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Abstract—Spectrum sharing has been put forward as a way to
more efficiently use limited spectrum and thus increase wireless
network capacity. This paper considers a scenario where a
primary Service Provider (SP) shares spectrum with secondary
SPs and competes for a common pool of customers. We study
such a scenario using a model for price competition in which
customers select a SP based on the sum of the SP’s announced
service price and the congestion incurred when using their
service. Here, we assume that the primary has strict priority
over the secondary and model the resulting congestion via a
preemptive priority queue. We characterize the equilibrium of
the resulting pricing game. In particular we find that when
the service time has a small variance, secondary users can be
excluded from the system, while the primary has to offer a
lower price than it would if it were a monopolist due to the
threat of entry. As the amount of available bandwidth increases,
the primary SP’s profit will decrease asymptotically to zero.
In addition, for some scenarios, we show that social welfare
may decrease with additional bandwidth and be less than that
obtained without sharing.

I. INTRODUCTION

To meet the future demand of wireless data services,
sharing has been proposed as an efficient way to unlock
additional spectrum. For example, in the 2012 report of the
President’s Council of Advisors on Science and Technology
(PCAST) [1], spectrum sharing is highlighted, especially for
underutilized federal spectrum. Indeed, in the United States,
spectrum sharing has been adopted in the TV white spaces
[2] and the FCC is moving forward with proposals for sharing
in the 3.5 GHz band [3]. Sharing commercial bands between
wireless service providers has also been suggested as an
efficient way to increase network capacity, e.g., [4], [5].

There has been much research on the “primary-secondary”
approach for spectrum sharing, where the secondary users
can access a spectrum band provided they do not interfere
with the primary users. This can be facilitated by sens-
ing [6], a location-based approach [7] or a market-based
approach [8]. In this paper, we focus on a primary-seocndary
scenario where a wireless service provider (SP) is the primary
spectrum user. This primary SP shares the spectrum band
with a set of secondary SPs. Here, we consider a model
of unlicensed secondary sharing as in the TV white spaces,
meaning that any secondary SP can access the spectrum given
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they do not interfere with the primary. This can be contrasted
with licensed secondary access in which a single SP has
an exclusive license for secondary use [10]. Both licensed
and unlicensed sharing are part of the 3-tier model proposed
in the PCAST report [1] with tier 2 users having licensed
secondary access and tier 3 users having unlicensed access.
Our work can model a situation where the primary is such
a tier 2 user and the secondaries are tier 3 users. Allowing
such unlicensed sharing lowers the barrier for secondary SPs
to enter the market and may enable them to provide low cost
service; the competition among them and the primary can
then potentially increase social welfare. Lowering the barrier
of entry can also cause extra congestion for the secondaries
and can affect the primary’s pricing strategy. We present a
model for studying such issues in this paper.

This paper continues a series of work in [9], [11], [12],
where competition with spectrum sharing was studied. These
works in turn were based models for competition with con-
gestible resources studied in the operations and economics
literature including [14], [15]. In these models, firms compete
for customers by announcing prices. Customers select SPs
based on the combination of their announced price and the
amount of congestion in the resources used by the firm. In
[14], [15], firms own seperate resources, while in the case
of spectrum sharing certain resources are shared by SPs.
Namely, in [?] a band of unlicensed spectrum is available
for all SPs to use, in [11] licensed sharing of a band is
considered, while in [9] unlicensed sharing of a band under
the primary-secondary model is considered as in this paper.
The main difference between this paper and the work in [9]
is in how the congestion is modeled for the primary and
secondary users. In [9], both the primary and secondary SP’s
congestion is given by a single function g(x), that depends
on the offered traffic x. The congestion of these firms then
only differs in the offered traffic used: in the primary’s case,
this is simply the the number of users it serves, while for
the secondaries it is the total number of users served by all
SPs. Moreover, the main case studied in [9] was where this
congestion function was a linear function of the traffic. In
this paper, we consider at a more refined model based on
a preemptive priority queue to model the congestion costs
of the primary and secondary SPs. With this model, the
secondary users’ congestion is not given by the same function
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Fig. 1. Priority queue model for the pricing game with shared spectrum

of the total traffic as the primary, but secondary users incur
an additional penalty due to the primary users that arrive
while the secondary is waiting for service. Additionally, the
congestion function is non-linear and depends on the variance
of the service times as well as the average service rate.
Our goal is understand what impact changing this congestion
function has on the conclusions in [9].

