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Abstract—Opening ”prime” spectrum to unlicensed usage can
lower the costs for offering wide area wireless services but may
also lead to greater congestion due to multiple providers operat-
ing in the same band. To mitigate congestion, service providers
may invest in more infrastructure or better technology. The costs
of such investments must be weighed against the potential gains
in revenue, which in turn will depend on the investments of
other competing providers in the shared spectrum. This paper
studies such trade-offs for multiple competing providers in a
common unlicensed band. We extend models from earlier work
on price competition with congestible resources to include the
investment decisions of service providers using a common band
of spectrum. Several models are considered to capture different
ways investment might impact the congestion due to both a
provider’s own customers and those of other providers. For each
model, we study a game in which providers decide on both the
level of investment and the price of their service. Interestingly, in
most cases, the equilibrium of the resulting game is shown to be
that only a single provider invests and charges monopoly prices.
On the other hand, multiple providers may enter the market
when the dominant effect of investment is to reduce congestion
due to the customers of other providers.

I. INTRODUCTION

Motivated in part by the success of WiFi, there has been
interest in making ”prime” spectrum available for unlicensed
use, such as the recently opened up TV white spaces [1]. Due
to its better propagation characteristics, such spectrum can
enable a service provider (SP) to offer wide area coverage
similar to that provided by cellular operators in licensed
bands. Moreover, since it is open for any SP to freely use,
unlicensed spectrum can substantially lower the entrance cost
for providing such services. However, better propagation also
increases the potential that customers of an SP in such open
spectrum will experience congestion due not only to other
customers of the same SP but also due to customers of other
SPs operating in the same band. To reduce such congestion,
SPs can invest in better technology and/or more infrastructure.
The expense of such investments must be balanced by the
revenue an SP would gain in drawing customers from other
SPs, who in turn may also be making investment decisions.
Studying such interactions is the goal of this paper.

We build on a framework from [2] for competition among
SPs with unlicensed spectrum, which in turn was based
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on models for price competition with congestible resources
developed in the operations and economics literature (e.g., [3]–
[5]). In this framework, SPs compete for a common pool of
customers by announcing service prices. Customers in turn
select an SP based on a delivered price, which consists of the
announced price plus a congestion cost. A key assumption in
[2] is that all customers in an unlicensed band experience the
same congestion cost, which depends on the total traffic in that
band across all SPs. This is motivated by the likelihood that
customers sharing the unlicensed band within a given region
will interfere with each other even if they are associated with
different SPs. It was then shown that the resulting equilibrium
profit in the unlicensed spectrum is zero.1 Since providers
make no profit, it is not clear that they would have an incentive
to invest to offer service in the first place. Here we explicitly
model this investment choice. Moreover, by varying their
investment, we allow providers to differentiate their service
instead of offering the same service as in [2].

There are a variety of ways an SP can invest such as adding
new infrastructure or upgrading technology in existing infras-
tructure. Furthermore, these investments may have different
effects on the congestion seen by an SP’s own traffic and the
traffic of other SPs. For example, if SPs invest in base station
sectorization in a cellular-type system, then investment would
reduce the (uplink) congestion caused by both its own traffic
and that of the other SPs (since a smaller fraction of the overall
traffic would be seen in each sector). As another example, if
the investment corresponds to adding more access points with
a smaller footprint in a given area, then the investment of
an SP will not only decrease the congestion contributed by
its own traffic, but also the congestion it causes to the other
SPs (since its users would be transmitting at lower power).
In other instances, the investment of an SP could have a
larger effect in reducing the congestion caused by its own
traffic, or conversely, the effect due to other SPs’ traffic, e.g.,
if the investment is more sophisticated user scheduling or
interference mitigation, respectively. Here, we consider four
stylized models that highlight some of these different effects.2

We focus on investment and price competition among

1If sunk cost is considered, then the equilibrium price will fall to be equal
to the sunk cost and SPs’ profit is still zero.

2Preliminary work for one of these models of investment was presented in
[6].



