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Abstract

We consider the allocation of power across forward-linkkeds in a wireless data network. The
packets arrive according to a random (Poisson) processhavel fixed length so that the data rate for
a given packet is determined by the assigned power and theehgain to the designated user. Each
user’s service preferences are specified by a utility foncthat depends on the received data rate. The
objective is to determine a power assignment policy thatimiaes the time-averaged utility rate, subject
to a constraint on the probability that the total power erseg limit (corresponding to an outage). For
a large, heavily loaded network, we introduce a Gaussiamoappation for the total transmitted power,
which is used to decompose the power constraint into three fmactable constraints. We present a
solution to the modified optimization problem that is a conalion of admission control and pricing.
The optimal trade-off between these approaches is chamale Numerical examples illustrate the

achievable utility rate and power allocation as a functibnhe packet arrival rate.
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. INTRODUCTION

Efficient allocation of radio resources, such as transmispiower, is essential for supporting
diverse applications over wireless networks. Here we inyate power allocation for the forward
link in a wireless network with rate adaptive data traffic. Wensider a code division multiple
access (CDMA) system that simultaneously transmits to @iNeflows; the available transmis-
sion power must be allocated among these flows. A utilityebdaspproach is adopted, in which
the service preferences of each packet are specified byitg tdihction. The network objective
is to maximize a time average utility. It is well-known thatck utility functions can capture
many common definitions of fairness within a network [1], E¥}d can provide for different

priorities among users.

Power control in cellular CDMA systems based on utility maization has been studied
for both the reverse link [3]-[8] and the forward link [9]H]L In the forward link, the typical
problem is to maximize the aggregate utility subject to t@msts on the total available re-
sources. For example, [11] considers a constraint on tinsriveited power, while [13] considers
constraints on both the available spreading codes and pdwer solution to these problems
can often be interpreted in a pricing framework, where ri@ee announced for the constrained
resources and users maximize their net benefit (utility siioost). The optimal allocation of
resources can be found by choosing the appropriate resguiges. In most of this work, a
static situation is assumed, where the set of active usdrges. In this paper, the set of active
users is dynamically varying over the time period duringahhiesources are allocated. Random

traffic variations must therefore be taken into account walkdrcating resources.

We consider a model in which packets arrive to the base statioording to a Poisson process.
The packets are designated for different users with randwnreel gains, and the time to transmit
a packet depends on the power allocation and the assocized& gain. Here a “packet” could
also represent fixed length flow or session for a particular as in [19]. An orthogonal signaling

scheme is assumed, in which multiple packets are simultehedransmitted to different users,
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and the packets do not interfere with each other. Each trigteshpacket contributes a utility to
the designated user, which depends only on the transmisishen(equivalently, the data rate).
Our problem is to determine a policy for allocating power &zle packet, which maximizes the
time-average utility rate (i.e., total accumulated utiliter unit time), subject to a constraint on
the total power transmitted by the base station.

Since the number of active users is randomly varying, thal tobwer transmitted by the
base-station is a random process. We consider an outaggann®en this process, in which
the total power can exceed a given value with some small pilityal We characterize the
solution to this problem for a system with a large number darsisso that the transmitted
power can be approximated as a Gaussian random processatloaite, the outage constraint
can be decomposed into three simpler constraints. Thei@oltd this simplified problem can
be viewed in a pricing framework as in [13]; however, there several fundamental differences.
First, in addition to pricing, explicit admission contr@ also needed. Second, the price is not
the conventional (linear) price for the constrained reseuwhich is the transmit power. Instead,
the total charge is the price times the product of the trassiom power times energy. This can
be viewed as a price for power times energy, or as a non-lipeee for the required power.

Our focus is on the situation where traffic variations occaraomuch faster time-scale than
that over which resource allocation is performed. Spedijicaee assume power is allocated to
each packet based on the user’'s channel gain and utilitytlaadcassignment is fixed for the
duration of the packet. The power allocation does not depenthe instantaneous system state
(e.g., the number of active requests), but only on long-tstatistics (e.g., packet arrival rates).
An alternate approach may take into account the currenesystate and reallocate resources
at every arrival and departure (e.g., see [16], [17]). Cleallocating resources on a faster time
scale may improve the resulting utility rate. However, sacthapproach may not be feasible,

due to various system constraints, and leads to a more awatgyi allocation policy. Also, since

'Here we assume that power is the limiting resource, and that there isientfflsandwidth to support non-interfering

(orthogonal) transmissions to all active users.
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the allocation considered here is not state dependent,dE=signated user derives a fixed utility
rate upon admission. In contrast, with state dependeriboagions the utility associated with a
packet can vary depending on future events.

