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Packet-Based Power Allocation for Forward

Link Data Traffic

Peijuan Liu Randall Berry Michael L. Honig Scott Jordan

Abstract

We consider the allocation of power across forward-link packets in a wireless data network. The

packets arrive according to a random (Poisson) process, andhave fixed length so that the data rate for

a given packet is determined by the assigned power and the channel gain to the designated user. Each

user’s service preferences are specified by a utility function that depends on the received data rate. The

objective is to determine a power assignment policy that maximizes the time-averaged utility rate, subject

to a constraint on the probability that the total power exceeds a limit (corresponding to an outage). For

a large, heavily loaded network, we introduce a Gaussian approximation for the total transmitted power,

which is used to decompose the power constraint into three more tractable constraints. We present a

solution to the modified optimization problem that is a combination of admission control and pricing.

The optimal trade-off between these approaches is characterized. Numerical examples illustrate the

achievable utility rate and power allocation as a function of the packet arrival rate.
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I. I NTRODUCTION

Efficient allocation of radio resources, such as transmission power, is essential for supporting

diverse applications over wireless networks. Here we investigate power allocation for the forward

link in a wireless network with rate adaptive data traffic. Weconsider a code division multiple

access (CDMA) system that simultaneously transmits to all active flows; the available transmis-

sion power must be allocated among these flows. A utility-based approach is adopted, in which

the service preferences of each packet are specified by a utility function. The network objective

is to maximize a time average utility. It is well-known that such utility functions can capture

many common definitions of fairness within a network [1], [2]and can provide for different

priorities among users.

Power control in cellular CDMA systems based on utility maximization has been studied

for both the reverse link [3]–[8] and the forward link [9]–[15]. In the forward link, the typical

problem is to maximize the aggregate utility subject to constraints on the total available re-

sources. For example, [11] considers a constraint on the transmitted power, while [13] considers

constraints on both the available spreading codes and power. The solution to these problems

can often be interpreted in a pricing framework, where prices are announced for the constrained

resources and users maximize their net benefit (utility minus cost). The optimal allocation of

resources can be found by choosing the appropriate resourceprices. In most of this work, a

static situation is assumed, where the set of active users isfixed. In this paper, the set of active

users is dynamically varying over the time period during which resources are allocated. Random

traffic variations must therefore be taken into account whenallocating resources.

We consider a model in which packets arrive to the base station according to a Poisson process.

The packets are designated for different users with random channel gains, and the time to transmit

a packet depends on the power allocation and the associated channel gain. Here a “packet” could

also represent fixed length flow or session for a particular user as in [19]. An orthogonal signaling

scheme is assumed, in which multiple packets are simultaneously transmitted to different users,
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and the packets do not interfere with each other. Each transmitted packet contributes a utility to

the designated user, which depends only on the transmissiontime (equivalently, the data rate).

Our problem is to determine a policy for allocating power to each packet, which maximizes the

time-average utility rate (i.e., total accumulated utility per unit time), subject to a constraint on

the total power transmitted by the base station.

Since the number of active users is randomly varying, the total power transmitted by the

base-station is a random process. We consider an outage constraint on this process, in which

the total power can exceed a given value with some small probability.1 We characterize the

solution to this problem for a system with a large number of users, so that the transmitted

power can be approximated as a Gaussian random process. In that case, the outage constraint

can be decomposed into three simpler constraints. The solution to this simplified problem can

be viewed in a pricing framework as in [13]; however, there are several fundamental differences.

First, in addition to pricing, explicit admission control is also needed. Second, the price is not

the conventional (linear) price for the constrained resource, which is the transmit power. Instead,

the total charge is the price times the product of the transmission power times energy. This can

be viewed as a price for power times energy, or as a non-linearprice for the required power.

Our focus is on the situation where traffic variations occur on a much faster time-scale than

that over which resource allocation is performed. Specifically, we assume power is allocated to

each packet based on the user’s channel gain and utility, andthis assignment is fixed for the

duration of the packet. The power allocation does not dependon the instantaneous system state

(e.g., the number of active requests), but only on long-termstatistics (e.g., packet arrival rates).

An alternate approach may take into account the current system state and reallocate resources

at every arrival and departure (e.g., see [16], [17]). Clearly, allocating resources on a faster time

scale may improve the resulting utility rate. However, suchan approach may not be feasible,

due to various system constraints, and leads to a more complicated allocation policy. Also, since

1Here we assume that power is the limiting resource, and that there is sufficient bandwidth to support non-interfering

(orthogonal) transmissions to all active users.
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the allocation considered here is not state dependent, eachdesignated user derives a fixed utility

rate upon admission. In contrast, with state dependent reallocations the utility associated with a

packet can vary depending on future events.

We also assume that the channel varies on a slower time-scalethan the traffic requirements.