SPs who offer service using unlicensed spectrum. For each
investment model, we consider a corresponding investment and
pricing game. We characterize the equilibria of these games
and examine how different models influence the incentives of
SPs to invest in unlicensed spectrum. Interestingly, for three of
these models, if a pure strategy equilibrium exists, it is for only
one provider to enter the market and to act like a monopolist.
In such cases, though open spectrum lowers barriers to entry, it
does not result in increased competition. This can be attributed
to the congestable nature of this resource, which provides
a different type of barrier to entering the market. In one
model, we do find an equilibrium where multiple providers
may enter the market. This corresponds to a model where the
dominant effect of investment is to reduce congestion due to
the customers of other SPs, making the shared resource look
more like an exclusive resource for each provider.

In terms of related work, price and investment (or similarly
“capacity” ) competition between firms has been extensively
studied including the Edgeworth-Bertrand game [7] and mod-
els that build on that [8]–[10]. Two main types of models have
been considered: ones in which firms decide on quantities and
prices sequentially and ones in which firms simultaneously set
quantities and prices. Here, we consider a sequential approach;
this is more reasonable for cases where investment happens
on a slower time-scale than pricing decisions, which seems
appropriate for wireless services. Also, in the simultaneous
case, pure strategy equilibria often do not exist, complicating
the analysis. A key difference of this line of work from
our model is that congestion externalities are not explicitly
considered. Closer to our model is work such as [3], [5],
[10]–[13], which incorporate investment into models of price
competition with congestible resources. The main difference
from our work is that in all of these papers each firm has
access to an exclusive resource. Here, the service from each SP
is provided through a non-exclusive resource since all SPs can
freely use the same unlicensed spectrum. Thus, the congestion
suffered by customers of each SP also depends on other SPs’
customers. We shall see this assumption can fundamentally
change the structure of the competitive outcome.

The rest of the paper is organized as follows. Our models of
investment and price competition are described in Section II.
In Section III, we characterize the investment and pricing
decisions of a monopolist. The subgame-perfect equilibria for
each model of investment are characterized and compared in
Section IV. Many detailed proofs are omitted due to lack of
space. We conclude in Section V.

II. MODEL

As in [2], we consider a set of SPs who compete for a
common pool of customers in part by setting prices for their
services. The customers respond according to both the service
prices and congestion costs of the SPs. All SPs offer service
in a single common unlicensed band so that the congestion
experienced by a customer of each SP depends not only on
the SP’s own customer mass, but also on the customer masses
of other SPs. Different from [2], we allow SPs to determine

an investment level that influences the congestion costs. We
more precisely define this model next.

A. Service Providers

Let N = {1, . . . N} denote the set of SPs. Each SP i
chooses an investment level Ii and a corresponding price pi
for its service. The congestion cost experienced by customers
of each SP i is given by g̃i(x, I), where x = (x1, x2, ..., xN )
and I = (I1, I2, ..., IN ) are the vector of customer masses and
investment levels of all the SPs, respectively.

An increase in investment by an SP reduces the congestion
its customers experience, and hence allows it to raise its
service price (due to better quality of service) or admit more
customers. On the other hand, such investments incur a cost.
Thus the trade-off for the SPs is between the increased revenue
and the cost of investment. Here we consider a setting where
all SPs are investing in similar technologies, meaning that
each SP’s congestion function depends on investment in the
same way. This dependency is given by one of four models
described next. In each case the congestion function is defined
in terms of an underlying function g : R 7→ R, which maps the
”effective load” an SP’s customers see to a congestion value.
Different investment models simply change how this effective
load is calculated.

Model (I): An SP’s investment reduces the effective load
caused by the traffic of all SPs in the unlicensed band, i.e.,

g̃i(x, I) = g

(∑
i∈N xi

Ii

)
. (I)

Model (II): Each SP’s investment reduces the load due to
its own traffic for every SP, i.e.,

g̃i(x, I) = g

(∑
i∈N

xi
Ii

)
. (II)

Note that in this model, every SP experiences the same con-
gestion cost and an SP’s congestion depends on the investment
of every other SP.