We also assume that the channel varies on a slower time-#$waiethe traffic requirements.
Specifically, the channel gain does not change during the taquired to serve a packet. If this
were not the case, the performance could be improved byiaglian opportunistic scheduling
algorithm, such as the proportional fair rule for the CDMA MEBO system [18], [19]. We note
that many opportunistic scheduling algorithms can also ibaved in terms of maximizing an
aggregate utility rate [20]-[22].

The rest of the paper is organized as follows. In Section H,imtroduce a model for the
forward link of a single cell. In Section 1ll, we formulate @rstrained optimization problem
where the objective is to maximize the time-averaged wutiite subject to a stochastic constraint
on the total power. In Section 1V, a solution to the simplifipbblem is presented in which
the power constraint is decomposed into three more tractadmstraints. We then characterize
the optimized system behavior. Numerical results, whitlsitate the accuracy of the Gaussian
approximation for the power distribution, and optimizedmeo allocations, are presented in

Section V.

Il. SYSTEM MODEL

We consider a model for the forward link within a single celhere the base station transmits

simultaneously to all active users, and transmissionsfterdnt users are assumed to be orthog

onal. For example, this models a CDMA system with orthogomaéading code$.Suppose
that a user with channel gaih is allocated transmission powé?(h). The received Signal-
to-Interference Plus Noise Ratio (SINR) for this user is gisgnSINR = hP/o?, whereo?

is the total noise plus interference power. We assume tleatdbeived data rate for a user is

2We assume that the number of orthogonal codes, or equivalently,viikatde bandwidth is not a limiting resource. A

bandwidth constraint could be introduced in what follows by adding atcaing on the number of simultaneous transmissions.
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a function of the received power, or equivalently receivéNR this relationship is given by
R(h) = C(hP), whereC(-) is an increasing function.

Packets arrive to the base station according to a Poissaregsonith overall rate\. Each
packet has a fixed length df (bits)3 We consider a system with a large number of users, and
assume that each packet corresponds to a new user. The tham#®r each user is assumed to
be distributed on the intervél = [h,in, Pinax], Whereh,,;,, > 0 andh,,., < oo, with continuous
density functionfy (k). This density can be used to model the users’ geographigbdigon
within the cell, and also various propagation effects sugtraaadom shadowing. The channel
gain corresponding to each arrival is chosen independemityrding to this distribution and
stays fixed during the entire transmission of the packet.

A utility function is associated with each packet, which eets the designated user’s desired
quality of service. We assume that the utility depends onlyhe transmission ratg. Since each
packet has a fixed length, this is equivalent to definingtytdis a function of the transmission
time for a packet. In this paper, we assume that all users ti@veame utility function{/(R);
however, this formulation can be extended to scenarios muithiple utility classes. We assume
that U (0) = 0 and thatU (R) is increasing, concave and continuously differentiabldh wespect
to R, for R > 0. These are common assumptions for so-called “elasticfi¢grafhich describes
many data applications [1]. An example utility functiobi(R), with these characteristics is
depicted in Figure 1.

The power allocated to a user depends only on the utility tfand/(-) and the associated
channel gaim. For eachh € H, it will be useful to define the functioﬁfh(P), which relates
the utility received by a user with channel gdirto the transmitted poweP. This function is
given by

Un(P) = U(C(hP)). (1)

Notice thatf]h(P) is different for users with different channel gains evenutifoU (R) is the

3The following can be extended to the case where the length of each résjumsdom, but we will not address this extension

here.
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same for those users.