Specifically, the channel gain does not change during the time required to serve a packet. If this

were not the case, the performance could be improved by utilizing an opportunistic scheduling

algorithm, such as the proportional fair rule for the CDMA 1xEVDO system [18], [19]. We note

that many opportunistic scheduling algorithms can also be viewed in terms of maximizing an

aggregate utility rate [20]–[22].

The rest of the paper is organized as follows. In Section II, we introduce a model for the

forward link of a single cell. In Section III, we formulate a constrained optimization problem

where the objective is to maximize the time-averaged utility rate subject to a stochastic constraint

on the total power. In Section IV, a solution to the simplifiedproblem is presented in which

the power constraint is decomposed into three more tractable constraints. We then characterize

the optimized system behavior. Numerical results, which illustrate the accuracy of the Gaussian

approximation for the power distribution, and optimized power allocations, are presented in

Section V.

II. SYSTEM MODEL

We consider a model for the forward link within a single cell,where the base station transmits

simultaneously to all active users, and transmissions to different users are assumed to be orthog-

onal. For example, this models a CDMA system with orthogonal spreading codes.2 Suppose

that a user with channel gainh is allocated transmission powerP (h). The received Signal-

to-Interference Plus Noise Ratio (SINR) for this user is givenby SINR = hP/σ2, whereσ2

is the total noise plus interference power. We assume that the received data rate for a user is

2We assume that the number of orthogonal codes, or equivalently, the available bandwidth is not a limiting resource. A

bandwidth constraint could be introduced in what follows by adding a constraint on the number of simultaneous transmissions.
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a function of the received power, or equivalently received SINR; this relationship is given by

R(h) = C(hP ), whereC(·) is an increasing function.

Packets arrive to the base station according to a Poisson process with overall rateλ. Each

packet has a fixed length ofL (bits).3 We consider a system with a large number of users, and

assume that each packet corresponds to a new user. The channel gain for each user is assumed to

be distributed on the intervalH = [hmin, hmax], wherehmin ≥ 0 andhmax < ∞, with continuous

density functionfH(h). This density can be used to model the users’ geographic distribution

within the cell, and also various propagation effects such as random shadowing. The channel

gain corresponding to each arrival is chosen independentlyaccording to this distribution and

stays fixed during the entire transmission of the packet.

A utility function is associated with each packet, which reflects the designated user’s desired

quality of service. We assume that the utility depends only on the transmission rateR. Since each

packet has a fixed length, this is equivalent to defining utility as a function of the transmission

time for a packet. In this paper, we assume that all users havethe same utility function,U(R);

however, this formulation can be extended to scenarios withmultiple utility classes. We assume

thatU(0) = 0 and thatU(R) is increasing, concave and continuously differentiable with respect

to R, for R ≥ 0. These are common assumptions for so-called “elastic” traffic, which describes

many data applications [1]. An example utility function,U(R), with these characteristics is

depicted in Figure 1.

The power allocated to a user depends only on the utility function U(·) and the associated

channel gainh. For eachh ∈ H, it will be useful to define the functioñUh(P ), which relates

the utility received by a user with channel gainh to the transmitted powerP . This function is

given by

Ũh(P ) = U(C(hP )). (1)

Notice thatŨh(P ) is different for users with different channel gains even though U(R) is the

3The following can be extended to the case where the length of each request is random, but we will not address this extension

here.
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same for those users.

III. PROBLEM FORMULATION

Our objective is to allocate transmission power to maximizethe utility rate given a constraint

on the total transmission power. A power allocation is specified by a functionP : H 7→ R
+ that

indicates the power used to transmit a packet to a user with channel gainh ∈ H. If P (h) = 0, the

corresponding packet is considered blocked and not transmitted. If P (h) > 0, the corresponding

packets are transmitted with a transmission time given by

T (h) =
L

C(hP (h))
.

Let {Hi}∞i=1 be a sequence of independent and identically distributed random variables repre-

senting the channel gain of theith arrival, and letK(t) denote the number of arrivals in the

interval [0, t). For a given power allocation, the time average utility rateis given by

lim
t→∞

1

t

K(t)
∑

i=1

ŨHi
(P (Hi)) = lim

t→∞

K(t)

t





1

K(t)

K(t)
∑

i=1

ŨHi
(P (Hi))



 (2)

= λEH

{

ŨH(P (H))
}

, (3)

assuming the system is ergodic, where the expectation is an average overfH .

Let A(t) denote the set of active transmissions at timet. The cardinality ofA(t) is N(t),

which is the number of the current active packet transmissions. The total power transmitted at

time t can then be written as

Psum(t) =
∑

i∈A(t)

P (Hi). (4)

This is a stochastic process with statistics that depend on the power allocation and the channel

distribution. We assume that under any power allocation,Psum(t) → Psum in distribution ast →

∞, wherePsum is a random variable with the steady-state distribution. For any power allocation,

we constrain the steady-state total power, given that the system is not empty (N(t) > 0), to be

no greater than some value,P̄ , with probability1−q0, i.e.,Pr(Psum > P̄ |Psum > 0) ≤ q0 where

q0 > 0 is a small constant. Assuming that the system is ergodic, this constraint implies that the
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fraction of time the total power is greater than̄P , when the system is not empty, is no greater

thanq0, which can be viewed as a target outage probability.

