavior of the limiting process obtained as m increases with bound. In effect, the result

above justifies an exchange of the order of limits, k first and time later versus time first and

k later. It is both the convergence to a point-mass and this exchange of limits that justifies

our definition of semi-stationary equilibria and limit stationary equilibria.

From Lemma 3.6, µm for middlemen of type m is the stationary fraction of agents at

17As mentioned earlier, in a general mean-field analysis setting Sznitman (1991), the final object need not
be a point-mass but a product measure over the different types.
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node m ∈ M that hold the good. On the other hand, for the producers we have µp ≡ 1 for

all p ∈ P and the consumers we have µc ≡ 0 for all c ∈ C. The given values {µm : m ∈ M}
satisfy (15), which can be interpreted as a balance condition: for every node m ∈ M, in

every period, the probability that the amount of goods held at node m increases by one or

decreases by one should be equal. Looking at this interpretation of (15) more closely, each

term on the left-hand-side for a given c, πmcµm (1− µc)λmc is the probability that trade

occurs from m to c, which requires that link (m, c) is selected (with probability πmc), that

m and c are feasible trading partners (with probability µm(1 − µc) so that m has the good

and c needs it) and that trade occurs (with probability λmc). Similarly, each term on the

right-hand-side for a given p can be interpreted as the probability of trade from p to m.

While the use of {µp : p ∈ P} and {µc : c ∈ C} above is for mathematical convenience,

in more general networks (for future work) where we allow middlemen to trade with each

other, expressions similar to (15) will hold as the balance condition for every middlemen

type where the terms will involve the state of other middlemen as well.

4 Competion Among Middlemen

In this section, we focus on the equilibrium of our model for the network illustrated in

Figure 4. For simplicity, we assume all the transaction costs are 0 and each consumer’s

valuation of the good is 1. We will analyze the equilibrium as δ takes values between 0 and

1. Note that P = {1, 2}, M = {3, 4} and C = {5, 6}.
As discussed in the introduction, because producers at node 1 have access to more mid-

dlemen than at node 2, producers at 1 have better bargaining power than producers at 2.

Similarly, consumers at node 6 are in a better position than consumers at 5. However, a

comparison between the two middlemen position 3 and 4 is not straightforward. This is

because middlemen at node 3 have access to consumers at nodes 5 and 6, but only one

producer node 1, on the other hand middlemen at node 4 have access to more producers and

fewer consumers.

A precise prediction of the agents’ behaviors depends on the discount rate δ. The factor

by which agents discount their payoff if negotiation is not successful also fundamentally

influences the trade pattern. In particular, consider trade between 1 and 4. If producers

of type 1 sell to 4, then they might not be able to get as high a price as compared with

selling to middlemen of type 3, as they are faced with competition from 2. However, because

the opportunity to meet with potential trade partners come randomly, depending on the

discount rate, the producers might not have the incentive to wait for a trade opportunity

with 3. Hence, given the network in Figure 1, the pattern of trade depends on both the
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Figure 4: Transaction costs at every links are 0 and the value for all buyers for obtaining a
good is 1.

probability that the agents meet and their discount rate. To make the analysis simple, and

to focus on the impact of δ on the outcome of the market, we assume the population at every

node is the same, and the each pair is chosen uniformly at random. We will investigate how

changing δ would influence the trade pattern. In particular, we show that when δ is small,

an equilibrium strategy is for a pair of agents who can trade (that is one has an item to

sell, and the other doe not have an item), to trade with probability 1 whenever they meet.

However, as agents are more patient (δ is close to 1), then producers at node 1 never trade

with middlemen at node 4. This comparative analysis is summarized in Theorem 4.1.

Before getting to this result, for ease of presentation, we will introduce the following

notation18:
1

f(δ)
:=

πij
2Ni ln(1/δ)

.

Recall the set of Bellman equations (10)-(14) defining the concept of limit stationary equi-

librium where the right hand side of the above equations plays an important role in the

qualitative outcome of the game. In the following we will give some comparative analy-

sis based on f(δ). Notice that when δ → 1 , f(δ) approaches 0, and when δ → 0 , f(δ)

approaches ∞.

We call a stationary strategy an always trade strategy, if for every pair of agents that

are connected by a link of the network, trade occurs with probability 1, whenever they meet

and one agent has an item while the other does not have one. For a link (i, j), a stationary

strategy avoids trade on (i, j) if when i, and j meet, even though one agent has an item

to sell and the other does not have one, they do no trade and rather wait for a future

opportunity.

We summarize the comparative analysis studied in this section in the following result.