I1l. PROBLEM FORMULATION

Our objective is to allocate transmission power to maxintiee utility rate given a constraint
on the total transmission power. A power allocation is spetiby a functionP : H — R that
indicates the power used to transmit a packet to a user wihre gaimh € H. If P(h) = 0, the
corresponding packet is considered blocked and not tratesinif P(h) > 0, the corresponding

packets are transmitted with a transmission time given by

L

Th) = 57——.
W= empm)

Let {H;}2, be a sequence of independent and identically distributadora variables repre-

senting the channel gain of théh arrival, and letK (¢) denote the number of arrivals in the

interval [0, ¢). For a given power allocation, the time average utility riatgiven by

Ko [ 1 X

1 ® . _
tlirgogiz;UHi(P(Hi)) = Jim —= m;UHi(P(Hi)) (2)

= XEq {Ou(P(H) }, ®)

assuming the system is ergodic, where the expectation ivermage overfy.
Let .A(t) denote the set of active transmissions at tim&he cardinality ofA(¢) is N(t),
which is the number of the current active packet transmissid he total power transmitted at

time ¢ can then be written as

Pam(t) = Y P(Hy). 4)

iCA(t)
This is a stochastic process with statistics that dependhempower allocation and the channel

distribution. We assume that under any power allocatip,,(t) — Psu in distribution as —

oo, whereP,,,, is a random variable with the steady-state distributiom.dfty power allocation,
we constrain the steady-state total power, given that te&esyis not empty N (¢) > 0), to be
no greater than some valug, with probability 1 — gy, i.e., Pr(Psum > P|Pum > 0) < qo Where

qo > 0 is a small constant. Assuming that the system is ergodis,dbinstraint implies that the
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fraction of time the total power is greater th&h when the system is not empty, is no greater
than ¢y, which can be viewed as a target outage probability.

The resource allocation problem can be formally stated as

Problem MAXU:

imi MEy (Uy(P(H 5
maximize u(Un(P(H))) (5)
subjectto  Pr(Puum > P|Paum > 0) < qo (6)

Note that conditioning oi®,,,,,, > 0 (the system not being empty) is needed to avoid the impulsive

solution in which each packet is transmitted with infiniteyeo and has infinitesimal duration.

Solving Problem MAXU directly appears to be difficult in geak In the next section we
simplify the problem by approximating,,,, as a Gaussian random variable. This can be justified
when the number of active users contributingRg,,, is large. To see when this is likely to be
true, consider the special case in which all users withinstrstem have the same channel gain
h. With this assumption the solution to MAXU is given by a siglalue P. For the sake of

this example, we further assume that the utility functiomgiieen by U(R) = 1 — e #£,

Since each active user is assigned the same power, the avdibiy is given by
Usog = A (1 - e—“%>

whereT is the transmission time for a packet of lendthand) is the arrival rate for transmission
requests. Clearly, we wish to choogeto minimize 7. Hence we select the largest value of
P, which satisfies the constraint (6). Assuming Poisson @sjvand noting thaf’ is the same
for all packets, the number of active (transmitting) usé¥s,is the occupancy of at//D /oo

gueue, which is Poisson with parameidr. Hence the probability that the system is not empty
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is Pr[N > 0] = Pr[Pouym > 0] =1 — e, and

_ 1 i _
Pr[Pum > P|Pam > 0] = ———=3 Pr[Puy > PIN =n|Pr[N = n]
n=0

1 —e T

1 o0
= =7 2 TeppPrIN =1
n=0

1 L e A"

1 —e T n!
n=ng

< q

where Zy, is the indicator function for the event, andn, = (%1 is the minimum number
of active users, which causes the total power to exdeéeciven anyq, > 0, we can choose
P small enough (equivalently;, large enough) to satisfy the preceding outage constrahd. T
objective is then to find the smalles§, and the corresponding largef such that the constraint
is satisfied.

If \T is large enough, theRr[P,,,, > 0] = 1 — e *T ~ 1 and the Poisson random variable
N can be accurately approximated as Gaussian. In that casepftistraint (6) can be replaced
by the constrainfr[P;,,, > 0] < ¢o, Where P,,,,, is Gaussian. To see howl' depends on
the target outage probabilityy, Fig. 2 showsPr[P,,,, > P|P... > 0] vs. AT for different
ratios ng /AT (i.e., ny is normalized by the average number of active usérs= E[N]). The
discontinuities in the plots are due to the ceiling functised to define,. Asnq/(\T") increases,
Pr[Psum > P|P.., > 0] must increase, as shown in the figure. Furthermore, the fighoes
that given a target, (e.g., < 5%), we must havei,/(A\T) > 1 and AT' > 5. The Gaussian
approximation forP,,,, is therefore accurate in this scenario.