The resource allocation problem can be formally stated as

Problem MAXU:

maximize
P :H7→R+

λEH(ŨH(P (H))) (5)

subject to Pr(Psum > P̄ |Psum > 0) ≤ q0 (6)

Note that conditioning onPsum > 0 (the system not being empty) is needed to avoid the impulsive

solution in which each packet is transmitted with infinite power and has infinitesimal duration.

Solving Problem MAXU directly appears to be difficult in general. In the next section we

simplify the problem by approximatingPsum as a Gaussian random variable. This can be justified

when the number of active users contributing toPsum is large. To see when this is likely to be

true, consider the special case in which all users within thesystem have the same channel gain

h. With this assumption the solution to MAXU is given by a single valueP . For the sake of

this example, we further assume that the utility function isgiven byU(R) = 1 − e−µR.

Since each active user is assigned the same power, the average utility is given by

Uavg = λ
(

1 − e−µ L
T

)

whereT is the transmission time for a packet of lengthL, andλ is the arrival rate for transmission

requests. Clearly, we wish to chooseP to minimize T . Hence we select the largest value of

P , which satisfies the constraint (6). Assuming Poisson arrivals, and noting thatT is the same

for all packets, the number of active (transmitting) users,N , is the occupancy of anM/D/∞

queue, which is Poisson with parameterλT . Hence the probability that the system is not empty
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is Pr[N > 0] = Pr[Psum > 0] = 1 − e−λT , and

Pr[Psum > P̄ |Psum > 0] =
1

1 − e−λT

∞
∑

n=0

Pr[Psum > P̄ |N = n] Pr[N = n]

=
1

1 − e−λT

∞
∑

n=0

In>P̄/P Pr[N = n]

=
1

1 − e−λT

∞
∑

n=n0

e−λT (λT )n

n!

≤ q0

where IV is the indicator function for the eventV , and n0 = ⌈ P̄
P
⌉ is the minimum number

of active users, which causes the total power to exceedP̄ . Given anyq0 > 0, we can choose

P small enough (equivalently,n0 large enough) to satisfy the preceding outage constraint. The

objective is then to find the smallestn0, and the corresponding largestP , such that the constraint

is satisfied.

If λT is large enough, thenPr[Psum > 0] = 1 − e−λT ≈ 1 and the Poisson random variable

N can be accurately approximated as Gaussian. In that case, the constraint (6) can be replaced

by the constraintPr[Psum > 0] < q0, wherePsum is Gaussian. To see howλT depends on

the target outage probabilityq0, Fig. 2 showsPr[Psum > P̄ |Psum > 0] vs. λT for different

ratios n0/λT (i.e., n0 is normalized by the average number of active usersλT = E[N ]). The

discontinuities in the plots are due to the ceiling functionused to definen0. As n0/(λT ) increases,

Pr[Psum > P̄ |Psum > 0] must increase, as shown in the figure. Furthermore, the figureshows

that given a targetq0 (e.g., < 5%), we must haven0/(λT ) > 1 and λT > 5. The Gaussian

approximation forPsum is therefore accurate in this scenario.

Verifying the accuracy of the Gaussian approximation by solving MAXU directly becomes

significantly more difficult with more general channel distributions. However, the preceding

analysis indicates that whenP (h) is optimized, the number of active users should be relatively

large whenPsum is close toP̄ . Hence for the analytical results, which follow, we will assume

that the distribution ofPsum has a Gaussian tail. We remark that the accuracy of the Gaussian

assumption also depends on the choice of utility function. In particular, it is less accurate for a
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logarithmic utility function, as discussed in Section V.

IV. U TILITY BASED POWER ALLOCATION

A. Decomposition of Power Constraint

Let δh be a small constant such thathmax−hmin = Kδh, for some integerK. Fori = 0, . . . , K,

definehi = hmin + iδh. For i = 0, . . . , K − 1, let N(i) be a random variable representing the

number of active users in steady-state with channel gain in[hi, hi+1). The steady-state total

power,Psum, can then be approximated as:

Psum ≈
K−1
∑

i=0

P (hi)N(i).

