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Abstract—Routing to mobile nodes in a wireless network is
conventionally performed by associating a static IP address
(or a geographic location) to each node, and routing to that
address using routing tables at intermediate nodes that are
updated periodically to reflect mobility-induced network topology
changes. This mode of routing works when the mobiles’ speedsas
well as the number of mobiles are small. However, in the presence
of large number of fast-moving mobiles, such approaches are
infeasible and can lead to excessive overheads, routing failures
and hence, throughput loss.

In this paper, we consider a wireless network over a domain
with a collection of static nodes (that form a connected cover of
the domain) and mobile nodes, where the mobile nodes can move
in an arbitrary (non-ergodic) manner over sub-domains of the
network. For such a system, we develop new routing algorithms
(based on a spatial multi-resolution search) that we show are
efficient both in terms of routing overheads and throughput.
In particular, we show that the achievable rate region of the
proposed algorithm is within a poly-logarithmic constant of the
optimal rate region with non-ergodic mobility.

I. I NTRODUCTION

Routing algorithms for MANETs are typically designed by
constructing routing tables for the current positions of the
mobile destination nodes and periodically updating the tables
(proactive protocols) [11] or constructing routing tablesin an
on-demand manner whenever a packet is required to be routed
to the mobile [12]. In the presence of a large number of fast
moving mobiles, the routing overheads incurred to learn and
maintain correct routing tables at intermediate nodes can be
prohibitively large.

Geographic algorithms are advantageous from the perspec-
tive of maintaining routing tables as the routing is based only
on the locations of the neighboring nodes and the final des-
tination [7]. In recent research [17], [18], geographic routing
schemes have been shown to operate close to the optimal rate
region (i.e., achieve simultaneous data-rates that are close to
rates achievable by any other global algorithm in a static or
quasi-static mobility regime).

When the mobiles are slow moving and/or their geographic
locations are well known to the sending node, it is possible to
construct the routes and routing tables with low-overhead costs
and amortize the associated route setup costs over multiple
data packets. However when the locations of the mobiles are
unknown to the sending node (and the nodes are fast moving),

the overhead required for route setup can become significant,
precluding the use of conventional geographic algorithms.

Another important consideration in designing algorithms
for mobile routing is the mobility model. In many studies
[4], [13], the pattern of mobility is assumed to be ergodic,
i.e., the mobiles are assumed to move with some statistical
regularity over a given set/region. Such an assumption implies
that a mobile will return to fixed locations in the region with
probability one, enabling the development of algorithms for
near-throughput-optimal routing [14], [19]. However, such an
assumption might not be valid in many applications.

In this paper, we consider a scenario where a collection of
static (non-mobile) nodes form a (wireless) connected cover
of the spatial domain, and a large number of (potentially fast-
moving) mobile nodes move over this region in a potentially
non-ergodic manner (i.e., there is no guarantee that the mo-
biles’ trajectories have any learnable statistical regularity). Our
objective is to develop multi-hop routing algorithms to route
data from the static nodes to the mobile nodes assuming that
the static nodes are not aware of the mobile nodes’ locations.
However, the static nodes have local geographic knowledge
(i.e., information about their neighbors within their radio range
as well as their own locations) to enable geographic forward-
ing. Such a scenario has several applications – for instance,
routing from a collection of sensors nodes scattered over a
battlefield to mobile soldiers [14], or industrial applications
where sensory data from different locations need to reach
(mobile) foremen. In either case, it is not clear that we can
precisely characterize the mobility pattern beyond some rough
measure (such as approximate regions over which the mobile
can move).

In this regime, we develop a mobile-assisted sequential-
search routing algorithm that performs near to the optimal rate
region of networks with arbitrary mobility over sub-regions of
the geographic domain [9].

A. Main Contributions

We consider a network wheren static nodes are distributed
uniformly randomly over a unit radius sphere, and there are
n mobile nodes that serve as destinations. Associated with
each mobilei, 1 ≤ i ≤ n is a region of the surface of
the unit sphere,Si, over which mobilei can move in an
non-ergodic manner. The mobile nodes are also capable of



sending out advertisement packets to announce their current
locations. Further, associated with each mobilei is a static
node that generates traffic to that mobile at rateλi. We study
the performance of such a network asn scales assuming that
the static node associated with mobilei is Θ(1) distance away
from the mobility setSi

1. For such a system, our contributions
are as follows:

1) We construct a routing algorithm based on a mobile-
assisted sequential search that iteratively gets closer to
the mobile destination irrespective of its mobility. The
routing length (hop-count) due this scheme is shown to
be order-wise the same as a direct path from the source
to the mobile.

2) The algorithm is analytically shown to be correct, and
to achieve a rate region that is within a poly-logarithmic
fraction of an upper-bound on the optimal rate region
with non-ergodic mobility i.e., the algorithm is shown
to be ‘near-optimal’ in terms of the rate region.

B. Related Work

Many routing algorithms for MANETs have been extended
from existing algorithms for static wireless networks like
DSDV [11], AODV [12], and DSR [6]. The means of using
a static algorithm is either by updating the routing table
whenever the network topology is altered due to mobility
(proactive protocols) or by flooding the network to construct
a path whenever a packet needs to be routed (reactive pro-
tocols). With both approaches, the routing overheads (table
updates and/or reactive flooding) increase considerably with
the rate of change of network topology. In networks with a
small number of slow moving mobiles, the overhead costs
of such approaches could be amortized over multiple packet
transmissions. However, in networks with a large number of
fast moving nodes, such topology changes can be very frequent
and cause the routing schemes to fail or perform poorly.