Our main results show that this change in the congestion
model leads to markedly different conclusions than those in
[9]. In partiular, we show that while in [9] social welfare
is always non-decreasing with the total bandwidth and no
smaller than in a setting where shaing is not allowed, here
social welfare can decrease with additional bandwidth and
may be less than that obtained without sharing. This effect
is similar to the work in [12] where competition between a
licensed SP and SPs using a separate unlicensed band was
studied and again social welfare was shown to decrease for a
certain range of additional unlicensed bandwidth, though the
actions leading to this decrease are different here. With this
model we also show that the secondaries can be excluded
from the market while the primary is forced to offer a lower
price than it would as a monopolist due to the threat of entry.
Again, such an outcome did not occur in [12]

The rest of the paper is organized as follows. Our model
for price competition and congestion based on a priority
queue are described in Section II. We analyze the competitive
equilibrium and resulting welfare with and without spectrum
sharing in Section III. Finally, we conclude in Section IV.

II. COMPETITION MODEL

As in [9], we consider a competition model for a wireless
service market where SPs announce prices for their service
to compete for a common pool of customers. The service
quality offered by each SP is modeled by a congestion cost.
In this paper, we model the congestion as the average delay
for customers to receive service assuming that customers are
served sequentially by SPs using the entire spectrum in a
given area. Each customer then chooses one SP based on all

the SPs’ offered services and prices. Specifically, customers
select the SP that has smallest delivered price, which is the
sum of their announced price and congestion cost.

A. Supply and Demand
Supply: We focus on a wireless service market where there

is one incumbent SP. Without spectrum sharing, it acts as a
monopolist. With spectrum sharing, it announces a price, p
and competes simultaneously with N > 2 secondary SPs
who announce prices, pS = (pS1 , p

S
2 , ..., p

S
N ) and serve X =

(xS1 , x
S
2 , ..., x

S
N ) number of customers, respectively.

The primary’s service quality is given by its congestion
cost g(x), which only depends on x, the number of cus-
tomers (primary users) it is serving. This characterizes a
scenario where the primary users do not experience any
interference from the secondary users. On the other hand,
the secondaries’ service is degraded compared to the primary
as they encounter longer delays due to giving priority to the
primary and waiting for available spectrum to be released.
Their congestion is given by gS(x1, x2), where x2 =

∑
xSi

is the total number of secondary users. This characterizes the
fact that the secondary users not only receive interference
from themselves but also the primary users. Generally, we
assume that g(.) and gS(.) are continuous, increasing and
convex functions with g(0) = gS(0) = 0 (see Fig. 1); the
specific functions we consider in this paper will be defined
in Section II.B.

Demand: We assume a single mass of infinitesimal cus-
tomers and normalize the total customer mass to be 1. We
use an inverse demand function P (x) to characterize the
customers’ demand for service at a certain delivered price.
This is a non-increasing, left-continuous, concave function
that indicates the delivered price at which a mass of x
customers are willing to pay for service. As noted before, the
delivered price is the sum of the price each customer needs
to pay and the congestion they experience. Each customer
can choose to be a primary user or a secondary user giving
them the delivered prices p1 + g(x1), or pSk + gS(x1, x2),
respectively. Otherwise, if the equilibrium delivered price is
higher than what a customer is willing to pay, she will not
receive service. We additionally assume that P (x) > 0 for
small enough value of x so that there always exist a small
enough price at which some customers will be willing to pay
for service. Each customer seeks to choose an SP who offers
the lowest delivered price (provided the price is no greater
than what they are willing to pay). If more than one service
provider has the same delivered price, a customer chooses
one of the low price SPs uniformly at random. Thus, given
a set of prices, (p,pS), the customers receiving service must
be in a Wardrop equilibrium [17], meaning that:

1) The delivered price for all active SPs (i.e., those serving
customers) are equal and strictly less than the delivered
price of any non-active SP;

2) If the active SPs are serving a total of x = x1 + x2
customers, then the delivered price of these SPs, y
satisfies y ≤ P (x) and y > P (x+ ε) for any ε > 0.