Taking expected values, we have

E (Psum) ≈
K−1
∑

i=0

P (hi)N̄(i),

whereN̄(i) is the expected number of active users with channel gains in[hi, hi+1). Since arrivals

are Poisson with overall rateλ, N(i) is the occupancy of aM/G/∞ queue with arrival rate

≈ λfH(hi)δh and service time≈ T (hi). ThereforeN(i) is approximately Poisson distributed,

and

N̄(i) ≈ λfH(hi)δhT (hi) = N̄(hi)δh, (7)

where N̄(hi) = λfH(hi)T (hi). Assuming thatP (h)N̄(h) is Riemann integrable, then letting

δh → 0, we have

E (Psum) =

∫

H

P (h)N̄(h) dh. (8)

Likewise, sinceN(i), i = 0, · · · , K − 1 are independent, the second moment ofPsum is given

by

E(P 2
sum) =

∫

H

P 2(h)N̄(h) dh. (9)
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For a large number of active users,Psum can be approximated as a Gaussian random variable.

As discussed in the preceding section, we therefore rewritethe constraint (6) as

Pr
[

Psum > P̄ |Psum > 0
]

≈ Q

(

P̄−E(Psum)√
Var(Psum)

)

≤ q0

whereQ(x) =
∫ ∞

x
1
2π

e−t2/2dt is the complementary Gaussian cumulative distribution function

(c.d.f.).

This constraint reduces to
∫

H

P (h)N̄(h) dh + k1

√

∫

H

P 2(h)N̄(h) dh ≤ P̄ , (10)

wherek1 = Q−1(q0).

SinceN̄(h) = λfH(h)T (h), we have
∫

H

P (h)N̄(h) dh = λEH [E(H)], (11)

and
∫

H

P 2(h)N̄(h) dh = λEH [P (H)E(H)], (12)

whereE(h) = P (h)T (h) is the energy consumed by user with channel gainh. An inactive user

is allocated zero energy.

Substituting (11) and (12) into (10), constraint (6) can be approximated by

λEH(E(H)) + k1

√

λEH(P (H)E(H)) ≤ P̄ . (13)

Finally, this can be further decomposed into the three constraints






















λEH(E(H)) ≤ E average energy

EH(P (H)E(H)) ≤ G average power× energy

E + k1

√
λG ≤ P̄ tradeoff ofE vs. G

(14)

We will refer to Problem MAXU when (6) is replaced with (14) asProblem MAXUA. A

solution to Problem MAXUA is provided next. This is accomplished in two steps. First, we find

the utility maximizing power assignment subject to the firsttwo constraints in (14) for given

values ofE and G. Next, the combination ofE and G that yields the highest utility rate is

derived.
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B. Solution with FixedE and G

Given values forE andG, consider the following problem:

Problem P1:

maximize
P :H7→R+

λEH(ŨH(P (H))) (15)

subject to λEH(E(H)) ≤ E (16)

EH(P (H)E(H)) ≤ G (17)

To gain insight into this problem, we consider each of the constraints separately. First, we

examine the problem with only the energy constraint, i.e.,

Problem P2:

maximize
P :H7→R+

λEH(ŨH(P (H)))

subject to λEH(E(H)) ≤ E .

From (8) and (11),E(Psum) = λEH(E(H)), so that Problem P2 is equivalent to constraining

the average sum power.

To continue, we assume that the transmission rate is proportional to the received power, i.e.,

C(hP (h)) = k0hP (h) (18)

wherek0 is a constant.4 It follows directly from (18) that the energy consumed by a user depends

only on whether a user’s transmission power is nonzero, and not on the specific power level,

i.e.,

E(h) =







P (h)T (h) = L/k0h, for P (h) > 0,

0, for P (h) = 0.
(19)

Since utility is strictly increasing in received power, it follows from (19) that the solution to

Problem P2 is for each packet to be either denied transmission (blocked) or transmitted with

4This linear relationship between rate and power is a reasonable approximation for many practical systems, e.g., with low

SNR and/or high bandwidth. For large enough rates, capacity considerations imply that this is optimistic.
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infinite power. If no users are blocked and the energy constraint (16) is violated, then admission

control is required to block some users. This solution is stated as the following lemma.

Lemma 1:A power allocation, which achieves the maximum average steady-state utility in

Problem P2, satisfies

P (h) =







∞, for h > he,

0, for h < he,
(20)

wherehe is the minimum value inH such that (16) is satisfied.

The lemma follows from the preceding discussion and by noting that the energy required by

a user decreases with the channel gain. Hence, blocking those users with smallest channel gains

minimizes the number of blocked users and maximizes (5). We note that ifU(R) is unbounded,

then the solution to Problem P2 is also unbounded, so that anarbitrary set of users can be

blocked. The Lemma implies thatPsum(t) = 0 with probability one (i.e., for almost allt), and

Psum(t) = ∞ whenever a new request arrives.5 Of course, this power assignment is not realistic.

This type of behavior is eliminated by adding the constraint(17).

Next we consider Problem P1 withonly constraint (17).

Problem P3:

maximize
P :H7→R+

λEH(ŨH(P (H)))

subject to EH(P (H)E(H)) ≤ G.