18Notice that here we assume all population sizes Ni are the same and the distribution of selecting an
edge πij is the uniform distribution, thus f(δ) does not depend on i, j.
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THEOREM 4.1 The following hold:

• If f(δ) = 1/2, then the “always trade” strategy is the unique pure equilibrium, in which

case the payoff of middlemen 3 is greater than that of middlemen 4.

• If f(δ) = 1/5, then the “always trade” strategy cannot be an equilibrium, and the

strategy that avoids trade on the link (1, 4) and always trades on all other links is the

unique pure equilibrium. At this equilibrium too, the payoff of middlemen 3 is greater

than that of middlemen 4

Remark: Notice that in both cases, payoff of middlemen of type 3 is greater than that

of middlemen of type 4. As discussed in the introduction, this result is in contrast with

models like Blume et al. (2009), where middlemen have all the power to set prices to both

producers and consumers simultaneously. In our model, the fact that middlemen need to

buy an item first before selling it has important consequences. In particular, middlemen 3

has an competitive advantage on the consumer’s side: it has access to more consumers than

middlemen 4. Thus, when holding a good, middlemen 3 can find a consumer easier than

4. This in return influences trade in the previous round between producers and middlemen.

Here even though 4 has access to more producers (1 and 2), the fact that after buying the

good from these producers middleman 4 is aware that he needs to compete and cannot get

as high a surplus as middleman 3, results in him not being able to offer as competitive a

price to the producers 1 and 2. In other words, in settings like ours, competition from the

consumers’ side is more important because it has an influence back to the competition on

the producers’ side.

Theorem 4.1 illustrates another interesting phenomenon about how the discount rate δ

influences the trade pattern. In particular, trade between 1 and 4 only occurs when agents

are impatient enough, that is f(δ) is large. The intuition is similar to the above argument.

The advantage of 3 over 4 in the consumers’ market influences 4’s ability to offer good prices

to the producers. Thus, when δ is close to 1, or equivalently f(δ) is small, a producer of

type 1 is better off waiting to trade exclusively with middlemen of type 3. In this case, the

advantage that 4 has over 3: being connected to both producers nodes disappears, because

trade between 1 and 4 will not occur. Clearly in this case, middlemen at node 3 are in a

better position than the middlemen at node 4.

Proof: Proof of Theorem 4.1: The main idea of constructing an equilibrium or showing

that a particular strategy is not an equilibrium is as follows.

First, given a strategy, and fixing an f(δ) value, we calculate the steady state of the

economy ~µ that the replicated Markov process converges to. This step can be calculated as

per Lemma 3.6. For example, for an “always trade” strategy, at node 4, the probability of
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selecting a link between producers and middlemen 4 is double the probability of selecting a

link between 4 and consumers. Thus, considering the “always-trade” strategy the balance

condition at node 4, we have that the rate of trading between 4 and 6 is equal to the total

of trading rate between 1 and 4, and 2 and 4. This implies that the fraction of middlemen

at node 4 that holds a good is twice the fraction of middlemen at node 4 that do not hold a

good. Hence, µ4 = 2/3. Similarly, µ3 = 1/3.

Second, based on the given strategy, assuming that it is an equilibrium, we obtain some

constraints on the variables zij = u1(j) − u0(j) − u1(i) + u0(i) − Cij. Specifically, in our

example, Cij = 0 and trade occurs with probability 1 on every link, thus z13, z14, z24, z35, z36

and z46 are all nonnegative. Based on the variables zij and ~µ, we can write the expected

payoff of agents i: u0(i) and u1(i) according to (10-13). For example in the “always-trade”

strategy, we have the following:

u0(1) = 0; u1(1) = f(δ)(
1

3
z14 +

2

3
z14)

u0(2) = 0; u1(2) = f(δ)
1

3
z24

u0(3) = f(δ)(z13); u1(3) = f(δ)(z35 + z36)

u0(4) = f(δ)(z14 + z24); u1(4) = f(δ)(z46)

u0(5) = f(δ)(
1

3
z35); u1(5) = 1

u0(6) = f(δ)(
1

3
z36 +

2

3
z46); u1(6) = 1.

Moreover, by definition, because z13, z14, z24, z35, z36 and z46 are nonnegative, we have

zij = u1(j)− u0(j)− u1(i) + u0(i)−Cij ∀(ij) ∈ E = {(1, 3), (1, 4), (2, 4), (3, 5), (3, 6), (4, 6)}.

Here, in our example, Cij = 0 for all links ij. With these we have a set of linear equations

for the variables zij.