Verifying the accuracy of the Gaussian approximation byisgl MAXU directly becomes
significantly more difficult with more general channel disitions. However, the preceding
analysis indicates that whefi(h) is optimized, the number of active users should be relativel
large whenP,,,,,, is close toP. Hence for the analytical results, which follow, we will asse
that the distribution ofP,,,, has a Gaussian tail. We remark that the accuracy of the Gawssi

assumption also depends on the choice of utility functionpdrticular, it is less accurate for a
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logarithmic utility function, as discussed in Section V.

IV. UTILITY BASED POWERALLOCATION
A. Decomposition of Power Constraint

Let 6~ be a small constant such that,. —h,.., = Kdh, for some intege¥k. Fori =0, ..., K,
defineh; = hyi, +i0h. Fori = 0,..., K — 1, let N(:) be a random variable representing the
number of active users in steady-state with channel gaifhim,. ;). The steady-state total

power, P,,,,, can then be approximated as:

K-1
P = P(h;)N (i)
=0
Taking expected values, we have
K-1

)

Il
=)

whereN (i) is the expected number of active users with channel gaifig ih; ;). Since arrivals
are Poisson with overall ratg, N (i) is the occupancy of &//G /oo queue with arrival rate
~ Afy(h;)0h and service timex T'(h;). ThereforeN (i) is approximately Poisson distributed,

and

N (i) ~ Afu(hi)ShT (hy) = N (h;)sh, ()

where N(h;) = \fu(h)T(h;). Assuming thatP(h)N(h) is Riemann integrable, then letting

oh — 0, we have
E (Pan) = | P0ON(h)dh ®)
H
Likewise, sinceN (i), : = 0,--- , K — 1 are independent, the second moment?f,, is given
by

E(P?, )= /H P%(h)N(h) dh. (9)
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For a large number of active user3,,,, can be approximated as a Gaussian random variable.

As discussed in the preceding section, we therefore rewréeconstraint (6) as

Pr [Poym > P|Pym > 0] = Q (;%) < q

whereQ(z) = [ %6#/2(& is the complementary Gaussian cumulative distributiorction
(c.d.f).

This constraint reduces to

/ P(h)N(h) dh + kl\// P2(h)N(h)dh < P, (10)
H H
wherek; = Q(qo).
Since N(h) = M\fy(h)T(h), we have
/ PN (h) dh = NEg[E(H)], (11)
H

and

/ P2(h)N(h)dh = \Ey|P(H)E(H)), (12)

H

whereE(h) = P(h)T'(h) is the energy consumed by user with channel daiAn inactive user
is allocated zero energy.

Substituting (11) and (12) into (10), constraint (6) can ppraximated by

AE(E(H)) + kiv/AEy(P(H)E(H)) < P. (13)

Finally, this can be further decomposed into the three caimés

NEg(E(H)) <& average energy
Ey(P(H)E(H)) <G average powek energy (14)
E+kivVAG <P tradeoff of £ vs. G

We will refer to Problem MAXU when (6) is replaced with (14) &oblem MAXUA A
solution to Problem MAXUA is provided next. This is accongbied in two steps. First, we find
the utility maximizing power assignment subject to the fixgb constraints in (14) for given
values of £ and GG. Next, the combination of and G that yields the highest utility rate is

derived.
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B. Solution with Fixedf and G

Given values fol€ and G, consider the following problem:

Problem P1:
maximize ARy (U (P(H))) (15)
subjectto  \Ey(E(H)) <& (16)
Eu(P(H)E(H)) <G 17)

To gain insight into this problem, we consider each of thest@ints separately. First, we
examine the problem with only the energy constraint, i.e.,

Problem P2;

maximize  AEy(Uy(P(H)))

P H—RT

subjectto  AEy(E(H)) < €E.

From (8) and (11)[E(Ps.m) = MEg(F(H)), so that Problem P2 is equivalent to constraining
the average sum power.