This is a standard optimization problem with a concave objective and linear constraints,6 and

is mathematically equivalent to the problem studied in [13]. As in [13], the solution can be

attained via a pricing scheme.

Lemma 2:Consider the following pricing scheme: a channel-dependentprice per unit transmit

power of the formαp(h) = αE(h) is announced; users respond by requesting power to maximize

5This type offlash signaling also arises in the context of ultra-wideband communications [23], in which case the assumed

linear rate-power relation is valid.
6Note, we are still assuming the linear relationship between rate and power, inwhich caseE(H) can be viewed as a constant

independent ofP (H).
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their surplus (utility minus cost), i.e.,

P ∗(h) = arg max
P (h)

{Ũh[P (h)] − αE(h)P (h)}. (21)

If α is set such that (17) is satisfied with equality, then this pricing scheme provides a power

allocation that is the solution to Problem P3.

This lemma follows directly from the Kuhn-Tucker optimality conditions, whereα corresponds

to a Lagrange multiplier for constraint (17). The set of active users and the assigned power levels

are determined byα, which can be interpreted as a fixed unit price on the product of power

times energy. For each active user, the marginal utility with respect to power equals the price

per unit power,dŨh(P (h))
dP (h)

= αp(h). Inactive users have lower marginal utility than the price at

zero power, i.e.,dŨh(P (h))
dP (h)

|P (h)=0< αp(h). Since Ũh(P (h)) is concave,dŨh(P (h))
dP (h)

is decreasing

with P (h). Hence for inactive users, a positive power assignment provides less utility than the

cost (negative surplus). We call those inactive usersintimidated due to a combination of high

price and small initial slope of̃Uh(P ).

Assuming all users have the sameU(·) and that (18) holds, the set of users that are intimidated

can be characterized as follows:

Theorem 1:There exists a thresholdhi ∈ H such that the optimal power allocation to Problem

P3 satisfiesP (h) > 0 if and only if h > hi. The thresholdhi satisfies:

dU(R)

dR

∣

∣

∣

∣

R=0

=
α(hi)

k0hi

.

The theorem follows directly from the fact thatdU(R)
dR

= dŨh(P )
dP

dP
dR

and thatαp(h) is decreasing

in h. This theorem implies that given two users with different channel gains, the user with the

smaller channel gain is penalized twice. First, that user requires more power to achieve a target

SINR, and second, the user is charged a higher unit price per power. Notice that asG increases,

α decreases andP (h) increases for all active users. This in turn increases the utility for each

active user, and hence results in a higher utility rate. Alsonotice that the constraint in Problem

P3 does not depend on the traffic intensityλ, but only on the channel distribution,fH(h). It
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follows that changes in the arrival rate, for a fixedfH(h), do not effect the optimal price in

Theorem 1.

Now we return to Problem P1. The solution to this problem is a combination of admission

control, as in Lemma 1, and the pricing procedure stated in Lemma 2. The resource allocation

can be accomplished in two steps. First, the admission control step specifies an active channel

setHa = {h : P (h) > 0}. That is, users withh /∈ Ha are blocked. Second, the pricing step

determines the power assignments across users in the activeset. Note that some users not blocked

in the first step still may be intimidated in the second step.

Suppose that the average energy isλEH(E(H)) = Ê for some Ê ∈ [0, E ]. Conditioned on

this, the solution to Problem P1 is given as follows:

1) AssumeP (h) > 0 for any h. Given fH(h) and E(h) in (19), check ifλEH(E(h)) ≤ Ê .

If so, admit all users. Otherwise, block users with channel gainsh ≤ he(Ê) wherehe(Ê)

is selected to satisfy

λEH(E(H)|H > he(Ê)) Pr(H > he(Ê)) = Ê .

2) Find α so that (17) is binding for the set of active users taking intoaccount that users

blocked in the previous step are assigned zero power. The optimal power allocation across

active users is given by (21).

Finally, the solution to Problem P1 can be found by searchingfor the valueÊ ∈ [0, E ] that

maximizes the total utility rateλE{Ũh[P (h)]}.

For a fixedÊ , users with the lowest channel gains are blocked because they derive the lowest

utility for any given α. Therefore, there exists an energy induced thresholdhe(Ê) such that

users withh ≤ he(Ê) are blocked via admission control. Recall that following Lemma 1, we

concluded that blocked users should have the worst channels. This conclusion assumed only

an energy constraint and bounded utility functions. Here wehave shown that this conclusion

is valid with both energy and power-times-energy (G) constraints, and any increasing concave

utility function. We note that at the optimum, (17) is alwaysbinding, whereas (16) might not
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be binding.

Note that loweringÊ may decrease the size of the active set, but also increases the average

utility derived per active packet.7 A complete solution to Problem P1 requires finding the optimal

Ê ∈ [0, E ] to balance this tradeoff. Next we show that this search is simplified when we include

the last constraint in Problem MAXUA.