The final step of the verification of an equilibrium is to solve the system of linear equations

in zij obtained in the previous step. Then, the given strategy is an equilibrium if and only if

• For a link (i, j), on which we assume trade occurs with probability 1, zij ≥ 0;

• For a link (i, j), on which we assume trade occurs with a probability λij ∈ (0, 1),

zij = 0; and

• For a link (i, j), on which we assume trade never occurs zij = u1(j)− u0(j)− u1(i) +
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u0(i)− Cij ≤ 0.

Following this method, one can prove Theorem 4.1 by numerically calculating the solu-

tion. In particular, with f(δ) = 0.5, under the “always trade” strategy, we have the following

solution, which shows that this strategy is an equilibrium:

z24 = 0.3141; z14 = 0.0024; z13 = 0.3895; z46 = 0.5782; z36 = 0.1911; z36 = 0.6537;

u0(1) = 0;u1(1) = 0.1302; u0(2) = 0;u1(2) = 0.0523;

u0(3) = 0.1948;u1(3) = 0.4224; u0(4) = 0.1582;u1(4) = 0.2891;

u0(5) = 0.1089;u1(5) = 1; u0(6) = 0.2246;u1(6) = 1.

This shows that the payoff of middlemen 3 is better than that of 4, in both states (having

an item and not having an item). In fact this comparative result holds robustly, below we

compute the payoff of middlemen 3 and 4 for f(δ) ranging from .5 to 5, see Figure 5.

Figure 5: The payoffs of the middlemen are plotted as a function of δ; note that f(δ)
approaches 0 as δ approaches 1 and infinity as δ approaches 0.

On the other hand, when f(δ) < 0.49, when using the “always-trade” strategy we will

obtain a solution in which z14 is negative. For example, when f(δ) = 0.2, z14 = −0.1403,

which shows that the “always trade” strategy cannot be an equilibrium for this case. Recall

24



here that z14 = u1(4)− u0(4)− u1(1) + u0(1), which is the gain in trade when 1 sell an item

to 4. If this value is negative, then 1 and 4 do not trade.

However, with f(δ) = 0.2, consider the strategy that avoids trade on the link (1, 4) and

always trades otherwise. We will show that this is an equilibrium. To see this, first we

observe that in this case the unique steady state of the Markov dynamic is µ3 = 1/3 and

µ4 = 1/2. Similar to the previous case, we can set up a linear equation system for zij, where

(ij) ∈ E = {(1, 3), (2, 4), (3, 5), (3, 6), (4, 6)}. Solving the system of linear equations, we get

z24 = 0.5054, z13 = 0.5755, z46 = 0.8592, z36 = 0.1344, z35 = 0.9399.

Note that these values are all positive. Furthermore, the gain in trade between 1 and 4 is

u1(4)− u0(4)− u1(1) + u0(1) = f(δ)
(
z46 − z24 −

2

3
z13 + 0

)
= −0.0299 · f(δ) < 0.

This shows that, indeed, 1 and 4 do not have an incentive to trade. It is also clear here that,

in this case, middlemen of type 3 have a higher payoff than middlemen of type 4.

Lastly, by considering all other pure strategies, we can conclude that for f(δ) = 0.5 the

“always trade” strategy, and for f(δ) = 0.2 “avoiding trade on the link (1, 4) and always

trades on all other links” are the unique pure equilibrium, respectively.

5 Comparative Studies With Patient Agents

In this section we will focus our comparative studies on the case when the discount factor δ

approaches 1, which we sometimes refer to as when “agents are being patient” or the case

of “vanishing bargaining friction.” In many cases, by considering this limiting case, we are

either able to give a closed form characterization of the equilibrium, or present robust and

general properties of any equilibrium.

We start by showing that as agents become patient, they will choose the cheapest trading

routes (i.e. the routes with the smallest transaction costs) and intermediary fees per trans-

action will approach 0. We then give a closed form characterization for the equilibrium in

a simple network containing two links. This shows how endogenous delay emerges even in

this simple network. Finally, we use these two results to give an example of how changing

the transaction costs in a network can have a fundamental and counter intuitive impact on

agents’ payoffs.
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5.1 Preference for Cheapest Trade Routes

THEOREM 5.1 Given a producer p, a consumer c, and any ε > 0, there exists δ∗, such

that for all δ > δ∗ and at any equilibrium the following is true. If λpm > 0 and λmc > 0 for

a middlemen m, that is trade occurs along the route p → m → c, then the cost Cpm + Cmc

is the smallest among all trading routes between p and c. Furthermore, the total surplus of

producer p and consumer c satisfies u1(p) + u0(c) ≥ Vv − (Cpm + Cmc)− ε.