Model (III): An SP’s investment only reduces the load due
to its own traffic and has no effect on other SPs’ traffic, i.e.,

g̃i(x, I) = g

xi
Ii

+
∑
j 6=i

xj

 . (III)

Model (IV): An SP’s investment reduces the load due to
other SPs’ traffic so that

g̃i(x, I) = g

(
xi +

∑
j 6=i xj

Ii

)
. (IV)

In each model, the investment of each SP is chosen from the
set {0} ∪ [1,∞). Namely, if an SP invests a positive amount,
it must invest at least 1, which can be viewed as the minimal
investment required to offer service. If SP i sets investment
Ii ≥ 1, we refer to it as being active. On the other hand, SP



i is inactive if it chooses not to invest, i.e., Ii = 0. If an SP
is inactive, then its profit is zero.3

B. Customers

We assume a unit mass of infinitesimal customers all of
whom choose an SP based on the delivered price, which is the
sum of the price announced by an SP and the SP’s congestion
cost, e.g., the delivered price of SP i is pi + g̃i(x, I).

The traffic demand for services is governed by a downward
sloping demand function D(p) with the inverse function P (q),
i.e., P (q) indicates the delivered price at which a mass of q
customers is willing to be served. Customers always choose
service from the SP with the lowest delivered price. When
facing the same delivered price from multiple SPs, customers
are assumed to randomly choose one of the SPs. Thus all
SPs who are serving customers must have the same delivered
price and this must be no greater than the delivered price of
any other SP. Formally, given investment and price vectors of
every SP, (I,p), the induced non-negative demand vector x is
required to be a Wardrop equilibrium [14], i.e., to satisfy

pi + g̃i(x, I) = P (X) if xi > 0 (1)
pi + g̃i(x, I) ≥ P (X) if xi = 0

where X =
∑
i∈N xi is the total customer mass being served.

In general a Wardrop equilibrium may not exist. To ensure
that it does and is unique for a given investment and price
vector, we make the following assumptions:4

Assumption 1: g(x) and xg(x) are strictly increasing and
convex; P (q) is concave decreasing and qP (q) is strictly
concave. In addition, g(0) = 0 and there exists Q > 0 such
that P (Q) = 0.

C. Two-stage Investment-Pricing Game

We consider an investment-pricing game in which each SP
i seeks to maximize its profit given by

Πi(Ii, I−i, pi,p−i,x) = pixi − cIi, (2)

where I−i and p−i denote the investment levels and prices
of the other SPs, respectively, and x is the resulting demand
vector that satisfies (1). The first term in (2) represents
the revenue collected from i’s customers, and the second
term represents its investment cost, which is assumed to be
proportional to Ii with constant marginal investment cost c. 5

Each provider determines its investment and pricing deci-
sions sequentially, i.e., this is a two-stage game in which the
SPs first simultaneously set investment levels {Ii}. Having
observed the investment decisions of all SPs in the first stage,
the SPs then announce their service prices {pi} simultaneously

3Note that in all these models the congestion costs are not well-defined
when xi = 0 and Ii = 0 for each i. Thus to formally define an equilibrium
in such cases, we view g̃i(·) as being so large that no customers would want
to use the service of SP i.

4With these assumptions, the existence of a unique Wardrop equilibrium
can be shown by using an argument as in [15].

5Here we assume that all providers have the same marginal investment
costs; however, many of our results can be generalized to asymmetric
investment costs at the expense of more cumbersome notation.

in the second stage. Since the investment set in the first stage is
observed by all SPs, every investment vector I = (I1, ..., IN )
then defines a proper subgame, which we refer to as a pricing
subgame. An equilibrium for this subgame is defined next.

Definition 1: The price and demand vector (p(I), x(I)) is
a pure strategy price equilibrium in the pricing subgame for a
fixed investment vector I if x(I) satisfies (1) and no SP can
increase its profit by unilaterally changing prices.