To ameliorate the overhead cost due to topology changes,
algorithms based on geographic forwarding have been studied
as a popular alternative [7], [1]. With geographic forwarding,
as the routes can be constructed via greedy forwarding, the
nodes only need to update the locations of their neighbors.
However, these schemes require the source nodes to know the
destination’s location. Under such assumptions, recent work
[17], [18] has shown that variations of geographic routing
with appropriate randomization can achieve ‘near optimal’
throughput with arbitrary traffic distributions and network
holes (regions where geographic forwarding may fail). How-
ever, when the destination is a fast moving mobile node,
any location information available at the source will quickly
become outdated, causing geographic schemes to also perform
poorly or fail.

The idea of reducing (making infrequent) the topology
updates to nodes far away has been considered in schemes
such as FISHEYE state routing [10], which provides increas-
ingly precise route updates as a packet approaches the mobile

1This assumption ensures that the rate a static node can send to a mobile
node is bounded.

destination. Routing with mobility has also been considered in
recent research where the movement of the mobile nodes has
mainly been seen as a means to increase throughput. Authors
in [4] consider a network in which mobiles move ergodically
over the whole region and show that a throughput capacity
(i.e., the maximum data-rate that is simultaneously achievable
by all source-destination pairs) ofΘ(1) is achievable. This ca-
pacity is mainly achieved by using the mobiles to relay packets
to other mobiles whenever they come close enough to each
other (this happens roughly periodically due to ergodicity). A
critical aspect of using the mobiles to relay the packets is the
associated increase in the delay as the time taken by a relay
mobile node to revisit a given mobile is much larger than
the time needed to route a packet directly to that node. The
throughput-delay trade-off in networks with mobility (ergodic
mobility over the whole region or random walks over multiple
intersecting regions that allow for sufficient mixing) has been
well studied in [3], [15], [8], [13], [19].

Mobility over restricted sets (but ergodic) was consideredin
[14] where the authors demonstrated that simple geographic
schemes can perform near-optimally (in a throughput capacity
sense) by routing packets to a random node in the mobile’s
restricted set. We note however that in these approaches, the
mobility is ergodic, i.e. nodes are visited with regularity, and
hence packets can wait for mobiles to collect them.

In the absence of any ergodic movement (i.e., any learnable
mobility statistics/pattern) the above schemes perform poorly
with respect to capacity and could even fail to route packets
successfully. The regime of non-ergodic mobility and a charac-
terization of the throughput region (rate region) was presented
in [9] in a cellular context.

In this paper, we consider the non-ergodic movement of
mobiles over a connected setSi and demonstrate a routing
algorithm based on using geographic forwarding and advertise-
ment by mobiles to sequentially partition the network topology
so that packets reach their destinations over multiple iterations.
The use of advertisements by mobiles to aid routing has also
been previously considered [2], but in the context of querying
and searching sensor networks.

II. SYSTEM DESCRIPTION

A. Networks with Arbitrary Mobility

We consider a network wheren static nodes are distributed
uniformly randomly over a sphere with unit radius. Further,
there aren mobile nodes located arbitrarily. These mobile
nodes move non-ergodically (arbitrarily) through some region
Si for each mobilei in the network. Each mobile node can
receive packets from nearby static nodes (within radio range)
at rates much higher than the static node-to-node rates. Thus
we assume that a mobile picks up all packets destined to
it in a single time unit whenever it visits a static node, see
Figure 1, [14]. We do not allow mobiles to carry packets
for a different mobile. Thus node-to-mobile communication
is limited to node-to-node hops until the last transmissionto
the correct mobile. The data rates are such that at least some
fraction of the rate to any particular mobile comes from a



Fig. 1. System model illustrating static and mobile nodes with restricted
mobility sets.

source at a distanceΘ(1). That is, we only allow rates such
that at leastfmin fraction of the rate comes from a distance
which is2 at leastr0.

The authors in [5] have shown that for anyε > 0, one
can construct a Voronoi tessellation of the surface of the
unit sphere so that each region can be bounded inside and
outside by circles of radiiε and 2ε respectively. We tile the
spherical region by such a tessellation withε = Θ(

√

log n/n).
The radio rangeR(n) is also chosen to scale asR(n) =
Θ(

√

log(n)/n), and each static node can communicate to
nodes in adjacent tiles. By the setting appropriate constants for
ε and the radio range (i.e., the constants in theΘ(·) term), the
connectivity of the network can be guaranteed almost surely
(asn → ∞) [5]. Henceforth in this paper, we assume thatn
is large enough such that geographic routing will not fail with
high probability. Also, there are no more thanΘ(n/ logn)
tiles since each tile covers at least aΘ(log n/n) area.

B. Interference Model and Standard Definitions

We assume the following to model the interference effects
of simultaneously transmitting nodes which are within each
other’s radio rangeR(n).

Definition 2.1 (Protocol Model, [5]):A transmission be-
tween a nodeA and its receiving nodeB is assumed to
be successful ifd(A, B) ≤ R(n) and d(C, B) > (1 +
d)R(n), for somed > 0, for all other transmitting nodes
C 6= A.
This successful transmission occurs at rate ‘1’ WLOG. Further,
we denote by therate region, the set of alln dimensional
achievable rate vectors. Thus, eachn dimensional rate vector
in the rate region corresponds to the data rate that can be
simultaneously sustained between then source-destination
pairs under some (possibly mobility-pattern aware) routing
strategy, and with any arbitrary mobility pattern as described
in Section II-A. More formally, let Λ̄mp,s be the set of
n dimensional rate vectors that can be achieved under a
routing strategys and a mobility patternmp (where this
mobility pattern is feasible under the constraints imposedin

2Note that this is in fact a weaker requirement than having a single static
source node associated with every mobile. This condition allows multiple
source nodes to transmit to a mobile destination – however, in the rest of the
paper, we state and prove results only in the context of one static source per
mobile.