Proof: Proof of Theorem 5.1: See Appendix 7.3.

Remark: The above result demonstrates a global-level efficiency that emerges in the

equilibria of the local non-cooperative bargaining scheme if agents are patient enough: edges

that are not along a cheapest path from any producer and consumer pair are never used,

and middlemen who have no edges along a cheapest path from any producer and consumer

pair see no trade.

Furthermore, u1(p)+u0(c) ≥ Vv−(Cpm+Cmc)−ε implies that the total surplus of producer

p and consumer c is almost the entire trade surplus on the path p → m → c. This implies

that as δ approaches 1, the intermediary’s fee that j charges approaches 0. We discussed

the intuition for this property in the introduction (Section 1). One important feature of our

model that leads to this result is the fact that middlemen are long-lived and do not consume

the good, while producers and consumer have limited supply and demand. Middlemen are

eager to buy and sell quickly, while producers and consumers can wait because the discount

rate δ is close to 1. It can be seen mathematically in the proof that when δ approaches 1,

zpm and zpc approach 0. The term zpm + zmc captures the gain of surplus for middlemen

m after buying an item from p and selling it to c, assuming in both transactions, m is the

proposer.

Figure 6: The trading network used to explore the choice of trade routes for δ ∈ (0, 1).

Also notice that the selection of the cheapest routes does not hold when agents discount

their payoff by δ much smaller than 1. To see this consider the network illustrated in Figure 6,

where there are two paths connecting producer 1 and consumer 2. The direct link has a cost

of 1/2, and both links connecting to middleman 3 costs 0. Hence, from Theorem 5.1, when

δ is large enough trade will only occur through the middleman. However, when δ is small

enough, even though the surplus of the direct trade is 1 − 1/2 = 1/2, trade will happen on
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link (1, 2) when it is selected instead of waiting to trade through the middlemen of type 3. In

particular, assume the population at each node is the same, say N , and each link is selected

uniformly at random so that πij = 1/3 for all (i, j).

Similar to the computation used in Theorem 4.1, let

1

f(δ)
:=

πij
2N ln(1/δ)

=
1

6N ln(1/δ)
.

It is then straightforward to check that the following is a limit stationary equilibrium.

• “Always trade” if f(δ) ≥ 1/2;

• Always trade on (1, 3), (3, 2) and avoid trade on (1, 2), if f(δ) < 1/2, which corresponds

to δ ≥ exp
(
− 1

3N

)
.

In Figure 7, we plot the payoff of 1, 2, and 3 at this equilibrium as f(δ) varies from 0 to 2;

these are decreasing as f(δ) increases.

Figure 7: Agent payoffs as a function of f(δ).

5.2 Endogenous Delay

We now consider a simple network that consists of two links illustrated in Figure 8, which

was again discussed in the introduction (Section 1). This network represents the simplest
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example where producers and consumers cannot trade directly. We fully characterize the

limit stationary equilibrium in this example, which will be shown to be unique. Even in

this simple network, we observe an interesting phenomenon of endogenous delay as part

of the equilibrium. This is counterintuitive since in a full information dynamic bargaining

model like ours, delay in trade does not enable agents to learn any new information, but only

decreases the total surplus of trade. Therefore, the network structure and the combination of

incentives of long-lived and short-lived agents are the main sources causing this inefficiency

in bargaining.

Figure 8: A simple network to illustrate endogenous delay.

Assume a and b are transaction costs of the first and second link, also let V be the

value of the consumption of the good; without loss of generality, we will insist that trade

is favorable so that V > a + b. The probabilities of using the links are then π12 and π23.

We assume the population sizes at every node is equal, and without loss of generality, we

assume19 N1 = N2 = N3 = 1. We will show that in this simple network, the stationary

equilibrium is unique, and we characterize the condition under which agents do not trade

immediately.

THEOREM 5.2 In the limit of δ → 1, that is, when the agents are patient, there is always

a unique limit stationary equilibrium. Furthermore, if V ≥
(

1 + π12
π12+π23

)
a + b =: V̄ , then

trade always happens, otherwise there is a delay. The probability of trade on link (1, 2), λ12,

the probability of trade on link (2, 3), λ23, and the equilibrium state and the payoffs of the

19Following the proof of this result, it will become clear that this assumption does not result in any loss
of generality when agents are patient.
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middleman are given by

λ23 = 1, λ12 =

1 if V ≥ V̄

π23(V−b−a)
π12(2a+b−V )

otherwise
,

µ2 =

 π12
π12+π23

if V ≥ V̄

V−b−a
a

otherwise
,

u1(2) =


(V−b)

(
2− π12

π12+π23

)
−a

1+
π12π23

(π12+π23)
2

if V ≥ V̄

a otherwise

, u0(2) =


V−

(
1+

π12
π12+π23

)
a−b

1+
π12π23

(π12+π23)
2

if V ≥ V̄

0 otherwise

,

u0(3) =


(V−b)

(
2− π12

π12+π23

)
−a

π12+π23
π12

+
π23

π12+π23

if V ≥ V̄

1− b− a otherwise

, u1(1) =


V−

(
1+

π12
π12+π23

)
a−b

π12+π23
π12

+
π23

π12+π23

if V ≥ V̄

0 otherwise.