To continue, we assume that the transmission rate is piopattto the received power, i.e.,
C(hP(h)) = kohP(h) (18)

wherek, is a constant.It follows directly from (18) that the energy consumed by angepends
only on whether a user’s transmission power is nonzero, an the specific power level,

ie.,
P(h)T(h) = L/koh, for P(h) >0,
gy — | POT0) =Lk (h) 19
0, for P(h) = 0.
Since utility is strictly increasing in received power, d@llbws from (19) that the solution to
Problem P2 is for each packet to be either denied transmigbiocked) or transmitted with

“This linear relationship between rate and power is a reasonable apptioxinier many practical systems, e.g., with low

SNR and/or high bandwidth. For large enough rates, capacity consihesramply that this is optimistic.
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infinite power. If no users are blocked and the energy com$t(&6) is violated, then admission
control is required to block some users. This solution isestas the following lemma.
Lemma 1:A power allocation, which achieves the maximum averagedststate utility in

Problem P2, satisfies
oo, for h > h,,

P(h) = (20)
0, for h < he,

whereh, is the minimum value ir{ such that (16) is satisfied.

The lemma follows from the preceding discussion and by gotirat the energy required by
a user decreases with the channel gain. Hence, blocking tsers with smallest channel gains
minimizes the number of blocked users and maximizes (5). b¥e that ifU(R) is unbounded,
then the solution to Problem P2 is also unbounded, so thadrhitrary set of users can be
blocked. The Lemma implies thdt,,,,(t) = 0 with probability one (i.e., for almost atl), and
P, (t) = co whenever a new request arrive®f course, this power assignment is not realistic.
This type of behavior is eliminated by adding the constrélm).

Next we consider Problem P1 withnly constraint (17).

Problem P3;

rr)D%lHr%Lze NEg(Un(P(H)))

subjectto Ey(P(H)E(H)) <G.

This is a standard optimization problem with a concave dhje@nd linear constrainfsand
is mathematically equivalent to the problem studied in [183% in [13], the solution can be
attained via a pricing scheme.

Lemma 2: Consider the following pricing scheme: a channel-depengecg per unit transmit
power of the formn, (h) = aE/(h) is announced; users respond by requesting power to maximize

5This type offlash signaling also arises in the context of ultra-wideband communications if23}hich case the assumed

linear rate-power relation is valid.
®Note, we are still assuming the linear relationship between rate and powehjdh caseF(H) can be viewed as a constant

independent ofP(H).
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their surplus (utility minus cost), i.e.,
P*(h) = argmas{ U\[P(h)] — aB(h)P(h)}. (21)

If « is set such that (17) is satisfied with equality, then thigipg scheme provides a power
allocation that is the solution to Problem P3.

This lemma follows directly from the Kuhn-Tucker optimglitonditions, wherex corresponds
to a Lagrange multiplier for constraint (17). The set of\atisers and the assigned power levels
are determined byy, which can be interpreted as a fixed unit price on the prodtigtoaver

times energy. For each active user, the marginal utilithwéspect to power equals the price

Uy (P(h)

per unit power, = a,(h). Inactive users have lower marginal utility than the prite a

dP(h)
zero power, i.e.,dUC’;I(DZE)h)) | p(ny=0< p(h). SinceU,(P(h)) is concave,dUC’;](DZf)h)) is decreasing

with P(h). Hence for inactive users, a positive power assignmentigeggviess utility than the
cost (negative surplus). We call those inactive usetisnidated due to a combination of high
price and small initial slope o, (P).

Assuming all users have the safié ) and that (18) holds, the set of users that are intimidated
can be characterized as follows:

Theorem 1:There exists a threshold € H such that the optimal power allocation to Problem

P3 satisfiesP(h) > 0 if and only if h > h;. The threshold; satisfies:

dU(R) a(hy)

AR |,y kohi

The theorem follows directly from the fact th#¢( — ©o(P)dP and thatn, () is decreasing

in h. This theorem implies that given two users with differenahel gains, the user with the
smaller channel gain is penalized twice. First, that usquires more power to achieve a target
SINR, and second, the user is charged a higher unit price pegrpblotice that ag; increases,

a decreases an&(h) increases for all active users. This in turn increases thiéyubr each
active user, and hence results in a higher utility rate. Alsbce that the constraint in Problem

P3 does not depend on the traffic intensitybut only on the channel distributiorfy (h). It
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follows that changes in the arrival rate, for a fix¢g(h), do not effect the optimal price in
Theorem 1.