Field Name Functionality
ADVERTISEMENT or DATA Mobile information or Data Packet.

ROUTING STAGE Specifies the current stage of routing
ACK Denote packet receipt.

CURRENT CENTRAL NODE Central node, random grid orientation
ITERATION The current iteration level
SEC-DEST Location of next+1 way-point

MOBILE-DEST ID of the mobile destination
DATA Message to the destination node

TIMESTAMP Timestamp for advert./control packet

TABLE I
FIELDS IN THE HEADER OF THE PACKET.

Section II-A). The rate region̄Λ is given by

Λ̄ =
⋂

mp

⋃

s

Λ̄mp,s (1)

Note that in the above definition, the routing strategy
could adapt according to the mobility pattern (i.e., mobility
aware routing). We definef(n) = Θ̃(g(n)) if f(n) =
O(g(n)(log n)k) and g(n) = O(f(n)(log n)k1) for some
−∞ < k, k1 < ∞. When applied to collections of scalars
(e.g. vectors, matrices, sets), thẽΘ(·) notation applies for
each scalar component of the collection. Thus, ifΛ̄ is the rate
region, we say that an algorithm is near-optimal if it achieves
a rate region that is̃Θ(Λ̄).

III. ROUTING TO MOBILE NODES

Routing to static nodes in a wireless network can be per-
formed very efficiently in the presence of geographic location
information [7], especially when the location of the destination
node is known to the sender. With geographic location, the
packets can be greedily forwarded towards the respective
destinations. When the destinations are mobile, (and/or their
locations are unknown) such an approach is infeasible.

In scenarios where the mobile speeds are much slower than
packet speeds (distances traveled by a typical packet in a
given time), a possible routing method maybe to chase down a
traveling mobile. Also, when the movement of the mobiles is
ergodic (i.e. mobiles revisit given nodes with high probability),
a possible routing scheme is to route a packet to one of the
nodes that the mobile shall eventually visit, and hold the packet
until the mobile arrives. However, both of these methods could
fail when the mobile’s trajectory is arbitrary and fast moving.

In this section, we describe a routing algorithm that suc-
cessfully delivers the packets to the mobile irrespective of
its speed. Also, the algorithm is shown to provide ’good’
throughput even in the presence of arbitrary mobility, i.e,the
scheme achieves a rate region that is within a poly-log factor
of the best possible rate region (over the worst-case mobile
scenarios as described in Section II-B).

A. MobileSearch Algorithm

We first define a packet structure in Table I to provide a
common communication scheme between nodes. The routing
process is described as a logarithmic search for the mobile



node over the network. For each packet, the transmitting node
constructs a random grid (i.i.d. for each packet) that sequen-
tially partitions the whole network space into finer regions
until the packet reaches the mobile. We initially describe the
algorithm over a unit square region for ease of description,
although in the analysis we use the correspondingly created
grids on a unit sphere, see Figure 2.

The source nodeA sets the starting iteration numberi = 0
and picks a randomly chosen pointP along with a random ori-
entation; it then forwards the packet to the node at positionP
and indicates the orientation and iteration in the header. Note
that on a sphere, the pointP is uniformly spatially symmetric.
The randomly chosen central nodeP then constructs the grid
lines G, G′ and H, H ′ to divide the whole region into four
sub-pieces (i.e., it quarters the region). To do this it sends the
packet over each grid line3. Each node along the grid saves
a copy of the packet for a predetermined time. This can be
performed in such a way that the packet passes along each
line segment at most twice and returns to the central nodeP .
Since the static nodes are aware of their own geo-location,
this traversal can be performed by greedy packet forwarding
where each node needs only to know the orientation and level
of the grid, and the end points of the current line segment to
determine how the packet can be forwarded. At this stage, we
designate the whole region as the ‘active-grid’, and the grid-
lines as the ‘current’ grid lines. The algorithm’s operation until
this point is designated as the BUILD stage. Once the traversal
for constructing the ‘current’ grid is complete, the central node
initiates the WAIT stage. First, a message packet specifying the
stage is sent along the grid in the same manner as described
above. Once nodes receive and forward this message, they
simply wait in an inactive state.

An important component of the algorithm is the adver-
tisement by the mobile destinations. Each of the mobiles
periodically send out advertisement messages along a line
towards a random point4. This message will advertise the
mobile’s position with the time it was present in that loca-
tion. Eventually, a node along the ‘current’ grid will receive
this message when it is in the WAIT stage. On receiving
the advertisement, the position contained in the message is
forwarded along the grid to the current central node. Further,
the advertisement packets are timestamped. The advertisement
will be used to activate a new ’active-grid’ only if the BUILD
completion time is earlier than the advertisement timestamp
(also note that multiple advertisements in an iteration will be
suppressed by the grid nodes).

The central node uses the position of the mobile to de-
termine the section of the grid where the mobile is present.
A new central nodeP is chosen in the section containing
the mobile, and the packet is sent along the next level of

3In the following when we say the source sends a packet over a grid line,
we mean that it geographically forwards the packet along thestatic nodes in
the direction of the grid line.

4Note the random point establishes the direction of the line,but is not the
end point. The packet will continue in this direction until it intersects the grid
or reaches the boundary or the region (in case of the sphere, completes the
great circle).