Note the second condition specifies that any customer not
being served sees a delivered price higher than it is willing to
pay. Note if P (x) is continuous at x, then this is equivalent
to having y = P (x). In the next section, for analysis, we
assume that customers are homogeneous in their demand,
i.e., all customers are willing to pay up to the same delivered
price, in which case P (q) has a “box” shape as seen in Fig. 2.

B. Congestion: Priority Queue

As stated earlier we consider a scenario where all cus-
tomers are served sequentially with the primary SP’s cus-
tomers having priority over the secondary SP’s customers.
To model the congestion function for both the primary and
secondary SPs, we adopt a model based on the expected
average waiting time in a M/G/1 system with two priority
classes: class 1 and class 2. Class 1, the primary, has the
higher (preemptive) priority, modeling a case where the sec-
ondary instantly stops serving customers when the primary
needs to use the spectrum.1 For such a system, the average
waiting times W1 and W2 for each class i, respectively, are
[18]:

Primary: W1 =
1
2λ1Ȳ

2
1

1 − λ1

µ1

,

Secondary: W2 =
1
2 (λ1Ȳ 2

1 + λ2Ȳ 2
2 )

(1 − λ1

µ1
)(1 − λ1

µ1
− λ2

µ2
)
.

where λi, Ȳi = 1/µi, and Ȳi
2 are respectively the arrival

rate and the first two moments of the service time of class
i. We will use these as the congestion costs for primary and
secondary services.

To simplify notations, we let ai = Ȳ 2
i /2, bi = Ȳi = 1/µi

for each class i, and further equate the arrival rates with the
number of customers served by the primary and secondary
SPs, i.e., x1 = λ1, and x2 = λ2. We then specify the
congestion functions as follows:

Primary: g(x1) =
a1x1

1 − b1x1
,

Secondary: gS(x1, x2) =
a1x1 + a2x2

(1 − b1x1)(1 − b1x1 − b2x2)
.

Also for most of our analysis, we assume that a1 = a2 and
b1 = b2, then we have

gS(x1, x2) =
a1(x1 + x2)

(1 − b1x1)[1 − b1(x1 + x2)]

= g(x1 + x2)
1

(1 − b1x1)
,

i.e., the congestion seen by the secondary users is given
by the same congestion function g as used for the primary
users, but evaluated with the total traffic x1 +x2, and further
increased by the multiplicative term 1/(1 − b1x1), which
depends on the primary’s traffic.

1In practice of course there will be some delay before the secondary
releases the channel to the primary; we ignore this here.

Note that since a1 and b1 are proportional to the second
and first moment of the service time, Y1, it follows that 2a1 =
b21+σ2

Y , where σ2
Y is the variance of the service time, so that

that it must be that a1 ≥ b21/2, with equality when σ2
Y = 0.

C. Equilibrium

Given the demand and congestion functions defined in the
previous section, we define a (pure strategy) Nash equilib-
rium of the overall pricing game to be a set of prices (p,pS)
and demands (x1,X), which satisfy the Wardrop equilibrium
conditions as above with the additional property that no SP
can increase its profit by unilaterally changing its price.

Given such an equilibrium, the consumer welfare, Sc is
defined by the sum of each customer’s welfare, which is the
price she values the service, P (x), minus the delivered price
she pays. This is equivalent to the area bounded by the curve
of P (x) and the delivered price (see Fig. 1). The firm profit,
f is given by the sum of the profits made by all SPs, which is
the product of the customers they serve and their announced
price. The social welfare, S, of the entire economy is the
sum of the firm profit and the consumer welfare.

