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ABSTRACT

We consider dynamic resource allocation problems that arise in wireless networking. Specifically transmission schedul-
ing problems are studied in cases where a user can dynamically allocate communication resources such as transmission
rate and power based on current channel knowledge as well as traffic variations. We assume that arriving data is
stored in a transmission buffer, and investigate the trade-off between average transmission power and average buffer
delay. A general characterization of this trade-off is given and the behavior of this trade-off in the regime of asymp-
totically large buffer delays is explored. An extension to a more general utility based quality of service definition is
also discussed.
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1. INTRODUCTION

Two fundamental aspects of typical mobile wireless communication systems are that the channel is time-varying and
the channel must be shared between many geographically separate users. One approach for addressing these issues
is to dynamically allocate communication resources, such as transmission power, data rate and bandwidth, based
in part on any channel knowledge that is available at the transmitter. Such knowledge can be gained in a variety
of ways including measurements of a reverse channel in a duplex system, explicit feedback from the receiver, or
measurements of a pilot signal. A variety of techniques can be used for allocating resources including transmission
scheduling, power control, variable rate spreading, and adaptive modulation and coding.

The allocation of communication resources influences not only physical layer performance measures such as the
bit error rate or signal-to-noise ratio, but can also effect network level Quality of Service (QoS) parameters such
as throughput, delay and loss. In this paper, we discuss some dynamic resource allocation problems for wireless
networks in which both network layer and physical layer concerns are jointly considered. The resource allocation
problems we consider arise in the situation shown in Figure 1; this depicts a single mobile user communicating over
a fading channel. Here a higher layer application running on a mobile platform generates data which is placed into
a transmission buffer. Periodically, the transmitter removes some of the data from the buffer, encodes the data and
transmits the encoded data over a fading channel. Eventually this data will be received, decoded, and passed to
a corresponding higher layer application running at the receiver. We consider situations where the transmitter can
allocate resources based on both knowledge of the channel state and the buffer occupancy. Our focus here is on single
user situations where the main issue is the allocation of resources in response to time varying channel conditions and
user requirements. Though we will not address it here, many of these ideas can be extended to multi-user settings,
where the allocation of resources between users must also be considered.1

In the above situation we consider two conflicting objectives. One objective is the physical layer goal of minimizing
the long term average transmission power required to reliably transmit the data. In a wireless network, mobile users
often rely on a battery with a limited supply of energy; minimizing the average transmission power leads to a more
efficient utilization of battery energy. We are interested here in long term average power consumption rather than
short term averages of interest in, say, regulatory constraints. Such short term considerations may be modeled as a
constraint on each codeword sent, while the long term average power depends on the sequence of codewords that are
sent. The second objective is to minimize a quantity related to the required network layer QoS. Initially we consider
the case where this quantity is the average delay incurred by arriving data, then we generalize this to allow for a
larger class of QoS specifications. Note there is a clear trade-off between these objectives - transmitting at a higher
rate requires more power but reduces the average delay. Our emphasis in this paper is on quantifying the trade-off
between these objectives. We give some general characteristics of this trade-off, and we explore the behavior of this
trade-off in the regime of asymptoticly large buffer delays. In this regime, we show that the required power converges
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to an asymptotic value and give the rate at which convergence occurs. We also give a sequence of policies which
attain this convergence rate; these policies depend only weakly on the buffer occupancy and have a relatively simple
structure.

The above approach requires a tighter coupling between the physical layer and higher network layers than is
found in typical wired network architectures. This is in the same spirit as a number of papers2–5 where approaches
that allow for greater integration across traditional layer boundaries are considered in wireless settings. Several of
the characteristics of wireless channels make such approaches appealing; indeed some of the information theoretic
results for wireless channels provide some motivation for a tighter integration of layers.6

The outline of the remainder of the paper is as follows. In the next section, we describe the model of the system
in Figure 1. In Sect. 3, we analyze the trade-off between average power and average buffer delay for these models.
To accomplish this we consider a buffer control problem which can be analyzed using ideas from Markov decision
theory. We characterize the “optimal power/delay trade-off curve” for such problems. In Sect. 4 we analyze this
trade-off in the asymptotic regime of large delay. In this regime, we can characterize simple buffer control strategies
which have some optimal properties. Section 5 contains an extension of the results in Sect. 4 to a case where instead
of average delay, the user’s QoS is expressed in a more general utility framework. Finally, in Sect. 6 some concluding
remarks are made.