Remark: As discussed in the introduction (Section 1), this can be compared with a model

where each node consists of a single agent, where the sunk cost problem causes market

failure, and no trade is the unique equilibrium. Here, however, we show that when the stock

at the middlemen node is small, the search friction for a consumer to find a middlemen that

owns an item increases the middlemen’s bargaining power, and this reestablishes trade with

a positive probability.

From Theorem 5.2, we also see that trade always occurs on link (2, 3) but can be delayed

at link (1, 2). Since the consumer is at the other end of link (2, 3), it stands to reason that

there is no delay in the trade. However, at link (1, 2), any sale of the item results in a

decreased likelihood of the trade at the same link (in the near future) owing to the search

mechanism, and this opportunity cost introduces the delay in trade. Note also that with a

delay in trade, the producer obtains no surplus! We will revisit this effect in the next section

when we discuss the impact of the delay on the share of the surplus between the agents.

Trade gets delayed when the value of the good is below a specific threshold. From the

proof one can discern that the additional penalty term in the threshold is the product of the

transaction cost at link (1, 2) and the stationary probability that the middleman possesses

the good.

Proof: Proof of Theorem 5.2: See Appendix 7.4.

5.3 Share Of Surplus

Lastly, we consider the imbalance between the surplus of producers and consumers as a result

of our decentralized trade model.
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Figure 9: Triangle network with transaction costs.

Consider the following (also simple) network, where node 1 represents producers, node

2 represent consumers and node 3 represents middlemen, as illustrated in Figure 9. Again

without loss of generality, we assume thatN1 = N2 = N3 = 1. We also assume that in our

bargaining model, every link is selected uniformly at random, that is πij = 1/3 for all i 6= j.

Assume the consumer’s valuation for the good is V2 = 4, and the transaction costs are the

following: C12 = 3, C32 = 0 and C13 = 4 − x. We will investigate the equilibrium as x

changes. As x increases, the transaction cost between 1 and 3 decreases, making the total

trade surplus max{4− 3, 4− (4− x)} = max{1, x} increase.

The surplus of producers in this example is understood as the payoff of agents at node 1

when owning an item: u1(1). On the other hand, the surplus of consumers in this example

is the payoff of agents at node 2 when not owning an item: u0(2). According to the analysis

in Section 5.1, as the discount rate δ approaches 1, trade will only goes through the cheapest

route. Let C̄ be the cost of this route, as seen in Section 5.1 we also have

lim
δ→1

u1(2)− u0(2)− (u1(1)− u0(1)) = C̄.

This is equivalent to

lim
δ→1

u0(2) + u1(1) = V2 − C̄.

As shown in Section 5.1 this means that the total surplus of a producer and a consumer

approaches the total trading surplus, and for every transaction, middlemen only make a

vanishing amount of fee. As discussed in the introduction, this is because in our model, we

assume producers and consumers are short-lived, while middlemen are long-lived and has to

earn money by flipping the item. Thus, as δ approaches 1, while producers and consumers

are patient, middlemen are eager to buy and sell quickly.

Now, in the example above, when considering the equilibrium payoff as δ approaches 1,

we have if x < 1 that producers and consumers will trade directly, and in this case producers

and consumers equally share the surplus, giving them a surplus of 4−3
2

= 1
2
.

On the other hand, if x > 1, then direct trade between producers and consumers is too

expensive, and trade will go through middlemen at node 3. In the latter case, we will use
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the analysis in Section 5.2 to compute the equilibrium payoff, and we have

1. 1 < x < 4/3: Seller’s surplus, u1(1) = 0 and consumer’s surplus u0(2) = x, so that the

consumers get all the trade surplus;

2. 4/3 ≤ x ≤ 4: Seller’s surplus, u1(1) = 4−3/2(4−x)
5/2

= 3x−4
5

and consumer’s surplus

u0(2) = 2x+4
5

.

This is illustrated in Figure 10.