SPs can set investment levels in the first stage expecting to
see such a price equilibrium in the second stage. This allows
us to define a subgame perfect equilibrium (SPE) [16] for
the overall game, which we refer to as the investment-price
equilibrium.

Definition 2: A tuple (Ie,p(Ie),x(Ie)) is an investment-
price equilibrium if (p(Ie),x(Ie)) forms a price equilibrium
in the pricing subgame given Ie, and no SP can increase its
profit by unilaterally changing its investment.

III. MONOPOLY SCENARIO

In this section we characterize the investment and pricing
decisions made when there is only a single monopoly SP
present in the unlicensed band.6. The monopoly SP will
jointly optimize its profit, π = px − cI , over investment
I ∈ {0} ∪ [1,∞) and price p ≥ 0 (or equivalently, customer
demand x ≥ 0 ).7 Furthermore, if there is only a single SP,
it can be seen that the congestion cost functions of Models
I, II and III all become the same with g̃(x, I) = g(xI ). For
Model IV, if there is no congestion caused by other SPs,
then the monopoly SP does not need to make any investment
greater than 1. Thus we focus on the monopoly behavior
corresponding to Models I-III.

The monopoly’s profit maximization can be written as the
following problem.

max
I,p,x

Π = px− cI

s.t. p+ g(
x

I
) = P (x),

x ≥ 0, p ≥ 0, I ∈ {0} ∪ [1,∞)

which can be rewritten as

max
I,x

Π = xP (x)− x
(
g(
x

I
) + c

I

x

)
(3)

s.t. x ≥ 0, I ∈ {0} ∪ [1,∞) .

To interpret this, note that P (x) is the delivered price that x
customers would be willing to pay. If there was no congestion
or investment, the monopolist could charge each customer
P (x) and have a total profit of xP (x). The term g(xI ) + c Ix
represents the monopolist’s per customer cost due to conges-
tion and investment.

We make the following assumption so that a monopoly
will always make positive profit, and hence want to enter the

6The unlicensed band essentially becomes the monopoly SP’s proprietary
band in this scenario.

7Since there is only one SP, whether these optimization are done sequen-
tially or simultaneously does not matter.



market. This requires that the monopoly has positive profit
with investment equal to 1. From (3), this gives the following
condition.

Assumption 2: max
x≥0

x(P (x)− g(x)) > c.

Because of Assumption 2, we only need to consider the case
where the monopoly invests I ≥ 1.

Define ∆(t) = g(t) + c 1t such that the second term in the
objective of (3) can be expressed as x∆(x/I). To solve (3),
one can first minimize ∆(t) over t ≥ 0, where t = x/I . Let
the solution to this minimization be ξ; this must be an interior
point that satisfies the first order condition g′(ξ)ξ2 = c. Let the
corresponding optimal objective value be ∆∗c , i.e., this is the
minimum total cost per customer the monopolist can obtain.
The monopoly investment and price are then given by the
following lemma.

Lemma 1: Under Assumptions 1 and 2, the monopoly in-
vestment IM and customer mass xM are given by

(IM , xM ) =

{
(1, χ), if d

dx xP (x)|x=ξ ≤ ∆∗c ,
(I0, x0), if d

dx xP (x)|x=ξ > ∆∗c ,
(4)

where χ satisfies d
dx (xP (x) − xg(x))|x=χ = 0; x0 satisfies

d
dxxP (x)|x=x0

= ∆∗c and I0 = x0/ξ. The corresponding
monopoly price is given by (1).

Here d
dxxP (x) represents the marginal gain from serving

one more customer. The Lemma shows that one will invest at
a level larger than 1 only if this marginal gain exceeds ∆∗c .
The proof of this follows from simply interpreting the first
order optimality conditions of problem (3) and is omitted.

IV. OLIGOPOLY SCENARIO

Next, we turn to the scenario where N ≥ 2 SPs compete for
customers. For each model of investment, we first characterize
the investment price equilibria. Before preceding, we first
make the following assumption on the customer response to
SPs’ prices, in addition to (1).