2. PROBLEM FORMULATION

In this section we describe a simple model for the situation shown in Figure 1. We note many of the following
assumption may be relaxed, but we will not consider these generalizations here.7 We consider a discrete time model
where time samples occur every Δ seconds. At the start of each Δ second interval, the transmitter removes some
number of bits from the buffer and encodes them. The resulting codeword is then transmitted to the receiver during
this interval. We assume that at the end of this interval, the codeword is either successfully received or found to be
in error and discarded. In the later case, we assume the bits are returned to the transmission buffer (An alternative
to this assumption is discussed in another paper8). Let Sn denote the buffer occupancy at the start of the nth time
interval and let Rn denote the transmission rate during the nth interval. Thus the number of bits transmitted during
the nth interval is RnΔ where RnΔ ≤ Sn. Let qn denote the probability a codeword is not received in the nth
interval. The number of bits received during this interval will be a random variable Un where

Un =

{
RnΔ with probability 1 − qn

0 with probability qn.
(1)

Denote the number of bits that arrive to the buffer during the nth interval by An. The dynamics of the buffer are
then are given by:

Sn+1 = Sn + An − Un. (2)



For this paper we will assume that {An} is a sequence of i.i.d. random variables which take values in a compact set
A ⊂ R

+ and have mean EA1 = Ā. Let Amin = inf A and Amax = supA.

Next the channel model is described. Let Hn be a random variable which denotes the available channel knowledge
at the the start of the nth time interval; this will be referred to as the channel state at time n. We assume that
given Hn the channel behavior during the nth block is independent of Hm, for all m < n and also independent of all
previous transmissions and receptions. For a given transmission rate Rn = r and a given value Hn = h, let P (h, r, q)
denote the minimum transmission power required so that the probability a codeword is not received is at most q. At
times we will denote P (h, r, q) by P (h,U), where U denotes the random variable representing the received rate as
in (1). The following analysis will only depend on a few general characteristics of the function P (h, r, q); specifically
we assume that this function has the following characteristics: (i) it is increasing in r for all h and all q, (ii) it is
decreasing in q for all r and all h, (iii) it is strictly convex in (r, q) for all h, and (iv) it is a continuous function of
h for all r and all q. In this paper we focus on the case where {Hn} is an i.i.d. sequence of random variables, and
we assume that these random variable take values in a compact set H ⊂ R and that Hi has a continuous probability
density over this set.

The following illustrates one example which satisfies the above assumptions. Suppose the channel is modeled as
a additive white Gaussian noise channel with narrow-band Rayleigh fading, and suppose Hn represents an estimate
of the expected fading level during the nth time interval. Assume that for a given rate Rn, a packet will be correctly
received if the actual realization of the fading results in a channel with a capacity greater than Rn, otherwise an
outage occurs.9 In this case, it can be shown that

P (h, r, q) =
NoW

− ln(1 − q)h

(
22r/W − 1

)
, (3)

where No denotes the power spectral density of the noise and W is the channel bandwidth. This is an increasing
and strictly convex function function of U = (r, q). Other possibilities for P (h,U) can be derived from considering
particular adaptive coding/modulation schemes or from considering information theoretic bounds on the required
power.6

In the above setting we are interested in both minimizing the long term transmission power and the average buffer
delay. At time n, we assume that the transmitter chooses a rate distribution Un (or equivalently Rn and qn) based
on the buffer state Sn and the channel state Hn. Let S = [0,∞) denote the buffer state space∗ and let U denote the
set of possible rate distributions. Assume that Un at each time n is specified by a stationary policy, μ : S ×H �→ U .
The expected long term average power under such a policy is

lim sup
m→∞

1
m

m∑
n=1

E(P (Hn, μ(Sn,Hn))). (4)

We denote this by P̄μ. Similarly, define D̄μ to be

lim sup
m→∞

1
m

m∑
n=1

E(Sn)
Ā

. (5)

Note that if the Markov chain induced by the policy μ is ergodic then we have P̄μ = EP (H,μ(S,H)) and D̄μ = ES
Ā

.
Thus from Little’s law, D̄μ is the expected time average delay in the buffer (measured in units of Δ time intervals).

3. OPTIMAL POWER/DELAY TRADE-OFFS

We are interested in understanding the trade-off between the two objectives in (4) and (5). In the following we begin
to characterize this trade-off. Consider minimizing a weighted combination of the two criteria. Specifically, for β > 0,
we seek to to find the policy μ which minimizes:

lim sup
m→∞

1
m

m∑
n=1

E(P (Hn, μ(Sn,Hn)) + β
Sn

Ā
). (6)

∗Note we allow the buffer to be an arbitrary real value. This is done primarily for mathematical convenience.