Fig. 2. Construction of the sequentially refined grids to trap the mobile node.
This figure illustrates the algorithm on a unit planar area aswell as on a unit
sphere.

the grid to that central node. Note that the header will still
contain the information about the grid’s orientation. At this
stage, the iteration number is incremented by one. Once the
new central node receives the packet, the process is repeated
at the smaller sub-region. Now, the ’active-grid’ is the sub-
region where the mobile was present, and the ‘current grid’ is
comprised of all the newly constructed finer grid-lines along
with the boundaries of the ’active’ region (see Figure 2).

This packet is successfully received in one of two ways.
Whenever the mobile moves over a tile, it picks up all the
packets within that cell that are destined for the mobile. Thus
if the mobile moves outside of the grid enclosing it, the packet
is successfully received. Otherwise, the subdivision continues
until the grid contains only some small constant number of
cells5. The packet is then just spread over this small area
and the mobile must receive it. Once a packet is received by
its destination an acknowledgment is sent to the appropriate
central node and the routing of the packet will terminate within
one iteration of the algorithm.

B. Analysis of MobileSearch Algorithm

In this section, we demonstrate the correctness of the
algorithm in routing the packets to their corresponding mobiles
and its near-optimal throughput property, i.e., the algorithm
successfully achieves a poly-log fraction of the rate region.
We first provide an upper bound on the achievable rate region
in the non-ergodic mobility regime. We then show that the
mobile is always contained in the correct ‘active-grid’ at any
given iteration of routing a packet, irrespective of the mobile’s
movement. Finally, we prove that the network will be stable for
rates that are in a poly-log fraction of our bound on the rate
region. That is, we consider a typical tile of the dimension
of the radio range, and show that the rate imposed by our
routing algorithm does not overload any given tile - the rate
imposed is within a poly-log multiple of the maximum rate (a
Θ(

√
n) quantity over time-slots

√
n time-units long) the tile

can support.
As mentioned in Section II, we consider a Voronoi tes-

sellation of the sphere such that the space is tiled by ap-
proximately uniform tiles of the dimensions of the radio

5Note this implies that the maximum number of iterations willbeΘ(log n).



rangeR(n). Recall that the radio range is chosen to scale
as R(n) = Θ(

√

log(n)/n) to ensure that the static network
is well connected with high probability for large values ofn
[5]. We choose a typical tile from such a construction. We
assume that nodes send constant-sized packets at a maximum
transmission rate of 1 packet per time-unit from each cell
(independent ofn). However, actual packets are sent over a
time-slot that is

√
n time-units long, which enables up to

√
n

packets to be multiplexed in each time-slot from a given tile.
We express all rates in units of packets per time-slot, and soa
node which sends at a rate of 1 is sending1/

√
n packets per

time-unit and the maximum rate a node may send is
√

n (by
sending 1 packet per time-unit)6.

We now provide an upper bound on the rate regions that can
be supported with non-ergodic mobility. Such an upper-bound
has also been provided in [9]. We provide the theorem in the
context of our system and a short proof for completeness.

Theorem 3.1:Let Λ̄ be then-dimensional rate region for a
system ofn mobiles with non-ergodic mobility as described
in Section II-A. Then,

Λ̄ ⊂ ∩S∈S
˜̄ΛS , (2)

where S is the set of all allowable static configurations
of the mobiles allowable under the constraints imposed in
Section II-A, and˜̄ΛS is the collection of rate vectors that are
supportable for the static configurationS.

Proof: The proof follows since non-ergodic mobility al-
lows for nodes to also be static in any allowable position. Thus,
the capacity region can be no greater than the intersection of
the rate regions achievable by static configurations.
The following theorem provides a proof that our routing
algorithm (i.e, the per-packet iterative search for a mobile)
correctly traps the mobile in its current ‘active-grid’ (see
Section III-A) at every stage of routing. From the discussion
in Section II, we have that the static network is well connected
and geographic routing (i.e., along straight-lines) will not fail
with high probability asn → ∞. Thus, to simplify notation
and exposition, in the subsequent theorems, we assume that the
static network is densely connected so that geographic routing
will not fail.

Theorem 3.2:The ‘active-grid’Hi,p constructed at iteration
i for routing the unreceived packetp to a mobile nodeM
contains the mobileM .

Proof: Let p be some packet that is sent to a mobile
nodeM . We will prove this theorem using induction over the
iterations of the algorithm.

Let E be the number of iterations of the algorithm. We will
show that at the start of any iterationi, 0 ≤ i ≤ E, either
the packetp was already successfully received, or the mobile

6We comment that an alternate approach is to construct fixed-size time-
slots and scale the packet size as1/

√
n as in [3], which will lead to the same

packet data-rate as the scaling we use in this paper. However, as we have
various messages relayed as part of the protocol (e.g., advertisement packets,
ACK packets) and it is not clear how each of them should scale,we assume
fixed size packets that do not scale with network size, and instead scale the
time-slot length as

√
n.

M is inside Hi,p, the ’active-grid’ for iterationi. The first
grid is over the entire network, so clearly the mobile must
be contained in it. This covers the base case, asH0,p always
containM .