C. Optimal Admission Control/Pricing Trade-off

Given E andG, we have shown that the optimal solution to P1 consists of a combination of

admission control and pricing. Returning to problem MAXU, notice that any pair of values,E

andG, that satisfy

E + k1

√
λG ≤ P̄ (22)

results in a solution to Problem P1 that is also a feasible power allocation for Problem MAXUA.

The solution to Problem MAXUA is given by the combination that maximizes the utility rate.

Theorem 2:The power allocation which solves Problem MAXUA satisfies both (16) and (17)

with equality.

Proof: As noted previously, the constraint (17) is tight under an optimal power allocation.

From this it can be seen that the utility rate in Problem P1 increases monotonically withG.

Suppose the energy constraint (16) is loose. ThenE can be decreased to the point where the

energy constraint is tight, resulting in a largerG in (22), which in turn gives a higher utility

rate.�

To solve Problem MAXUA, we can therefore use the following procedure. First, for each pair

(E , G = 1
λ

(

P̄−E
k1

)2

), a feasible solution to Problem P1 can be found via the previous steps 1 and

2 with Ê = E . LettingU(E) be the resulting utility rate, the solution to Problem MAXUAis then

given by the solution to Problem P1, whereE is replaced byE∗ = arg max{U(E), 0 ≤ E ≤ P̄}.

That is, the solution to MAXUA is achieved withE = E∗. This is because for each pair(E , G),

7Given an arrival rateλ, Ê may change over a range in which all users remain active.
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for which the utility is evaluated, Theorem 2 implies that there is no need to search for the

optimal Ê ∈ [0, E ].

The set of users blocked through admission control and intimidation is determined by the

channel gain thresholdshe(E) andhi(E), respectively. We distinguish the following 3 cases:

C1: he ≥ hmin andhe ≥ hi. (Active users are determined byhe.)

C2: hmin > he andhmin ≥ hi. (All users are active.)

C3: hi > he andhi > hmin. (Active users are determined byhi.)

The next theorem characterizes the transition between these cases.

Theorem 3:Consider Problem P1 with constraints(E , G = 1
λ

(

P̄−E
k1

)2

). As E increases from

0 to P̄ , the optimal power allocation transitions through the cases C1, C2, C3 in one of the

following sequences: C1→ C2 → C3 or C1→ C3.

Proof: Let A1 denote the set of values ofE where the optimal solution to P1 is in C1. Define

A2 and A3 similarly. AtE = 0, he = hmax and hi = 0; therefore0 ∈ A1. As E increases,G

decreases; this results inhe decreasing withE and hi increasing. This implies that ifE ∈ A1

thenE ′ ∈ A1 for all E ′ ≤ E and likewise, ifE ∈ A3 thenE ′ ∈ A3 for all E ′ ≥ E . WhenE = P̄ ,

G = 0, in which casehi = ∞, thus,P̄ ∈ A3. Therefore the only possible sequences are C1→

C2 → C3 or C1→ C3. Which of these occurs depends on whether or nothmin ≤ he(Ẽ), where

Ẽ satisfieshe(Ẽ) = hi(Ẽ). (See Figure 6.)�

Corollary: The optimalE∗ ∈ A1.

This follows from the observation that A1 is the only region where both constraints are tight.

In A2 or A3, the energy constraint is always loose.

V. NUMERICAL RESULTS

In this section, we present numerical results to illustratethe optimization described in the

preceding section. The results that follow assume the exponential utility functionU(R) = 1 −

exp(−µR) for µ > 0, which is concave, increasing, and hasU(0) = 0. The channel density is

given byfH(h) = 1
4
h− 5

4 for h ∈ (1,∞). This corresponds to a channel gainh(r) = r−4, where
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r is the distance of a user from the base station, and each user’s location is chosen uniformly

in the interval(0, 1). We assume the file length is normalized so thatL = k0, the scale factor

in (18), which relates transmission rate to received power.That is, one unit of received power

results in a completion time of one unit. From (21), the surplus maximizing power assignment

for active packets withh > max(1, he, hi) and priceα is given byP (h) = 1
µk0h

ln
(

k2
0
h2µ

αL

)

.

A. Accuracy of Gaussian Approximation

We first illustrate the accuracy of the Gaussian approximation, which is used to estimate the

outage probability.8 Figure 3(a) compares the simulated outage probability withthe Gaussian

approximation as a function of the utility parameterµ, assuming a target outage probability

q0 = 0.05 and average power̄P = 10. For the same parameters, Figure 3(b) shows the average

number of active packets from simulation and using the Gaussian approximation, as a function of

µ. In both cases, simulated curves are shown for different packet arrival ratesλ. In the simulation

model, packets arrive according to a Poisson process, and are either blocked (h < he), intimidated

(h < hi), or served at the ratek0hP (h). The simulated outage probability is then the fraction of

time for whichPsum(t) > P̄ . The analytical curves are obtained using the optimal(E∗, G∗) for

each parameter setting.