This is an average cost Markov decision problem with state space S ×H. At each time step the transmitter chooses
an action, namely the transmission rate, and incurs a per stage cost of (P (Hn, μ(Sn,Hn)) + β Sn

Ā
). Such problems

can be solved via dynamic programming techniques.10 For the problem at hand, it can be shown that there always
exists a stationary policy μ which is optimal and satisfies Bellman’s equation for the average cost problem.

Assume that μ∗ is an optimal policy for a given β. Let P̄μ∗
and D̄μ∗

be the corresponding average power and
delay, as given in (4) and (5). Note that P̄μ∗

must be the minimum average power such that the average delay is less
than D̄μ∗

. For any D ≥ 1, define P ∗(D) to be the minimum average power such that the average delay is less than
D. Thus, by the above argument, P ∗(Dμ) = Pμ∗

. We refer to P ∗(D) as the (optimum) power/delay curve. Varying
β and finding the optimal policy for each value can provide different points on the power/delay curve. It is natural
to then ask if all values of P ∗(D) can be found in this way, with an appropriate choice of β. This problem can be
viewed as a multi-objective optimization problem.11 By this we mean an optimization problem with a vector valued
objective function f : X �→ R

n. In our case f has two components corresponding to the average delay and average
power. For such problems, a feasible solution, x is defined to be Pareto optimal if there exists no other feasible x̂
such that f(x̂) < f(x), where the inequality is to be interpreted component-wise. It can be seen that the points
{(P ∗(D),D) : D ≥ 1} are a subset of the Pareto optimal solutions for this problem. If {(P ∗(D),D) : D ≥ 1} is not
the entire set of Pareto optimal solutions, then from Prop. 1 below, for any remaining Pareto optimal point (P̃ , D̃),
it must be that P ∗(D̃) ≤ P̃ . Furthermore, inf{D : P ∗(D) < ∞} is only value of delay such points could have.
Thus these other Pareto optimal solutions are not very interesting to us. For a general multi-objective optimization
problem, not every Pareto optimal solution can be found by considering problems with scalar objectives k′f where
k ∈ R

n. For the problem at hand, except in the degenerate case where the channel and arrival processes are both
constant, every point on P ∗(D) (and thus every interesting Pareto optimal solution) can be found by solving the
minimization in (6) for some choice of β. This also follows directly from the characterization of P ∗(D) given in the
following proposition.

Proposition 1. The optimum power/delay curve, P ∗(D), is a non-increasing, convex function of D ≥ 1. Except
in the degenerate case where channel and arrival processes are both constant, it is a decreasing and strictly convex
function of D.

The following definition will be useful in proving this proposition. Let

Pmin(h, ū) = inf{P (h, r, q) : rΔ(1 − q) ≥ ū}. (7)

This is the minimum power required for an expected transmission rate greater than or equal to ū/Δ when the channel
state is h. Using the convexity of P (h, r, q) it can be shown that Pmin(h, ū) is strictly convex in ū for all h.

Proof of Proposition 1. That P ∗(D) is non-increasing is obvious. We show that it is convex. Let D1 and D2 be two
values of delay with corresponding values P ∗(D1) and P ∗(D2). We want to show that for any λ ∈ [0, 1],

P ∗(λD1 + (1 − λ)D2) ≤ λP ∗(D1) + (1 − λ)P ∗(D2). (8)

We prove this using a sample path argument. Let {Hn(ω)}∞n=1 and {An(ω)}∞n=1 be a given sample path of
channel states and arrival states. Let {U1

n(ω)} be a sequence of control actions corresponding to the policy
which attains P ∗(D1). Let {S1

n(ω} be the corresponding sequence of buffer states. Likewise define {U2
n(ω} and

{S2
n(ω)} corresponding to P ∗(D2). Now consider the new sequence of control actions, {Uλ

n (ω)}, where for all n,
Uλ

n (ω) is the control action which achieves Pmin(Hn(ω), λE(U1
n(ω)) + (1 − λ)E(U2

n(ω)). Let {Sλ
n(ω)} be the se-

quence of buffer states using this policy. Assume at time n = 0, Sλ
0 (ω) = S1

0(ω) = S2
0(ω) = 0 for all sample

paths, ω. Using that Si
n+1(ω) = Si

n(ω) + An(ω) − U i
n+1(ω) for i = 1, 2 and all n ≥ 0, and recursion, we have

E(Sλ
n(ω)) ≤ λE(S1

n(ω))+(1−λ)E(S2
n(ω)) for all n. Thus, summing and taking the expectation over all sample paths

yields

lim
m→∞

1
m

m∑
n=1

ESλ
n

Ā
≤ λD1 + (1 − λ)D2. (9)