Now we return to Problem P1. The solution to this problem isomlgination of admission
control, as in Lemma 1, and the pricing procedure stated mrha 2. The resource allocation
can be accomplished in two steps. First, the admission @ostigp specifies an active channel
setH, = {h : P(h) > 0}. That is, users withh ¢ H, are blocked. Second, the pricing step
determines the power assignments across users in the setivdote that some users not blocked
in the first step still may be intimidated in the second step.

Suppose that the average energy\isy (F(H)) = & for someé € [0, £]. Conditioned on

this, the solution to Problem P1 is given as follows:

>

1) AssumeP(h) > 0 for any h. Given fy(h) and E(h) in (19), check if \Ey(E(h)) < €.
If so, admit all users. Otherwise, block users with chanméhgh < h.(E) whereh,(€)

Is selected to satisfy
AEy (E(H)|H > he(€))Pr(H > he(€)) = £.

2) Find « so that (17) is binding for the set of active users taking iatgount that users
blocked in the previous step are assigned zero power. Theagbower allocation across

active users is given by (21).

Finally, the solution to Problem P1 can be found by searctigtgthe valueé € [0,€&] that
maximizes the total utility rataE{U,[P(h)]}.

For a fixed&, users with the lowest channel gains are blocked becaugelérive the lowest
utility for any given a. Therefore, there exists an energy induced thresh@(df’) such that
users withh, < h.(€) are blocked via admission control. Recall that following Ireen1, we
concluded that blocked users should have the worst chanfieis conclusion assumed only
an energy constraint and bounded utility functions. Herehaee shown that this conclusion

is valid with both energy and power-times-energy) (constraints, and any increasing concave

utility function. We note that at the optimum, (17) is alwaysding, whereas (16) might not
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be binding.

Note that loweringE may decrease the size of the active set, but also increases/énage
utility derived per active packétA complete solution to Problem P1 requires finding the optima
£ € [0,£] to balance this tradeoff. Next we show that this search iplied when we include

the last constraint in Problem MAXUA.

C. Optimal Admission Control/Pricing Trade-off

Given £ and G, we have shown that the optimal solution to P1 consists ofrabamation of
admission control and pricing. Returning to problem MAXU tioe that any pair of values;

and G, that satisfy

E+kVIG<P (22)

results in a solution to Problem P1 that is also a feasiblegp@Nocation for Problem MAXUA.
The solution to Problem MAXUA is given by the combination ttlmaximizes the utility rate.

Theorem 2:The power allocation which solves Problem MAXUA satisfieshbd.6) and (17)
with equality.

Proof: As noted previously, the constraint (17) is tight under atinogl power allocation.
From this it can be seen that the utility rate in Problem PXeases monotonically witld.
Suppose the energy constraint (16) is loose. Theran be decreased to the point where the
energy constraint is tight, resulting in a largérin (22), which in turn gives a higher utility
rate.

To solve Problem MAXUA, we can therefore use the followinggedure. First, for each pair
(€,G =+ (Pk—f>2), a feasible solution to Problem P1 can be found via the posvateps 1 and
2 with £ = £. Letting U(E) be the resulting utility rate, the solution to Problem MAXUgthen
given by the solution to Problem P1, whefds replaced by¢* = arg max{U/(£),0 < £ < P}.

That is, the solution to MAXUA is achieved with = £*. This is because for each pa¥, ),

"Given an arrival rate\, £ may change over a range in which all users remain active.
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for which the utility is evaluated, Theorem 2 implies thaerh is no need to search for the
optimal £ € [0, &].

The set of users blocked through admission control and idétion is determined by the
channel gain thresholds.(£) and h;(E), respectively. We distinguish the following 3 cases:
Cl. h. > h,, andh, > h;. (Active users are determined lay.)

C2. h,n > h. andh,,;, > h;. (All users are active.)
C3:. h; > h, andh; > h,,;,. (Active users are determined lay.)
The next theorem characterizes the transition betweere tbeses.

Theorem 3:Consider Problem P1 with constrains, G = ; (Pk—f>2). As & increases from
0 to P, the optimal power allocation transitions through the sa€4, C2, C3 in one of the
following sequences: C+» C2 — C3 or C1— C3.