Assumption 3: Any SP j with pj = 0 will receive xj = 0
whenever its delivered price is the same as that of some other
SP i with pi > 0.

The purpose of Assumption 3 is to guarantee the existence
of a pure strategy price equilibrium. The conditions for this
assumption will never occur on the equilibrium path, since an
active SP with a price of zero will make zero profit and thus
should not invest in the first place. However, it is needed to
guarantee the existence of pure strategy equilibrium for pricing
sub-games off the equilibrium path.

A. Equilibria of Model I

For model I, it can be shown that if more than one SP
had a positive price and customer mass, one of the SPs can
always increase its profit by lowering its price and attracting
customers away from the other SPs. If all providers invest
the same amount, then as in [2] the resulting “price war”
will lead to zero prices and negative profits, showing that this
cannot be an equilibrium. However, if one SP invests a larger
amount than any other SPs, it will have a lower congestion
cost and thus can “win” this price war while still sustaining a

positive price. This shows that the only potential investment
-price equilibria are ones in which there is only one active
SP. This is summarized in the following Theorem, which also
gives a sufficient condition for such an equilibrium to exist.

Theorem 1: For investment model 1, in any investment-
price equilibrium there can be at most one active SP and this
SP must be using the monopoly price xM and investment
level IM . Moreover, let x be such that P (x) = g( x

IM
). If

P (x) ≤ ∆∗c , such an equilibrium will exist.
Here x can be interpreted as the customer mass a monopolist

would serve with zero announced price and ∆∗c is as defined in
Lemma 1. To show such equilibrium exists, one needs to show
that given the monopoly’s investment and price, other SPs do
not have an incentive to enter the market, i.e., entering the
market will result in negative profit. The condition involving
x provide a sufficient condition for this to be true.

B. Equilibria of Model II

For model II, every active SP has the same congestion cost,
i.e., investing more does not give an SP any advantage in
terms of its delivered price. Hence if multiple SPs invest, this
is similar to the model without investment in [2], where it
was shown that the price for unlicensed spectrum was zero.
Indeed by a similar argument as in Theorem 1 in [2] we have
the following lemma:

Lemma 2: For investment model II, given an investment
vector I with more than one non-zero component, there exists
a unique price equilibrium (p(I), x(I)) and it satisfies pi = 0
for every active SP i.

Based on Lemma 2, we again see that there can be at most
one active SP in any investment-price equilibrium. Otherwise,
every active SP would receive negative profit, and hence would
be better off by investing zero. Furthermore, in this case, such
an equilibrium always exists since any SP would also receive
a negative profit if it entered the market to compete with a
monopolist. We summarize this in the following theorem.

Theorem 2: For investment model II, a pure strategy
investment-price equilibrium always exists and any such equi-
librium must correspond to a single active (monopoly) SP.

C. Equilibria of Model III

In the previous models, given the investments, the con-
gestion seen at each SP can be ordered independent of the
traffic (in the case of model 2, the ordering is trivial since
the congestion is the same). For model III, this is not the case
since each SP’s investment only effects the load due to its own
traffic on its own network.

To begin, we examine the price equilibrium with two SPs.
The next lemma shows that if one SP invests strictly less than
the other, then it can not have a non-zero price and customer
mass in the equilibrium.

Lemma 3: For investment model III with two SPs, suppose
the investments are I1 > I2 ≥ 1. Then the corresponding price
equilibrium (pe,xe) is unique and satisfies pe1 > 0, pe2 = 0,