In Figure 3(a), the simulated outage probability approaches the targetq0 as eitherλ or µ

increases. The gap is more sensitive to the arrival rateλ than the utility parameterµ. Figure

3(b) shows that the simulated and analytical values of the average number of active packets are

nearly identical. Asµ andλ increase, the average number of active users increases. Furthermore,

the results show that the average number of active packets inthe system increases more rapidly

with λ than withµ.

8The comparisons with simulation results shown here illustrate how close the simulated outage probability is to that obtained

with the Gaussian approximation given specific model parameters. These comparisons do not illustrate how well the solution to

MAXUA approximates the solution to the problem MAXU, since as discussed inSection III, solving MAXUA directly appears

to be difficult.
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Figure 3(b) shows that the average number of active packetsN̄ varies approximately linearly

with µ. To see why, from the analysis in Section IV-A, we can write

N̄ =

∫ ∞

max{1,he,hi}

N̄(h)dh

=

∫ ∞

max{1,he,hi}

λfH(h)T (h)dh. (23)

With the exponential utility function, we haveT (h) = L/k0hP (h) = µL

log(
µk2

0
h2

αL
)
, and combining

this with (23) gives

N̄ = λµL

∫ ∞

max{1,he,hi}

fH(h)
1

log(
µk2

0
h2

αL
)
dh. (24)

The integral varies slowly with respect toλ andµ, so thatN̄ is nearly proportional toλµ.

From these results we conclude that the Gaussian approximation is accurate when the average

number of active users is relatively large, i.e., greater than ten. Furthermore, the approximate

Gaussian meanmG = E(Psum) = E∗ and standard deviationσG =
√

V ar(Psum) =
√

λG∗ must

satisfymG = cσG with c & 3. This is due to the fact thatPsum ≥ 0, hence a Gaussian distribution

with significant mass in the negative region cannot be a good approximation for the distribution

of Psum. (We have observed that the ratiomG/σG tends to increase withµ andλ.) To illustrate

this point, Figure 4 shows the empirical density function for the total powerPsum with two

different arrival rates.9 The Gaussian distribution with meanmG = E∗ and varianceσ2
G = λG∗

is also shown. Whenλ = 100, the Gaussian and empirical densities are nearly identical. The

approximation is not as accurate withλ = 25, although it is still reasonable.

The accuracy of the Gaussian approximation also depends on the assigned utility functions.

Additional results in [24] show similar trends to those shown here for a piecewise linear utility

function with one breakpoint. In contrast, the Gaussian approximation is typically not accurate

for the logarithmic utility functionU(R) = log(1+µR). Namely, the empiricalp.d.f.has a much

heavier tail than the Gaussianp.d.f., due to the fact that the assigned powerP (h) = k0h
αL

− 1
µk0h

approaches infinity as the user gets close to the base station.

9This is computed from a histogram of the total powers seen at packet arrivals.
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B. Utility and Optimized Power Allocations

In this section we show numerical results for utility rate and power allocations based on the

Gaussian approximation. Figure 5 shows how the average utility per user,EHŨH [P (H)], varies

with λ andE (and thereforeG) when P̄ = 10 andq0 = 0.01. The classification of the resulting

allocation, as in Theorem 3, is also indicated on the figure. The maximum point is always in

A1, as stated in the Corollary. AsE increases, the solution transitions from C1→ C2 → C3

whenλ is small (i.e.,λ = 1, 10, 20). For largerλ, the allocation transitions directly from C1 to

C3.

Figure 6 shows howhe(E) and hi(E) vary with E given different arrival ratesλ. The min-

imum channel gainhmin = 1 is also shown. Forhe(E) < hmin, we choosehe to satisfy

λ
∫ hmax

he(E)
1
4
h− 5

4
L

k0h
dh = E so that the curve is extended continuously from wherehe(E) ≥ hmin.

As expected,he(E) decreases withE , whereashi(E) increases withE . Whenλ = 10, the system

transitions from C1 to C2 whenhe falls below hmin, and from C2 to C3 whenhi increases

abovehmin. Whenλ = 40, the intersection point ofhe andhi is larger thanhmin; in this case

the solution transitions directly from C1 to C3.

The resulting optimal power allocation is shown in Figure 7(a) as a function of the designated

user’s distance from the base station withλ = 20, 30, 50. The closer a user is to the base station,

the better the channel. The received power, which is proportional to the data rate, is also shown in

Figure 7(b). The active radius shrinks slightly asλ increases. As the traffic intensity increases,

the optimal allocation blocks the users with the worst channels while trying to maintain the

received power level for the remaining active users (see Figure 7(b)). Apparently, this blocking

strategy yields a higher utility rate than offering a relatively degraded service to all users.