Proof: Let Al denote the set of values 6fwhere the optimal solution to P1 is in C1. Define

A2 and A3 similarly. At€ = 0, he = hnae @andh; = 0; therefore0 € Al. As £ increases(~
decreases; this results in decreasing with€ and h; increasing. This implies that if € Al
then&’ € Al for all £’ < € and likewise, if€ € A3 then&’ € A3 for all £ > £. When& = P,
G = 0, in which caseh; = oo, thus, P € A3. Therefore the only possible sequences are-€1
C2 — C3 or C1— C3. Which of these occurs depends on whether orngt < h.(£), where
& satisfiesh.(£) = hi(€). (See Figure 6.1

Corollary: The optimal&* € Al.

This follows from the observation that Al is the only regiohexre both constraints are tight.

In A2 or A3, the energy constraint is always loose.

V. NUMERICAL RESULTS

In this section, we present numerical results to illustihie optimization described in the
preceding section. The results that follow assume the ex@i utility functionU(R) = 1 —
exp(—pR) for p > 0, which is concave, increasing, and Ha§)) = 0. The channel density is

given by fy(h) = }lh‘g for h € (1,00). This corresponds to a channel gaifr) = »—*, where
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r is the distance of a user from the base station, and eachsusedtion is chosen uniformly
in the interval (0, 1). We assume the file length is normalized so that k,, the scale factor
in (18), which relates transmission rate to received powhat is, one unit of received power

results in a completion time of one unit. From (21), the susphaximizing power assignment

for active packets witth > max(1, k., h;) and pricea is given by P(h) = ﬁ In (“ii“)

A. Accuracy of Gaussian Approximation

We first illustrate the accuracy of the Gaussian approximnativhich is used to estimate the
outage probability. Figure 3(a) compares the simulated outage probability wWith Gaussian
approximation as a function of the utility paramejer assuming a target outage probability
g0 = 0.05 and average poweP = 10. For the same parameters, Figure 3(b) shows the average
number of active packets from simulation and using the Gansgpproximation, as a function of
1. In both cases, simulated curves are shown for differeritgiaarrival rates\. In the simulation
model, packets arrive according to a Poisson process, arelther blocked/{ < h.), intimidated
(h < h;), or served at the rate,h P(h). The simulated outage probability is then the fraction of
time for which P,,,,(t) > P. The analytical curves are obtained using the optif@zl G*) for
each parameter setting.

In Figure 3(a), the simulated outage probability approacthe targety, as either\ or p
increases. The gap is more sensitive to the arrival katkan the utility parameter. Figure
3(b) shows that the simulated and analytical values of tlega@e number of active packets are
nearly identical. Ag: and \ increase, the average number of active users increas¢sefuore,
the results show that the average number of active packeteinystem increases more rapidly

with A\ than with p.

8The comparisons with simulation results shown here illustrate how close théaginh outage probability is to that obtained
with the Gaussian approximation given specific model parameterse Taesparisons do not illustrate how well the solution to
MAXUA approximates the solution to the problem MAXU, since as discusseskition I, solving MAXUA directly appears
to be difficult.
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Figure 3(b) shows that the average number of active pacdKetaries approximately linearly

with u. To see why, from the analysis in Section IV-A, we can write

N o= / h N(h)dh

max{1,he,h;}
= / Afu(h)T(h)dh. (23)

max{1,he,h;}

With the exponential utility function, we havE(h) = L/kohP(h) = % and combining
log(— ¢
this with (23) gives
_ & 1
max{1,he,h;} 10g(%)

The integral varies slowly with respect foand x, so thatV is nearly proportional to\..
From these results we conclude that the Gaussian approgimiataccurate when the average

number of active users is relatively large, i.e., greatantken. Furthermore, the approximate

Gaussian meamg = E(Py,,) = £* and standard deviationg = \/Var(Pyn) = VAG* must
satisfymq = cog with ¢ 2 3. This is due to the fact that,,,, > 0, hence a Gaussian distribution
with significant mass in the negative region cannot be a gpptdoximation for the distribution
of P,... (We have observed that the ratia; /o tends to increase with and \.) To illustrate
this point, Figure 4 shows the empirical density functiom floe total powerP,,,, with two
different arrival rates. The Gaussian distribution with mean; = £* and variancer? = \G*
is also shown. When\ = 100, the Gaussian and empirical densities are nearly idenfided
approximation is not as accurate with= 25, although it is still reasonable.