xe1 > 0 and xe2 = 0.8

To understand this lemma note that for model III any SP
investing more than 1 will always see less congestion if a
mass of customers is assigned to it as opposed to another SP,
and this gain is largest for the SP with the largest investment.
In particular, suppose that in a Wardrop equilibrium the two
SPs both had non-zero prices and customer masses, with at
least one the SPs investing more than 1. Suppose further
that this SP slightly lowers its price and as a result a small
fraction of customers switched to that SP. From the above
observation, this would further lower the congestion (and thus
the delivered price) leading to yet more customers switching,
until all customers were being served by the SP who lowered
its price. By making this price decrease arbitrarily small, this
must increases the SP’s profit, showing that the original prices
can not have been a price equilibrium. It follows that in a price
equilibrium at least one SP must be serving no customers. In
can further be shown that this must be SP 2 because the SP 1
can always use its investment advantage to undercut any non-
zero price that SP 2 sets and attract all of the customers. On the
other hand, SP 1 can always set a non-zero equilibrium price
which is given by maximizing p1x1 subject to the constraints:

p1 + g(
x1
I1

) = P (x1) and g(
x1
I2

) ≥ P (x1).

For I1 > I2 this maximization will have a solution pe1 > 0
from which SP 1 will not want to deviate. Further, the second
constraint ensures that SP 2 can not announce any price to
undercut SP 1. Hence this must be a price equilibrium.

Lemma 3 assumed that the investments were not equal. With
equal investments (I1 = I2), as in Model II, the price equilibria
will be for both SPs to announce a price of zero. Also, though
we stated Lemma 3 for only 2 SPs, the result can be directly
extended to more than two users in which case it follows
that only the SP with the largest investment will have strictly
positive price and customer mass in the price equilibrium.
Therefore, again, there can be at most one SP in an investment-
price equilibrium and such an SP must be using the monopoly
investment and pricing. As with Model I, to show that such an
equilibrium exists requires showing that given the monopoly
investment and price, other SPs cannot obtain positive profit
upon entering the market. As we have noted, in the monopolist
case, Models 1 and 3 become the same and so both of these
models have the same price equilibria. Therefore we can again
use the sufficient condition in Theorem 1 to ensure that an
equilibrium exists.

D. Equilibrium of Model IV

So far, the only investment-price equilibria are for a single
SP to act as a monopolist. In this section, we consider the
final investment model and see that different equilibrium
structures may arise. Recall, in this model investment reduces
the congestion caused by other SPs’ traffic, for example by
better interference mitigation. We focus on a simple case with

8More precisely the equilibrium values of pe1, x
e
1, and xe

2 are unique, pe2
can be any value.

two SPs whose congestion and demand satisfy the following
assumption. We conjecture that similar results can be obtained
for general congestion and demand functions.

Assumption 4: g(x) = ax and P (x) = T − bx.
In Assumption 4, the parameter a > 0 in the congestion

cost is assumed to be a decreasing function of the available
bandwidth in the unlicensed spectrum. The parameter b > 0 in
the demand function characterizes the total mass of customers:
smaller values of b implying more customers in the market.

First, we consider price equilibria. The cases with I1 = 0
or I2 = 0 are trivial, and if I1 = I2 = 1, then the pricing
subgame is equivalent to the game in [2] for which it is known
that the equilibrium price is zero for every SP. Thus, we focus
on the case where I1 > I2 ≥ 1.

Lemma 4: Suppose Assumption 4 holds. If I1 > I2 ≥ 1
then the price equilibrium is unique and satisfies pe1 > 0,
pe2 > 0, xe1 > 0, and xe2 > 0.

This lemma follows from noting that if p1 > 0 and x2 = 0,
then it must be that

p1 + g(x1) ≤ g(
x1
I2

);

otherwise SP 2 can find a price at which it would make a
positive profit. But since I2 ≥ 1, this cannot be satisfied, which
shows that both SP’s must be serving a positive customer
mass in any price equilibrium. Hence, in any price equilibrium
both SPs must have the same delivered prices. Using this and
Assumption 4, one can solve for the demands in terms of the
prices and then solve the profit maximization facing each SP to
determine each SP’s best response price to a price of the other
SP. Examining these best response functions, the existence and
uniqueness of a price equilibrium follows.

Lemma 4 shows that a key difference in price equilibrium
between Model IV and the preceding models: here there are
multiple SPs with positive prices and customer masses. This
suggests that investment-price equilibria with multiple active
SPs may exist. Indeed, the following result shows that a
symmetric equilibria (with two active SPs who invest the same
and set the same price) exists for a range of parameters.