Figure 10: Surplus of producer and consumers as x increases from 0 to 4

Even in this simple network, we observe quite an interesting phenomenon: there is a

discontinuous shift in the trading pattern occurring in the network. If x increases from 1 to

4/3, so that the transaction cost between 1 and 3, C13 = 4 − x, decreases, then the total

surplus between producers and consumers increases, but producers are actually worse off

because of this shift in the market structure. This also highlights how local adjustments by

the producers could leave them in a worse-off position. Note that when x = 1, at least two

limit stationary exist: trade directly or via middlemen.

This example captures an interesting and counterintuitive phenomenon: as the transac-

tion cost towards middlemen decreases, producers can be worse off, because the high cost

of direct trading makes consumers refuse to trade directly and prefer to trade through mid-

dlemen. For example, in many supply chain networks, as these global networks get large,

producers and consumers do not trade directly and several types of organizations emerge as

middlemen. In many cases such as in coffee industry, producers (coffee farmers) obtain a

very small fraction of surplus because there are too many middlemen in the supply chain

network. See for example Bacon (2005) for a related empirical analysis of the coffee global

supply chain and the recent shift in its market structure.
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6 Conclusions And Future Work

In this paper we considered non-cooperative local bargaining over a trading network with

a single type of good. In the limiting scenario of many agents, we showed the existence of

a limit stationary equilibrium that can be characterized by a combination of the stationary

probability of a trade happening on each link, the stationary distribution of the agents’

possessing the good, and the stationary payoffs of the agents. We then showed that when

agents are patient enough, this limiting equilibrium can exhibit global efficiency. We applied

this concept to several simple network structures to study the impact of the network on the

bargaining power and surplus of all agents. In future work we plan to extend the results

to more general networks, to include the analysis of losing or damaging the good and to

rigorously connect the equilibria in the finite-player game to the limit stationary equilibria.

7 APPENDIX

7.1 Proof of Lemma 3.6

Since the transition matrix of the Markov process {X̃k
v (t) : v ∈ V} satisfies a Lipschitz

condition, by an application of Kurtz’s Theorem (Ethier and Kurtz 2005, Th. 2.1, Chapter

11), we obtain a differential equation for the limiting process. The globally asymptotically

stable state of the differential equation is a continuous function from the non-negative reals

to
∏

p∈P [0, Np] ×
∏

m∈M[0, Nm] ×
∏

c∈C[0, Nc]. The limiting processes20 are given as follows

for all t ≥ 0,

∀p ∈ P , xp(t) ≡ Np; ∀c ∈ C, xc(t) ≡ 0;

∀m ∈M,
dxm(t)

dt
=

(
1− xm(t)

Nm

) ∑
p∈P:(p,m)∈E2

πpmλpm −
xm(t)

Nm

∑
c∈C:(m,c)∈E3

πmcλmc (18)

=
∑

p∈P:(p,m)∈E2

πpmλpm −
xm(t)

Nm

 ∑
p∈P:(p.m)∈E2

πpmλpm +
∑

c∈C:(m,c)∈E3

πmcλmc

 . (19)

Using a quadratic Lyapunov function (square of the distance to the equilibrium point) it

follows21 that there is a unique and globally asymptotically stable equilibrium point that is

20Even though Kurtz’s Theorem applies only for finite time-horizons, the compact setting of the scaled
processes and the well-behaved nature of the differential equation above allow us to analyze the convergence
of the stationary solutions as well.

21The details are omitted as this is a standard technique for the linear dynamics in (19).
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given by

∀p ∈ P , x∗p = Np; ∀c ∈ C, x∗c = 0;

∀m ∈M, x∗m = Nm

∑
p∈P:(p,m)∈E2 πpmλpm∑

p∈P:(p,m)∈E2 πpmλpm +
∑

c∈C:(m,c)∈E3 πmcλmc
.

Therefore, the fraction of agents with the good satisfies

∀p ∈ P , µp = 1; ∀c ∈ C, µc = 0;

∀m ∈M, µm =

∑
p∈P:(p,m)∈E2 πpmλpm∑

p∈P:(p,m)∈E2 πpmλpm +
∑

c∈C:(m,c)∈E3 πmcλmc
.

Note that setting the right-hand side of (18) to zero, yields the balance condition (15).

For each k, it is easy to see that the Markov process is irreducible and has finite states,

and so is positive recurrent. Thus, owing to the compact setting, the stationary measures of

the scaled state processes converge to the point mass on the equilibrium point as k increases

without bound, see Benaim and Boudec (2011).