The accuracy of the Gaussian approximation also dependeeoassigned utility functions.
Additional results in [24] show similar trends to those shdwere for a piecewise linear utility
function with one breakpoint. In contrast, the Gaussianr@pmation is typically not accurate
for the logarithmic utility functionV(R) = log(1+ nR). Namely, the empiricgb.d.f.has a much

heavier tail than the Gaussignd.f, due to the fact that the assigned pow#ih) = ’ZJ—L’l — ;Lkloh

approaches infinity as the user gets close to the base station

®This is computed from a histogram of the total powers seen at pachetlsur



SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 19

B. Utility and Optimized Power Allocations

In this section we show numerical results for utility rated grower allocations based on the
Gaussian approximation. Figure 5 shows how the averagey yiér userE, Uy [P(H))|, varies
with X\ and € (and therefores) when P = 10 and g, = 0.01. The classification of the resulting
allocation, as in Theorem 3, is also indicated on the figutee faximum point is always in
Al, as stated in the Corollary. AS increases, the solution transitions from €1 C2 — C3
when )\ is small (i.e.,A = 1,10, 20). For larger), the allocation transitions directly from C1 to

C3.

Figure 6 shows how..(£) and h;(£) vary with £ given different arrival rates\. The min-
imum channel gain,,;, = 1 is also shown. Forh.(£) < A, we chooseh. to satisfy

5

/\fhi?;;” }lh—zk(%h dh = £ so that the curve is extended continuously from wheere) > h,in.
As expectedh.(€) decreases witlh, whereasi;(£) increases witt€. When\ = 10, the system
transitions from C1 to C2 when, falls below h,,;,, and from C2 to C3 wherm,; increases
aboveh,,;,. When\ = 40, the intersection point ok, and h; is larger thanh,,;,; in this case

the solution transitions directly from C1 to C3.

The resulting optimal power allocation is shown in Figura)7s a function of the designated
user’s distance from the base station with- 20, 30, 50. The closer a user is to the base station,
the better the channel. The received power, which is prapw@tto the data rate, is also shown in
Figure 7(b). The active radius shrinks slightly asncreases. As the traffic intensity increases,
the optimal allocation blocks the users with the worst cledgnvhile trying to maintain the
received power level for the remaining active users (searEig(b)). Apparently, this blocking

strategy yields a higher utility rate than offering a relaly degraded service to all users.

Figure 8 shows the maximum average utility per uBgf U,[P(h)]} versus the target outage
probability ¢, with different arrival rates. As\ increases, the average utility per user decreases;
however, the overall utility rataE; {U,[P(h)]} increases. A smalley, or equivalently, a tighter

power constraint, results in a lower utility per user. Netihat the average utility per user is
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insensitive tagy when ) is small (< 10). This is because the exponential utility{ ?) = 1 — e~ %
is relatively flat (close to one) wheR becomes large. Wheh is small, the optimal power
allocation to active users is quite large, so that the cpmeding transmission rate&) are also

large. Therefore, the average utility per user is close ®. on

VI. CONCLUSIONS

We have studied forward link power allocation for stochaadly varying data traffic. Each
power assignment remains constant for the duration of tickgbaand along with the channel
gain and associated utility function, determines the tutifor transmitting the packet. The
objective is to determine a power assignment policy thatimees the time average utility
rate. We introduced an outage constraint on the total powerder to derive a simple power
assignment policy, which depends only on steady-statemsyptoperties. Specifically, this policy
depends only on the distribution of channel gains, packetahrate, and utility functions. Each
power assignment then depends only on the designated abarisel state and associated utility
function.

By approximating the steady-state total power as a Gaussiatom variable, the outage
constraint was decomposed into simpler constraints onggn@nd power times energy. This
approximation is accurate provided that the average nurob@ackets being simultaneously
transmitted in steady-state is large enough, correspgndia heavily loaded system. A procedure
for maximizing the time-averaged utility rate was presdntghich enforces those constraints,
respectively through a combination of admission contral @nicing of power times energy.
The optimal combination depends on the system charadtsristamely, the packet arrival rate,
assigned utility functions, and distribution of channeinga Numerical results were presented
to illustrate the effect of the constraints, the optimal powllocation, and the corresponding
utility rate. The results show that it can be beneficial tocklasers, rather than use pricing only

to enforce the constraints.
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Fig. 3.
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(a) Outage probability vg. with different arrival rates; (b) Average number of active packetu with different arrival
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Average utility per user vs. € for different A.
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