Proposition 1: If the parameters in Assumption 4 satisfy

c <
a2T 2

32(a+ b)3
, (5)

then there exists a unique symmetric investment-price equilib-
rium for Model IV.
The main technical difficulty here is that the overall strategy
space is not convex due to the assumed minimum investment
to be active. However, using Lemma 4 one can use standard
results to show the existence and uniqueness of a symmetric
equilibrium in a “modified game” where agents are always
active. The condition in this proposition in then sufficient to
ensure that this is also an equilibrium in the original game.

The next proposition shows that an asymmetric investment-
price equilibrium (in which only one SP is active) can also
exist for a certain range of parameters.



Fig. 1. The investment-price equilibria for model IV as a function of the
bandwidth B when a = 1/B and b = 0.1.

Proposition 2: If the parameters in Assumption 4 satisfy

c >
4aT 2

9(a+ b)2
, (6)

then there is an investment-price equilibrium, in which only
one SP is active with investment IM = 1. Furthermore, for
small enough a, this is the only type of equilibrium.

This follows from simply evaluating each SP’s best response
when only one invests and showing that this is an equilib-
rium under the given condition. Comparing the conditions in
Proposition 1 and 2, it can be seen that for fixed positive c and
b, an asymmetric equilibria exists for small enough or large
enough a, while a symmetric equilibria does not exist for small
enough a and may not exist for large enough a. An example
of this behavior is shown in Figure 1. This was generated
from numerical results assuming that a = 1

B , b = 0.1,
c = 0.05 and T = 1. Note that symmetric equilibria (with
two active SPs) fail to exist not only when there is insufficient
spectrum, but also when there is abundant spectrum. The
reason is that both insufficient and abundant spectrum tend
to reduce the incentive of an SP to invest. The issue with
abundant spectrum is somewhat subtle: the problem here is
that for a symmetric equilibrium, the SPs need to invest at
a level greater than one; when spectrum is abundant there
is no incentive for increased investment, since the nominal
investment is sufficient to adequately serve all customers.

Notice that the conditions in these propositions are not
mutually exclusive, i.e., symmetric and asymmetric equilibria
may exist simultaneously for some parameters, which is indeed
observed in our numerical results for a range of a. However,
the following lemma rules out the possibility of the monopoly
equilibria for a certain range of the parameters.

Lemma 5: If a ≥ b and there exists some I ≥ 2a
a−b such

that the investment vector (I, I) is an equilibrium, then all
equilibria are symmetric.

In particular this lemma shows that for a range of parameters
the monopoly equilibria does not exist. The proof follows from
first noting that the only possible asymmetric equilibria are
ones where one SP is a monopolist and then arguing that under
the given assumptions this can not be an equilibrium.

V. CONCLUSION

Several models for investment and price competition in un-
licensed spectrum were studied. Different investment models
provided different incentives for SPs to invest, and thus led
to different equilibrium market structures. In many cases, the
equilibria, if one exists, corresponds to a single SP investing,

i.e., a monopolist emerges. However, when the effect of
investment is mainly to reduce interference from other SPs,
equilibria with multiple SPs may emerge. From a policy point-
of-view, if the goal of introducing unlicensed spectrum is to
foster competition, then clearly a monopoly emerging is not
the desirable outcome. In such a case, these results suggest
that policy should also encourage investment that reduces
interference from other SPs or that one should consider an
alternative policy for spectrum access. On the other hand, in
cases like providing broadband access in rural areas, having a
monopoly emerge to provide such access may be an acceptable
outcome (given that the status quo may be no access.)

The models we considered here were highly stylized. One
could study several generalizations, which we leave for future
work. These include more detailed modeling of congestion
effects, adding uncertainty about the actions of other SPs,
consider SPs who also have access to licensed spectrum,
allowing providers to invest in multiple types of technologies
and finally considering heterogeneous uses of such spectrum.
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