7.2 Proof of Theorem 3.5

We need to show that there exists (~λ, ~µ, ~u, ~z) satisfying the following conditions:

1. Convergence: given the trading dynamics defined by ~λ, the replicated economy con-

verges to the steady state ~µ. According to Lemma 3.6, the convergence occurs and the

dependence of ~µ on ~λ is given by (16)-(17);

2. Payoff-state consistency: ~u and ~z need to satisfy equations (10)-(14); and

3. Payoff-dynamic consistency: if zij > 0 then λij = 1; if zij < 0 then λij = 0; and if

zij = 0, then 0 ≤ λij ≤ 1.

Given (~λ, ~µ, ~u), using equations (10)-(14) and (16)-(17) as well as the payoff-dynamic

consistency above, we can obtain the following correspondence (~Λ, ~µ′, ~u′), which we can

write as follows,

F (~λ, ~µ, ~u) = (~Λ, ~µ′, ~u′),
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where

∀p ∈ P µ′p = 1,

∀c ∈ C µ′c = 0,

∀m ∈M µ′m =

∑
p∈P:(p,m)∈E2 πpmλpm∑

p∈P:(p,m)∈E2 πpmλpm +
∑

c∈C:(m,c)∈E3 πmcλmc
,

and for all (i, j) ∈ E

Λij ={1} if u1(j)− u0(j)− (u1(i)− u0(i))− Cij > 0,

Λij ={0} if u1(j)− u0(j)− (u1(i)− u0(i))− Cij < 0,

Λij =[0, 1] if u1(j)− u0(j)− (u1(i)− u0(i))− Cij = 0.

Furthermore,

∀p ∈ P u′0(p) = 0,

u′1(p) =
∑

c:(p,c)∈E1

πpc
2Np ln(1/δ)

max{zpc, 0}+
∑

m:(p,m)∈E2

πpm
2Np ln(1/δ)

(1− µm) max{zpm, 0},

∀m ∈M u′0(m) =
∑

p:(p,m)∈E2

πpm
2Nm ln(1/δ)

max{zpm, 0},

∀m ∈M u′1(m) =
∑

c:(m,c)∈E3

πmc
2Nm ln(1/δ)

max{zmc, 0},

∀c ∈ C u′0(c) =
∑

p:(p,c)∈E1

πpc
2Nc ln(1/δ)

max{zpc, 0}+
∑

m:(m,c)∈E3

πmc
2Nc ln(1/δ)

µm max{zmc, 0},

u′1(c) = Vc, where

zij =
(
u1(j)− u0(j)−

(
u1(i)− u0(i)

))
− Cij ∀(i, j) ∈ E1 ∪ E2 ∪ E3.

It is straightforward to check that the function F (·, ·, ·) above satisfies all the requirements

for Kakutani’s fixed-point theorem. The domain is a non-empty, compact and convex subset

of a finite-dimensional Euclidean space. The mapping/correspondence has a closed-graph:

since the mappings from ~λ to ~µ′ and ~µ to ~u′ are single-valued and continuous, we only need

to satisfy this for the mapping from ~u to ~Λ. For any sequence (~un, ~Λn) (in the domain) such

limn→∞(~un, ~Λn) = (~u, ~Λ), it is easy to see that ~Λ must lie in the image of ~u. Finally, the

image of any point in the domain is non-empty, closed and convex. Therefore, there must

be a fixed-point, and furthermore, by definition, any fixed point of this mapping is a limit

stationary equilibrium.
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7.3 Proof of Theorem 5.1

Consider equations (10), (11), (12) and (13). As δ approaches 1, the log(1/δ) term approaches

0. Since u1(p) ∈ [0,maxc∈C Vc] for all i ∈ P , and u0(c) ∈ [0,maxc∈C Vc] for all c ∈ C, it has to

be that given any ε > 0, there exists δ∗ such that for all δ > δ∗, we have

zpc ≤ ε ∀(p, c) ∈ E1,

zpm ≤ ε ∀(p,m) ∈ E2,

zmc ≤ ε ∀(m, c) ∈ E3.

Now consider a pair of agents, one producer p and consumer c. We have three cases then:

1. All trade routes from p to c have to visit some middleman. Let m ∈ M be one such

middleman so that (p,m) ∈ E2 and (m, c) ∈ E3. The inequalities above then imply the

following:

u1(m)− u0(m) ≥ u1(c)− u0(c)− Cmc − ε,

u1(m)− u0(m) ≤ u1(p)− u0(p) + Cpm + ε.

These with u0(p) = 0 and u1(c) = Vc imply

u1(p) + u0(c) ≥ Vc − Cpm − Cmc − 2ε.