For the inductive step, assume that the induction hypothesis
holds for iterationk, where 0 ≤ k < E. Namely, assume
that eitherp was received before the start of iterationk, or
that M is inside the regionHk,p at that time. We will show
that from this, we can conclude that at the start of the next
iterationk + 1, p was received or thatM is insideHk+1,p. If
the first condition of the induction hypothesis is true, i.e.that
p was received before iterationk, then clearlyp was received
before iterationk +1 and we are done. Otherwise, the mobile
is inside the regionHk,p at the start of iterationk. During that
iteration, the first stage of the algorithm is the BUILD step.
In this step, this grid is subdivided into four sections, oneof
which will become the next iteration’s ’active-grid’. Thenthe
algorithm proceeds into the WAIT stage.

There are two possible cases at this point. Either the mobile
M left the gridHk,p or it has remained there. In the former
case, where the mobileM is no longer in the gridHk,p when
the algorithm proceeds to the WAIT stage during thekth

iteration, clearly it must be elsewhere in the network. By the
structure of the grid, we know that all nodes along the border
of the ’active-grid’Hk,p contain the packetp. Note that there
is no border aroundH0,p (since it is the whole network), but
the mobile cannot travel outside that region. Since the path
of the mobile is continuous and travels from inside the region
Hk,p to outside of it, it must pass through the border. Thus
M must have passed within range of a node containingp. By
assumption, when the mobile passes within radio range of a
node, the mobile is capable of receiving all packets meant for
it from that node. Therefore,M would have received packet
p at this time, before the start of iterationk + 1.

In the second case, the mobile is still insideHk,p when the
algorithm enters the WAIT stage. Note that at this time, the
BUILD stage is complete and the packetp has been sent over
each of the lines in the next finer grid. Recall that the mobile
M is periodically sending out advertising lines. Then at some
point after this WAIT stage starts,M will send out one of
these advertising line that will intersect the grid. The node at
this intersection point uses the timestamp inside the packet to
verify that it was sent after this stage began. The packet gives
the location of the mobileM . Like before, if M left Hk,p

before sending the line, it receivedp. Otherwise,M sent the
line while inside one of the sections ofHk,p. This section will
become the ’active-grid’ for the next iteration,Hk+1,p. Finally,
when thek + 1st iteration begins, either the mobile is still in
Hk+1,p or it left. As mentioned earlier,p was already sent to
all nodes borderingHk+1,p (and each other section ofHk,p)
during the BUILD stage. Hence, using continuity of motion as
before,M must have passed near a node with the packetp on
the border ofHk+1,p, receiving the packet. By combining all
the cases, we have that either the mobileM passed through
the grid and thereby received the packetp, or it is inside the
Hk+1,p at the start of iterationk + 1.



Continuing the induction to the last iteration of the algo-
rithm, we find that at each iteration, the packet was already
received or the mobileM is inside the ’active-grid’ for that
iteration.

Next, we provide bounds on the probability that the routing
grid constructed by our algorithm for a mobileM can enter
into a typical tileT, which is at a distancer = d(M, T ) from
the mobile. For any given packetp, we define the setAp as
the footprint of routing - i.e., set of tiles touched by the routing
scheme.Note that our routing adds new tiles to the footprint at
every iterationi, denotedAi,p. ThusAp =

⋃

i Ai,p (the union
is over only those iterations until the algorithm terminates).

Lemma 3.1:Let M be a mobile receiver,T be some typical
tile and letAi,p be the set of new tiles added to the footprint
at iterationi. Then, if at the beginning of thei-th iteration,
d(M, T ) > Θ(2−i), the probability thatT ∈ Ai,p is 0.
Otherwise,P{T ∈ Ai,p} is at mostΘ̃(2i/

√
n).

Proof: We need only consider when the algorithm reaches
iteration i (because the packetp was not yet received), or
otherwise Ai,p = ∅ and the upper bounds trivially hold.
Let dmax be the maximum diameter of the ’active-grid’ for
p at iteration i, Hi,p, over all possible regions. Notedmax

is a Θ(2−i) quantity since the sides of each region are cut
approximately in half each iteration. Note that all tiles added
to the footprint at iterationi must at least partially intersect
Hi,p.

Consider the case whered(M, T ) > dmax. By Theorem
3.2, we know thatM ∈ Hi,p at this iteration. Suppose it was
possible thatT ∈ Ai,p. Then some part ofT must intersect
Hi,p. The distance between any point inHi,p and the tileT
is at mostdmax since the tileT intersects withHi,p whose
diameter is at mostdmax. Yet d(M, T ) > dmax and M ∈
Hi,p. This is a contradiction. Hence ifd(M, T ) > dmax, it is
impossible forT ∈ Ai,p, and the probability that this event
occurs is 0. This completes the proof of the first part of the
lemma.

Next, we would like to bound the desired probability in the
case whered(M, T ) ≤ dmax. Here, we ignore the ’active-grid’
and consider the extension of the ’active-grid’ over the whole
network. That is, we consider the grid that is the union of
the lines in all possible active-grids from any mobile position
(the actual ’active-grid’ that is used depends on the mobile
position). This is a grid at the resolution of iterationi that
covers the whole space. We call the lines making up this grid
Gi. Note that each iteration at most doubles the number of
lines in the grid, each of which has a maximum length. This
implies that the total length of the lines inGi is at mostΘ(2i).
The packet actually travels along a subset of this grid that is
within the active area. LetBi,p denote the footprint from a
packet traveling over the extended gridGi, i.e. the set of tiles
that intersect withGi. Since the packet travels a subset of
this grid,Ai,p ⊂ Bi,p. This gives the following upper bound:
P{T ∈ Ai,p} ≤ P{T ∈ Bi,p}.