D. Monopoly

Without spectrum sharing, the primary SP acts as a monop-
olist. It announces the price to maximize its own profit given
the market demand. The optimal price is given by solving
the following optimization problem:

max
p,x

px

subject to p+ g(x) ≤ P (x),

0 ≤ x ≤ 1

(1)

Since the objective is continuous and the constraint set is
compact and non-empty, this problem must have a solution.
Here, the first constraint ensures that the number of customers
served satisfies the second Wardrop equilibrium condition.
If P (x) is continuous with P (1) = 0, then this constraint
will be met with equality for any choice of P ; if this is
not the case, then at optimality this constraint must still be
tight at optimality, since if it was not tight, the monopolist
could increase the price and get more revenue. Hence, we
can replace the first constraint with p + g(x) = P (x) and
further solve for p in terms of x. This enables us to write the
problem as an optimization only over x with the objective
x(P (x) − g(x)) subject to 0 ≤ x ≤ 1. As shown in the
appendix, this objective is strictly concave over the constraint
set and so the problem will have a unique solution.

E. Unlicensed Spectrum Sharing

With unlicensed spectrum sharing, we assume that there
are multiple secondary SPs in the market. Since each sec-
ondary SP offers a service with the same congestion cost
gs(x1, x2), the provider with the lowest announced price will
capture the entire market of secondary users. This drives
the secondary SPs’ announced prices to zero, as stated in
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Fig. 2. An example of the pricing game with shared spectrum when
bandwidth is limited.
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Fig. 3. An example of the pricing game with shared spectrum when
bandwidth is increased but the delivered price stays at the price cap.

the following result, which can be derived using a similar
argument as in [9].

Lemma 2.1: With unlicensed shared spectrum and N ≥ 2
secondary SPs, in any Nash equilibrium, all active secondary
SPs will charge zero price to customers, i.e., pSi = 0 for all
i.

Recall, an active SP refers to one that is serving customers.
Notice that since each secondary SP’s announced price is
zero, their profit will also be zero. Hence, any SP will
be indifferent from being active and being inactive and
announcing a larger price than zero. However, to get a Nash
equilibrium for the overall game in such cases will require
that at least one SP announces a price of zero. Also note that
we did not include any marginal cost c for the secondaries to
deliver service; if we did include this, the equilibrium price
for any active secondary SP would be equal to c.

With at least two secondary SPs, this lemma shows that
the announced price of all active secondaries will be zero,
and so if the secondaries are serving any customers in an
equilibrium, then their delivered price will be equal to their
congestion gS(x1, x2). It follows from the Wardrop equilib-
rium equilibrium conditions that given that the primary SP is

serving x1customers, the total number of customers served
in the entire market in equilibrium, x∗, must be the solution
of the following optimization problem:

max x

subject to: g(x)
1

1 − b1x1
≤ P (x),

x1 ≤ x ≤ 1.

(2)

It can be seen that this problem will have a solution if and
only if g(x1) 1

1−b1x1
≤ P (x1). In the case were a solution

does not exist, then there can not be any active secondary
SPs. If a solution does exist, then it can also be seen that
it will be unique. In particular, if P (x) is continuous at x∗,
then at the optimal solution the first constraint must be tight,
i.e., the solution is given by solving

g(x)
1

1 − b1x1
= P (x).

Let x1,m be the number of customers the primary would
serve when it was a monopolist. Then, considering (2) for
this value of x1, it follows that if (2) has no solution, the
primary will again serve x1,m customers with unlicensed
sharing and no secondaries will be active. Otherwise, if (2)
has a solution for x1 = x1,m, then there are two possibilities:
(i) the delivered price g(x∗) 1

1−b1x1,m
equals that obtained

by a monopolist or (ii) this delivered price is smaller than
that under a monopolist. In the first case the primary can
continue serving x1,m customers at the monopoly price and
any additional customers are served by the secondary SPs.
In the second case, the primary SP can no longer obtain the
same revenue as a monopolist. Indeed, it follows that in any
equilibrium g(x∗) 1

1−b1x1
will be a cap on the delivered price

and so the primary must either announce a lower price or
serve fewer customers. Note also that x∗ and thus this cap
on the delivered price depends on the number of customers
the primary SP is serving (x1); namely, as the primary SP
serves fewer customers, x∗ will be non-decreasing and so the
price cap will be non-increasing. To compare with the work
in [9], there sharing also resulted in a cap on the delivered
price, but that cap did not depend on the primary’s traffic, x1.
This dependency provides a new potential strategic option for
the primary since increasing the number of customers it is
serving can cause more congestion for the secondaries and
increase the delivered price cap. In the following sections,
we will see that with a large variance of the service rate, the
primary will exploit this option and may even exclude the
secondaries from the market.