Figure 8 shows the maximum average utility per userEH{Ũh[P (h)]} versus the target outage

probability q0 with different arrival rates. Asλ increases, the average utility per user decreases;

however, the overall utility rateλEH{Ũh[P (h)]} increases. A smallerq0, or equivalently, a tighter

power constraint, results in a lower utility per user. Notice that the average utility per user is
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insensitive toq0 whenλ is small (< 10). This is because the exponential utilityU(R) = 1−e−R

is relatively flat (close to one) whenR becomes large. Whenλ is small, the optimal power

allocation to active users is quite large, so that the corresponding transmission rates (R) are also

large. Therefore, the average utility per user is close to one.

VI. CONCLUSIONS

We have studied forward link power allocation for stochastically varying data traffic. Each

power assignment remains constant for the duration of the packet, and along with the channel

gain and associated utility function, determines the utility for transmitting the packet. The

objective is to determine a power assignment policy that maximizes the time average utility

rate. We introduced an outage constraint on the total power in order to derive a simple power

assignment policy, which depends only on steady-state system properties. Specifically, this policy

depends only on the distribution of channel gains, packet arrival rate, and utility functions. Each

power assignment then depends only on the designated user’schannel state and associated utility

function.

By approximating the steady-state total power as a Gaussian random variable, the outage

constraint was decomposed into simpler constraints on energy and power times energy. This

approximation is accurate provided that the average numberof packets being simultaneously

transmitted in steady-state is large enough, corresponding to a heavily loaded system. A procedure

for maximizing the time-averaged utility rate was presented, which enforces those constraints,

respectively through a combination of admission control and pricing of power times energy.

The optimal combination depends on the system characteristics, namely, the packet arrival rate,

assigned utility functions, and distribution of channel gains. Numerical results were presented

to illustrate the effect of the constraints, the optimal power allocation, and the corresponding

utility rate. The results show that it can be beneficial to block users, rather than use pricing only

to enforce the constraints.
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Fig. 1. Example utility function for data traffic.

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ T

P
ro

ba
bi

lit
y

 

 
n

0
/(λ T) = 2

n
0
(λ T) = 1.25

n
0
/(λ T)= 1.1

n
0
/(λ T)= 0.9

Fig. 2. Pr[Psum > P̄ |Psum > 0] versusλT for different ratiosn0/λT .



24 MARCH 6, 2007

0 2 4 6 8 10
0.02

0.03

0.04

0.05

0.06

0.07

0.08

Exponential utility function parameter: µ

O
ut

ag
e 

pr
ob

ab
ili

ty

0 2 4 6 8 10
0

20

40

60

80

100

120

Exponential utility function parameter: µ

A
ve

ra
ge

 n
um

be
r 

of
 a

ct
iv

e 
us

er
s

λ = 10
λ = 25
λ = 50
λ = 100
Gaussian Approx

λ = 10      
λ = 25      
λ = 50      
λ = 100     
Gaussian Approx

(a) (b) 

Fig. 3. (a) Outage probability vs.µ with different arrival rates; (b) Average number of active packetvs. µ with different arrival

rates.



SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 25

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Total power P
sum

fr
eq

ue
nc

y

Simulation results 
Gaussian Approx

λ=25 

λ=100 

Fig. 4. The empirical p.d.f. ofPsum from simulation and the Gaussian approximation (mG = E∗, σG =
√

λG∗) for λ = 25

and100.



26 MARCH 6, 2007

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Energy constraint ε

A
ve

ra
ge

 u
til

ity
 p

er
 u

se
r

Average utility per user vs. ε for different λ.

C1
C2
C3

λ =1 

λ =10 

λ = 20 

λ = 40 

λ =60 

Fig. 5. Average utility per user vs.E with different arrival ratesλ.



SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 27

0 5 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Energy Constraint ε

h e, h
i &

 h
m

in

h
e
, h

i
 & h

min
 vs. ε with λ = 10

h
e

h
i

h
min

0 5 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Energy Constraint ε

h e, h
i &

 h
m

in

h
e
, h

i
 & h

min
 vs. ε, with λ = 40

h
e

h
i

h
min

Fig. 6. Channel thresholdshe, hi vs. E for different λ’s.



28 MARCH 6, 2007

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Distance from base (normalized)

T
ra

ns
m

is
si

on
 p

ow
er

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

Distance from base (normalized)

R
ec

ei
ve

d 
po

w
er

λ = 20
λ = 30
λ = 50

λ = 20
λ = 30
λ = 50

      (a) (b) 

Fig. 7. Optimal power allocation: (a) Transmission power vs. distance from the base station; (b) Received power vs. distance

from the base station.



SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 29

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

q
0

A
ve

ra
ge

 u
til

ity
 p

er
 u

se
r

Utility vs. threshold q
0

λ = 1~10
λ = 20
λ = 30
λ = 40
λ = 50
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