Note thatBi,p is independent of the location of the mobile.
Recall 2ε is the maximum radius of the tileT, where ε =
Θ(

√

log n/n). Also note that any grid can be traversed by a

path that crosses any point at most twice. LetPi be such a
path that traversesGi, so`(Pi) ≤ 2`(Gi) = Θ(2i) (`(·) is the
length of the corresponding path). Mark outD points labeled
{S0, S1, . . . , SD} over the whole length ofPi at intervals of
ε, including the first and last points ofPi. Now, noting that
D × ε/2 < Θ(2i), we haveD ≤ Θ̃(2i

√
n).

We call the center of the2ε radius circle that coversT the
center ofT , and label itT0. Consider a circleC of radius
4ε aroundT0. We will upper bound the probability thatT ∈
Bi,p by considering the probability of a simpler eventT ∩
Gi 6= ∅. Suppose there is some pointx ∈ Gi ∩ T . It must
lie in some intervalSjSj+1 on the pathPi. Note that due to
the construction of that interval,d(x, Sj) < ε. The triangle
inequality givesd(Sj , T0) ≤ d(Sj , x) + d(x, T0) < 3ε. Thus,
point Sj is in the circleC. Then we have thatGi ∩ T 6= ∅
only if there is at least one of the pointsSj inside C. Hence,

P{T ∈ Ai,p} ≤ P{T ∈ Bi,p} ≤ P{∃j : Sj ∈ C}

≤(a)

D
∑

j=0

P{Sj ∈ C} =(b)

D
∑

j=0

Area(C)/(4π)

=(c) (D + 1)Θ̃(
1

(
√

n)2
) ≤ Θ̃(2i/

√
n)

Inequality (a) above follows from a union bound. The next
equality (b) follows due to the randomization of the grid. Any
point Sj on the grid is uniformly probable to be any point
on the sphere. Then the probability that it is in a given circle
is the area of that circle divided by the surface area of the
whole sphere,4π in this case. Using the radius of C gives the
equality (c). Thus we haveP{T ∈ Ai,p} ≤ Θ̃(2i/

√
n), which

completes the lemma.
While Lemma 3.1 provided a probabilistic bound on the rate

at which packets may enter a tile given the mobile’s distance
from it, the following lemma provides a cut-set based upper
bound on the sum-rate at which packets (and the number of
mobiles) can enter a radial region.

Lemma 3.2:For any rate vector in the rate region, the
following property holds: In any circle with radiusr, with
2r < r0, the total rate destined for any mobiles inside that
circle is at mostΘ̃(rn).

Proof: Let Ar be the set of all mobiles that may be in the
circle. This equals all mobiles whose mobility set intersects
with Ar . Note that there is a static configuration in which each
of these mobiles are in the circle, and hence by Theorem 3.1,
the optimal capacity region is a subset of the rate region for
this configuration. This result is independent of mobility and
gives a bound on the rates as if all the mobiles were static in
the worst case positions for a given traffic vector. ForM ∈ Ar,
let λM be the total rate (in packets per time-slot) that packets
are being sent to mobileM . Then by assumption, at least a
fmin fraction of the rate is from at leastr0 distance away from
the mobile. Since the diameter of the circle is smaller than this
distance,M must receive a rate at leastfmin×λM from nodes
outside the circle. The perimeter of the circle is slightly less
than2πr (since this is on a sphere). Then a cut-set bound gives
the maximum amount of rate that can enter the circle. Only



one node can transmit over eachR(n) = Θ̃( 1√
n
) length of the

perimeter and each node can only transmit at a rateΘ(
√

n).
Hence, packets can cross the boundary of the circle at a rate
no more thañΘ(2πrn). This gives the following bound.

∑

M∈Ar

fmin × λM < Θ̃(rn)

As fmin is aΘ(1) quantity, we have proved the desired result.

Theorem 3.3:Let Λ be an achievable traffic vector. Then,
Algorithm MobileSearch achieves a traffic vector that isΘ̃(Λ).

Proof of Theorem 3.3:
To prove this theorem, we will show that each tile of the

network receives a load at no more than aΘ̃(
√

n) rate in
any time slot (which is

√
n time-steps long). This rate is

achievable by a schedule that operates FIFO and tiles are
scheduled by a finite coloring [5]. Note that the total traffic
can be decomposed into the following three parts.

• Star shaped traffic (∗-traffic) from the radially outgoing
packets at the first leg of routing.

• Traffic generated by the mobile node due to its radially
outward advertising line.

• The traffic generated by the sequential grids that have
been constructed.

We prove that each of these traffic types contribute no more
than Θ̃(

√
n) into any tile with high probability.

1) ∗-traffic from Routing:The∗-traffic comes from packets
being sent out to the first central node, which is uniformly
chosen over the whole sphere. The traffic here is generated
by nodes sending out packets on random lines at a rate equal
to the total rate they want to send to mobiles. This type of
traffic was analyzed in [18], where it was shown that this
traffic produces a load of no more thañΘ(

√
n) into any tile

(however, in the context of a torus). A similar proof holds for
the unit sphere in this paper; we skip the details for brevity.

2) ∗-traffic from Advertisement:The second type of load
is from the advertising lines that each mobile sends. It can
be shown that by sending advertising lines proportional to the
rate a mobile receives, the load on any tile is also no more
thanΘ̃(

√
n). The proof of this is similar to the∗-traffic from

routing, as the cut-set bound in Lemma 3.2 applies equally to
receiving and sending packets.