We now turn to studying the Nash equilibria of the overall
pricing game with shared spectrum. Under the assumed
properties for the inverse demand, the next theorem shows
that a Nash Equilibrium always exists.

Theorem 2.2: For the priority queue model with shared
spectrum a Nash equilibrium always exists.

Proof: If (??) has no solution when the primary serves
x1,m customers, then the existence of a Nash equilibrium is
immediate as the primary can simply acts as a monopolist and
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Fig. 4. An example of pricing game with shared spectrum when the primary
is serving the entire market with a non-monopoly price
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Fig. 5. An example of pricing game with shared spectrum when the
bandwidth is large enough for secondaries to enter and the delivered price
is below the cap.

no secondary will enter the market. Otherwise, the primary
must account for the ”price cap” imposed by the secondary
and so is faced with the problem

max px1

subject to: p+ g(x1) = g(x)
1

1 − b1x1
,

g(x)
1

1 − b1x1
≤ P (x),

p ≥ 0, x1 ≤ x ≤ 1.

(3)

Again this problem has a continuous objective and a compact
constraint set and so must have a solution. If the primary
SP announces the price p∗, given by solving this and all
secondary SPs announce a price of zero, then this must be a
Nash equilibrium.

III. COMPETITION AND WELFARE ANALYSIS

In this section, we assume that the inverse customer
demand function is homogeneous, i.e., it has a “box” shape.
All the customers in the market are willing to pay up to the
same level of price, which we also normalize to be one, so
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Fig. 6. Welfares of the primary and secondary pricing game with and without
shared spectrum with σ2

Y =0.

that

P (x) =

{
1, 0 ≤ x ≤ 1,

0, otherwise.

A. Without Spectrum Sharing

Without sharing spectrum, we can re-write the primary
SP’s optimization in (1) as

max (1 − a1x

1 − b1x
)x

subject to 0 ≤ x ≤ 1,

where as discussed in Section II-D we have used the fact that
the first constraint in (1) holds with equality. Solving this, we
have that without spectrum sharing the primary will serve

x∗ = min

(
1

b1
−

√
1

b1
− 1

b1(a1 + b1)
, 1

)
(4)

customers.
As b1 is the inverse of average service rate, we will view

1/b1 as the bandwidth available for the primary. The next
lemma characterizes how the primary’s profit varies with this
amount of bandwidth.

Lemma 3.1: Without spectrum sharing, the primary SP’s
profit is non-decreasing in the bandwidth 1/b1.

This lemma follows from noting that the profit of the
monopolist is given by

πM = x∗ × max

((
1 − a1x

∗

1 − b1x∗

)
,

(
1 − a1

1 − b1

))
which in increasing in 1/b1 for a1 ≥ b21/2, which as noted
earlier must be true.

In the monopoly case with homogeneous demand it is easy
to see that consumers will not obtain any welfare, i.e., the
delivered price will be equal to 1. Hence in this case, the
primary’s profit is equal to the overall social welfare, a plot
of this as a function of the available bandwidth is shown
in Fig. 6 and Fig. 9 when the variance of Ȳ is 0 and 1,
respectively.
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Fig. 7. Primary price with and without shared spectrum (σ2
Y =0).

B. Spectrum Sharing

With shared spectrum, the primary SP must compete with
the secondary SPs. From the preliminary results in Sect. II,
the secondaries will charge zero price to their customers,
which indicates that if any secondaries are active then the
delivered price is just their congestion gS(x1, x2) = g(x1 +
x2)× 1

1−b1x1
. Further we know that when (2) has no solution

for x1 equal to the value in (4), then no secondary will be
active. For the remainder of this section we turn to the case
were this is not true. In such cases, the primary SP’s profit
maximization is given by solving:

max px1

subject to
a1(x)

1 − b1(x)

1

1 − b1x1
≤ 1,

p+
a1x1

1 − b1x1
=

a1(x)

1 − b1(x)

1

1 − b1x1
0 ≤ x1 ≤ x ≤ 1.