Note that this inequality holds for every m ∈ M that lies along a trade route from p

to c. Therefore,

u1(p) + u0(c) ≥ Vc − min
{m:(p,m)∈E2 and (m,c)∈E3}

(
Cpm + Cmc

)
− 2ε.

Since ε can be chosen arbitrarily small, thus for any middleman m who is not on a

smallest transaction cost path from p to c, we can choose δ close enough to 1 such that

either zpm or zmc is strictly negative and so no trade can occur on the corresponding

edge;

2. Notice that the same argument also works for the case, where if in addition to the

middlemen, there also exists a direct link between p and c. Then

u1(p) + u0(c) ≥ Vc −min

(
Cpc, min

{m:(p,m)∈E2 and (m,c)∈E3}

(
Cpm + Cmc

))
.

35



Again it is clear that no trade occurs over links that are not part of a smallest trans-

action cost path from p to c;

3. If p and c only have a direct route between them, then that is the only route via which

trade can occur between this producer and consumer pair. Also, if no routes exist

between p and c, then obviously no trade occurs between these two agents.

7.4 Proof of Theorem 5.2

The equilibrium equations for this case are as follows:

u1(1) =
π12

2 ln(1/δ)
(1− µ2) max{z12, 0}, u0(2) =

π12
2 ln(1/δ)

max{z12, 0},

u1(2) =
π23

2 ln(1/δ)
max{z23, 0}, u0(3) =

π23
2 ln(1/δ)

µ2 max{z23, 0},

z12 = (u1(2)− u0(2)− u1(1))− a, z23 = (V − u0(3)− u1(2) + u0(2))− b,

λ12 ∈


{1} z12 > 0

{0} z12 < 0

[0, 1] z12 = 0

, λ23 ∈


{1} z23 > 0

{0} z23 < 0

[0, 1] z23 = 0

, µ2 =
π12λ12

π12λ12 + π23λ23
.

From the above is clear that u1(1) = (1− µ2)u0(2) and u0(3) = µ2u1(2). Substituting these

we get

z12 =
(
u1(2)− (2− µ2)u0(2)

)
− a, z23 =

(
V − (1 + µ2)u1(2) + u0(2)

)
− b.

First consider the assumption that trade occurs with probability one on both links, i.e.,

λ12 = λ23 = 1. This then implies that µ2 = π12
π12+π23

, z12, z23 ≥ 0 and we can substitute them

directly into the equations for the payoffs. We then obtain the following linear equations in

u0(2) and u1(2),

u0(2) =
u1(2)− a

2 ln(1/δ)
π12

+ (2− µ2)
, u1(2) =

u0(2) + V − b
2 ln(1/δ)
π23

+ (1 + µ2)
.

We can take limits in the equations above as δ goes to 1 (along an appropriate subsequence)

to get

u0(2)(2− µ2) = u1(2)− a, u1(2)(1 + µ2) = u0(2) + V − b.
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Since the ln(1/δ) terms vanish in the limit of δ going to 1, so would the impact of the different

population sizes. The unique solution of the above system of linear equations is

u1(2) =
(2− µ2)(V − b)− a

1 + µ2 − µ2
2

, u0(2) =
V − (1 + µ2)a− b

1 + µ2 − µ2
2

. (20)

It is easily seen that u1(2) ≥ 0 and u0(2) ≥ 0 if and only if V ≥ (1 + µ2)a − b = V̄ , and at

the equilibrium z12 = z23 = 0.

For the remainder assume that V < V̄ . Consider the case that λ23 = 1 and 0 < λ12 < 1.

This then implies that z12 = 0, z23 ≥ 0 and µ2 = π12λ12
π12λ12+π23

. Again taking a limit of δ going

to 1 (along an appropriate subsequence), we also get z23 = 0. If we solve (20), then the

calculated u0(2) will be negative which then implies that at the equilibrium u0(2) = 0; note

that z12 = 0 for δ < 1 also yields the same conclusion. Now it follows that

u1(2) = a, µ2 =
V − b− a

a
, and λ12 =

π23(V − b− a)

π12(2a+ b− V )
∈ (0, 1).

Since V < V̄ =
(

1 + π12
π12+π23

)
a + b, it also follows that V < 2a + b which ensures µ2 ≤ 1.

Similarly, one can verify that λ12 ∈ (0, 1). Since the consistency conditions are met, we have

an equilibrium.

The uniqueness of the solution in both cases also proves that the same solution holds

along every subsequence of δ converging to 1 (from below) so that the uniqueness of the

equilibrium also follows. Finally, we can verify that there can be no other equilibria.
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