3) Traffic from the sequential grids:To prove that the
traffic from the grids does not overload the tiles, we show
the following intermediate steps. Firstly, we show that anytile
on the footprint of a packet receives no more thanΘ(log n)
packets of information over a time-slot. Next, we provide a
probabilistic bound on the event that a given tile lies in the
footprint of a packet. Finally, we construct a series of annular
regions (whose radii decrease geometrically) around a typical
tile and consider the rate from each of the annular regions that
impact the tile. We show that the contribution from each ring
(annular region) is̃Θ(

√
n) over each time-slot and the number

of such annular regions is also logarithmic (see Figure 3). The
details are as follows.

Claim 1: Any tile on the footprint of a packet receives no
more thanΘ(log n) packets of information due to that packet.

Proof: For some packetp, consider the tiles in the
footprint Ap. Consider a tileT in this footprint and an
iteration i in which T receives packets. We will now step
through this iteration to determine how many timesT may
receive information packets. In the BUILD stage, the grid is
constructed with the packet traversing any tile in the footprint
of the grid up to at most two times. In the WAIT stage, the
central node starts by sending a message over each line in the
grid to acknowledge that the grid was completely constructed.
Again, this is done with that message passing over any tile at
most twice. Once the advertising line is received by a node,
it forwards an ACK for the advertisement to the central node.
Note any node will only forward such a ACK once, and later
equivalent ACKs are ignored. Then this adds at most one
packet load to the line. Finally, the last ITERATION stage
involves send a message along the grid to the next central node.
Again, this is a load of at most one. Totaling up the load from
each stage, we find thatT receives no more than 6 packets
during a single iteration. In the worst case,T may receive
packets at each iteration, and there areΘ(log n) iterations.
From this, we find thatT receives at mostΘ(log n) packets
of information total.

Claim 2: The probability that the footprint of a packetp for
mobile M contains a tileT is Θ̃( 1

r
√

n
), wherer = d(M, T )

at the last position ofM before the packet is received.
Proof: Recall from Lemma 3.1, for the footprint from

iteration i:

P{T ∈ Ai,p} ≤
{

Θ̃(2i/
√

n) r ≤ Θ(2−i)
0 otherwise.

(3)

At iteration F + 1, Θ(2−(F+1)) will decay to less thanr (or
r will be less than the radio range). At this point, we know
T cannot be added to the footprint. For clarity, letc1 and c2

be the constants for theΘ(2−i) and Θ̃(2i/
√

n) expressions
above. ThenF can be determined as follows:

d(M, T ) = r > Θ(2−(F+1))

= c1 × 2−(F+1)

F + 1 > log2(c1/r)

F ≤ log2(c1/r).

Using this, we can apply a union bound to the result of Lemma
3.1.

P{T ∈ Ap} = P{∃i ≤ F : T ∈ Ai,p}

≤
F

∑

i=0

P{T ∈ Ai,p} <

F
∑

i=0

c2 ×
2i

√
n

<
c2√
n
×

F
∑

i=0

2i <
c2 × 2F+1

√
n

<
2c2 × 2log2(c1/r)

√
n

<
2c2c1

r
√

n

= Θ̃(
1

r
√

n
).



Fig. 3. A concentric collection of annular regions provide mobility indepen-
dent cut-set bounds on the data-rate that can enter a region,and can be used
to compute an upper-bound on the load on tileT .

This is the desired bound.
We will now partition the mobiles into several groups. Each

successive group will be closer to the tileT and be more likely
to add load toT . This will be balanced out by tighter cut-set
bounds that will increasingly limit the total rate mobiles in
that group can receive packets.

Let U0 be the set of all mobiles that are at leastr0/2
away from T . Since each node can transmit at most

√
n

packets per time-slot, the total number of packets transmitted
over the whole network is less thann

√
n per time-slot.

Since we assume that a significant fraction of the packets
must travel aΘ(1) distance and these packets must take
Θ(

√

n/ logn) hops, the load on the network is added at a
rate at leastΘ(

√

n/ logn × µ), where µ is the total rate
packets are sent. Using the above transport capacity bound,
Θ(

√

n/ logn × µ) ≤ Θ(n
√

n) so µ ≤ Θ̃(n). Note for
each mobile in this set,d(M, T ) > r0/2 = Θ(1) (and
µ ≤ Θ̃( r0

2 n)).
Next we will divide the remaining area into a series of

annuli and a circle smaller than the radio range around tile
T (see Figure 3). LetU1 be set of mobiles betweenr0/4 and
r0/2 from tile T , U2 be the set of mobiles betweenr0/8 and
r0/4 from tile T , and so on. Note here that we mean the set
of mobiles that may be in that region at some time. Letri

denote the inner radius ofUi. Let UF be the last annulus with
rF < 2ε = Θ̃(1/

√
n). That is,F > log

√
n × 2/r0 = Θ̃(1).

Next, each mobileM ∈ Ui may be betweenri and2ri away
from T . SinceM is inside the circle of radius2ri < r0/2, we
know that

∑

M∈Ui
λM < Θ̃(rin) by Lemma 3.2.

Claim 3: Choose anyU ∈ {U0, U1, . . . , UF} that is at least
r distance fromT and satisfies the following rate bound:
∑

M∈U λM < Θ̃(rn).
Then during a single time-slot, the load onT due to the

mobiles in U is less thanΘ̃(
√

n) with probability at least
1 − 1

n3 .
Proof: Let X be a random variable equal to load from

mobiles in U on T over one time-slot, andXM (p) be the
load from a packetp for a mobileM ∈ U . From Claim 2, for
all packetsp to a mobileM ∈ U , P{T ∈ Ap} = Θ̃( 1

r
√

n
).