As the inverse demand P (x) has a “box” shape, it is
convenient to separate the solution to this problem into four
regions shown in Fig. 2 - Fig. 5. The first region, as in Fig. 2,
is when the bandwidth is limited so that not all customers
are served. In this case, the primary is serving part of the
customers and the secondary users have occasional access to
the spectrum but the delivered price remains at the ceiling
price of 1. In this case, enabling secondary sharing does not
affect the primary’s profit as indicated in Fig. 6 and Fig. 8.
As the bandwidth increases, the primary and secondary will
serve more customers until all of the customers in the market
are being served, which is the second region, as in Fig. 3. At
this time, the primary is serving x1 = 1−a1−b1

b1(1−b1) customers.
Here, if the primary wants to maintain the delivered price
at 1, it has to decrease its announced price to gain more
customers while causing more congestion for the secondaries.
For a range of bandwidth, this is the optimal action of the
primary. As shown in Fig. 8, the primary is now serving more
customers than in the monopoly case. This market expansion
also reduces the number of secondary users which, as shown
in Fig. 8, decreases to zero for some range of bandwidth.
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Fig. 8. Number of primary and secondary users with and without shared
spectrum (σ2

Y =0).

In this case, the primary is serving the entire market while
announcing a non-monopoly price due to the threat of entry
as shown in Fig. 7 and Fig. 4. This price cap due to the threat
of entry may not always exists as shown in another example
in Fig. 9 and Fig. 10 where the variance of Y is large. In that
case, the primary will instead serve fewer customers to gain
more profit. The condition for the primary to serve the entire
market with a non-monopoly price is given by the following
theorem.

Theorem 3.2: If and only if

a1 ≤ (b1 − 1)2,

then if the primary SP serves the entire market it must offer
a price lower than the monopoly price due to the threat of
entry from the secondaries.

Proof: First consider the monopoly case. In that case it
follows that the primary will serve the entire market when it
announces a price of

p1 = 1 − a1
1 − b1

,

which results in a delivered price of p1 + g(1) = 1.
Furthermore, from the analysis of the monopoly case, we
know that with sufficient bandwidth such a price will be
optimal. For this price to be an equilibrium in the case of
shared spectrum it must be that no secondary SP is active and
imposing a lower price cap than 1 on the primaries delivered
price. This is equivalent to requiring that the delivered price
of each secondary SP to be no less than 1, when there is no
secondary traffic, i.e. that

1 ≤ gS(1, 0)

=
a1

(1 − b1)2
.

In other words, we have shown that if a1 ≥ (1−b1)2, then the
primary will be able to serve the entire market and still charge
the monopoly price. On the other hand, if this condition is
not true, then the only way the primary can serve the entire
market is by charging a price lower than the monopoly price.
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shared spectrum (σ2
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As the bandwidth becomes larger, it will eventually not be
optimal for the primary to decrease it price so as to gain more
customers from the secondaries. After that point, the primary
will serve fewer customers and the number of customers
served by the secondaries will increase. From Fig. 8, it
can be seen that with large enough bandwidth, the primary
and secondary SPs will divide the market, which provides
more consumer welfare and social welfare compared with
monopoly case. It follows that the primary is losing profit as
given in the following theorem.

Theorem 3.3: With large enough bandwidth available, the
primary SP gains less profit as bandwidth increases

This is also shown in Fig. 6 and Fig. 9. Unlike the
monopoly case, the primary profit shrinks asymptotically to
zero as the amount of bandwidth increases. Also as shown
in Fig. 4, as the primary decreases the number of customers
it is serving, this causes more congestion in the shared band
and its profit slightly decreases. This also decreases social
welfare. This happens more dramatically in the case where
the variance of the service time is larger as shown in Fig. 9.
There it is shown that for a range of bandwidth, social welfare
decreases and is below that obtained by a monopolist. This
is in contrast to our previous model in [9] and is summarized
in the following theorem.