In addition, each packet for mobileM adds a load of at

mostΘ(log n) by Claim 1. Then eachXM (p) is stochastically
dominated by Bernoulli random variablesΘ(log n) × X̃M (p)
(independent across packets and mobiles), where

X̃M (p) =

{

1 w.p. Θ̃( 1
r
√

n
)

0 w.p. 1 − Θ̃( 1
r
√

n
)

The expectation of X can then be determined as follows.

E[X ] = E[
∑

M∈U

∑

{p destined forM}
XM (p)]

≤ E[
∑

M∈U

∑

{p destined forM}
Θ(log n) × X̃M (p)]

=
∑

M∈U

Θ(log n) × Θ̃(
1

r
√

n
) × λM ≤ Θ̃(

√
n)

Further, using a Chernoff bound, the high probability (i.e.,
1 − 1/n3) result follows. We skip the details for brevity (we
refer to [3], [16] for an analogous bound).
Each of the setsUi satisfy the conditions of the above
claim, and hence each produces a load less thanΘ̃(

√
n) with

probability at least1 − 1
n3 . Let the load from mobiles inUi

be Xi.

P{
F

∑

i=0

Xi ≥ Θ̃(
√

n)}

<(a) P{∃i : Xi ≥ Θ̃(
√

n/F )}
= P{∃i : Xi ≥ Θ̃(

√
n)}

<(b)

F
∑

i=0

P{Xi ≥ Θ̃(
√

n)}

≤ (F + 1)n−3 ≤ Θ̃(n−3). (4)

By the pigeonhole principle, if the sum ofXi is greater than
Θ̃(

√
n), one of theXi must be greater thañΘ(

√
n/F ), giving

inequality (a). The expression (b) follows from a union bound.
Finally, consider mobiles within radio range ofT . Note that

the total rate that mobiles can receive within this a radio range
area is at most̃Θ(

√
n), and packets for these mobiles will only

enter the area once (since once they enter, they are received).
Then clearly, the load here is at mostΘ̃(

√
n).

This establishes that the load onT is sufficiently low with
high probability. The final step is to extend this and show that
all tiles will have a low load with high probability. LetX(T )
denote the load at tileT . We have:

P{∃T : X(T ) ≥ Θ̃(
√

n)}

≤
∑

T

P{X(T ) ≥ Θ̃(
√

n)}

≤
∑

T

Θ̃(n−3)

≤ Θ̃(n × n−3)

= Θ̃(
1

n2
). (5)



By Borel-Cantelli’s Lemma, we have the load is feasible
almost surely.
Thus, in the light of Theorems 3.1, 3.2 and 3.3, we have the
following result.

Theorem 3.4:For any achievable traffic vectorΛ (in the
presence of non-ergodic mobility), the routing under Mobile-
Search is stable when a load ofΘ̃(Λ) is imposed.

Proof: From Theorem 3.3, we see that for rates in the
region Θ̃(Λ), the load on any tile of the network is no more
thanΘ̃(

√
n) almost surely. This holds even for arbitrary move-

ment of the mobiles because the cut-set bounds in Lemma 3.2
apply as if the mobiles were always static in the worst case
positions. Since the network can support

√
n packets per time-

slot, this load is feasible. It can be shown there is a schedule
that stabilizes the routing in this case.

In addition, by Theorem 3.2, we see that all packets either
the reach their destination or the mobile is always contained
in the ’active-grid’ for each iteration of the algorithm. The
routing is stable, so the algorithm will always continue until
either the packet is received, or the approximately(1/2) logn
iterations pass and the final active grid is reached. Since the
final ’active-grid’ is smaller than radio range and the mobile
must be within it, the packet will get received in this case as
well.

Therefore, we can conclude that the MobileSearch Algo-
rithm will successfully route packets to their destinationwith
a stable load imposed on the network.

IV. D ISCUSSION ANDCONCLUSION

In this paper, we showed that a mobile node can be reached
by a path that is within ãΘ(1) factor of the straight-line path to
it from the source node. Our scheme utilized ‘advertisements’
by mobile nodes to aid the sequential search process - i.e.,
at each iteration the ‘advertisement’ packet helped guide the
search into the correct sub-region. We also demonstrated that
the sequentially finer grids did not overload any tile.

In our model, we assumed that there exists a unique source
nodeAi for each mobile destinationMi which is aΘ(1) dis-
tance away fromSi. We note that the model can immediately
be extended to multiple sources providing a sum rateλMi

to mobile Mi. This is due to the fact that independent grids
are constructed for each packet, and the bounds on allowable
distributions of source nodes are the same.

The restriction on the distance between the source and its
corresponding mobile (i.e. the restriction thatd(Si, Ai) ∼
Θ(1)) can be relaxed to allow all source-destination separa-
tions by modifying the algorithm as follows:

A. Modifications to MobileSearch

Instead of constructing large grids (of sizeΘ(1)) in the very
first iteration, the algorithm constructs a small grid of thesize
of the radio range and waits for the mobile’s advertisement.
If the mobile’s location is outside the smaller grid, or the
advertisement did not reach the current grid within a given
timeout, the algorithm iterates to the next larger grid (of twice
the perimeter). This proceeds with geometrically increasing

grid size until a grid receives an advertisement from the mobile
indicating that it is inside the current ’active-grid’. Once
the mobile is trapped inside the active region, the algorithm
proceeds as in Section III-A.

Notice that by this modification, the footprint of the grids
creates no more than ãΘ(1) factor larger load as compared to
the optimal path (possibly multi-path) from the source to the
mobile, i.e., the transport capacity imposed on the networkis
not increased significantly.
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