Theorem 3.4: Spectrum sharing gives more social welfare
than no sharing with large enough bandwidth. However, It
may decrease social welfare for some range of bandwidth.

As seen from Fig. 6 and Fig. 9, spectrum sharing outper-
forms the monopoly case in terms of social welfare when
the bandwidth is large. The drop in social welfare for some
range of bandwidth is due to the fact that the primary has an
incentive to serve more customers to cause congestion in the
shared band and increase the delivered price cap as discussed
previously.

IV. CONCLUSIONS

In this paper, we considered a scenario where a primary
service providers shares its spectrum with multiple secondary
service providers using a preemptive priority rule. Price

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

# primary users w/ sharing
# secondary users w/ sharing
# users w/o sharing

Fig. 10. Number of primary and secondary users with and without shared
spectrum (σ2

Y =1).

competition among the primary and secondary for a common
pool of customers was studied. Here, It was shown that the
social welfare can decrease when the amount of bandwidth
for sharing is increased due to the market expansion strategy
of the primary. Also with spectrum sharing, it was shown
that the primary may serve the entire market with a non-
monopoly price due to the potential competition from the
secondaries. With greater variance of the service time, the
drop in social welfare happens at a larger bandwidth.

In most of our analysis, we assumed the primary and
secondary have the same first and second moments of service
times, i.e., a1 = a2 and b1 = b2. We briefly comment on
the case where these are different. If either a2 or b2 are
increased (i.e. the secondaries have a slower service rate or
larger variance), then this will cause the secondaries to have
higher congestion and thus enable the primary to sustain
monopoly profits over a larger range of bandwidths 1/b1.
Next suppose we consider making the secondary service
times smaller by requiring them to send smaller packets (but
at a proportionally larger arrival rate. For example, we could
split the packet sizes in half abut double the arrival rates, i.e.,
setting b′2 = b2/2 and λ′ = 2λ, additionally if the packets are
fixed size so that a2 = b22/2, then after splitting the packets,
a2 will be scaled to a2/4. It can be seen that such a change
will reduce the congestion of the secondary (intuitively this is
because smaller packets will incur fewer interruptions from
the the primary). Such a change will improve the secondaries
performance, but may reduce the primary firm’s profits. An
example of how the primary firm’s profits varies as the
service time and variance of the secondary users traffic is
varied is shown in Fig. 11. From this it can be seen that the
primary firm’s profit decreases with the average service time
for secondary users, b2 and increases with second moment
of the service time.

In addition, general demand functions can be explored
in future works as can models that include the investment
decisions of the service providers.
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APPENDIX

In this appendix we give a short justification as to why
the objective x(P (x) − g(x)) is strictly concave. Note that
under our assumptions f(x) = P (x) − g(x) is a concave
and strictly decreasing function on [0, 1] (but not necessarily
continuous or differentiable). Let L(x) = xf(x). To see that
L(x) is strictly concave in x, we need for all x and y and λ
in [0, 1]

L(λx+ (1 − λ)y) > λL(x) + (1 − λ)L(y)

i.e.,

(λx+ (1−λ)y)f(λx+ (1−λ)y) > λxf(x) + (1−λ)yf(y).

Since f(x) is concave, then

(λx+ (1 − λ)y)f(λx+ (1 − λ)y)

≥(λx+ (1 − λ)y)(λf(x) + (q − λ)f(y))

=λ(λx+ (1 − λ)y)f(x) + (1 − λ)(λx+ (1 − λ)y)f(y)

=λ(1 + λ− 1)f(x) + λ(λ)yf(x) + (1 − λ)yf(y)

− λ(1 − λ)yf(y) + (1 − λ)λxf(y)

=λxf(x) + (1 − λ)yf(y) + (λ− 1)λxf(x)

+ λ(1 − λ)yf(x) − λ(1 − λ)yf(y) + (1 − λ)λxf(y)

=λxf(x) + (1 − λ)yf(y) + λ(1 − λ)(y − x)(f(x) − f(y)).

As f(x) is strictly decreasing, the underlined term is strictly
positive. Thus we complete our proof that (λx + (1 −
λ)y)f(λx+ (1 − λ)y) > λxf(x) + (1 − λ)yf(y).