From the convexity of Pmin(h, ū) in ū, we have for all n

P (Hn(ω), Uλ
n (ω)) = Pmin(Hn(ω), λE(U1

n(ω)) + (1 − λ)E(U2
n(ω)))

≤ λPmin(Hn(ω), E(U1
n(ω))) + (1 − λ)Pmin(Hn(ω), E(U2

n(ω)))
≤ λP (Hn(ω), (U1

n(ω)) + (1 − λ)P (Hn(ω), U2
n(ω)).



Again, summing and taking expectations over sample paths we have

lim
m→∞

1
m

m∑
n=1

EP (Hn(ω), Uλ
n (ω)) ≤ λP ∗(D1) + (1 − λ)P ∗(D2). (10)

Thus we must have P ∗(λD1 + (1 − λ)D2) ≤ λP ∗(D1) + (1 − λ)P ∗(D2) as desired.

The final statement in the proposition follows directly from the above and the results in the next section. �
Define Pd(a) = EHP (H, a/Δ, 0), this is the minimum average power required to transmit at rate a/Δ with no

probability of loss for every channel state. For the discrete-time model we have formulated the delay in the buffer
must be at least one time interval, thus the average buffer delay can be no less than 1. The only way this bound can
be attained is if for all n, RnΔ = An−1 and qn = 0. Thus we have :

P ∗(1) =
∫
A
Pd(a) dπA(a). (11)

For most realistic channel models P ∗(1) will be infinite.

Define Pa(Ā) be the solution to

minimize
Ψ:H�→U

EP (H,Ψ(H))

subject to : E(Ψ(H)) ≥ Ā
(12)

We have restricted Ψ to be only a function of the channel state H in this optimization. Clearly for each h ∈ H,
P (h,Ψ(h)) = Pmin(h, EΨ(h)). From this it follows that Pa(Ā) is an increasing and strictly convex function of Ā. Let
ΨĀ(h) denote a feasible rate allocation that achieves Pa(Ā). It can be seen that this rate allocation will be almost
surely unique and is only a function of h. Furthermore, it is a continuous function of h for all Ā > 0. Likewise, for
any h ∈ H, ΨĀ(h) is a continuous and non-decreasing function of Ā. The quantity Pa(Ā) is the minimum average
power needed to transmit at average rate Ā with no other constraints. Thus Pa(Ā) is a lower bound to P ∗(D) for
all D ≥ 1. If both the channel and arrival processes are constant, then Pa(Ā) = Pd(Ā); in this case, the power delay
curve is a horizontal line. Assume that the channel and arrival processes are not both constant. In this case, the
only way a stationary policy μ can have P̄μ = Pa(Ā) is if μ(s, h) = ΨĀ(h) for all (s, h) ∈ S × H, except a set with
measure zero. Such a policy results in D̄μ = ∞. In other words, P ∗(D) > Pa(Ā) for all finite D. In the next section
we shall see that this bound can be approached as D → ∞.

An example of the power/delay curve is shown in Figure 2. This was calculated using dynamic programming
techniques for a channel model with two states and a constant arrival rate.

4. ASYMPTOTIC ANALYSIS

In this section we characterize the behavior of the tail of the power/delay curve, P ∗(D), as the buffer delay D → ∞.
In this limit, we shown that P ∗(D) → Pa(Ā). We also look at the rate† at which this limit is approached and
show that P ∗(D) − Pa(Ā) = Θ( 1

D2 ). First we bound the rate of approach. Then we show that this bound is tight.
Furthermore we show that a sequence of “simple” policies can be found which have this rate of convergence. The
approach in this section is closely related to Tse’s work12 on buffer control for variable rate lossy compression. In
this work the input rate into a buffer is controlled by changing the quantizer used to compress blocks of real valued
data. The goal is to optimally trade-off distortion and buffer overflow probability. In the problem at hand, the buffer
is controlled by varying the output rate and we interested in trading off power and average delay. There are many
similarities between the mathematical structure underlying these problems.

To characterize the behavior of this tail, we will consider a sequence of policies {μk}, such that as k → ∞,
D̄μk → ∞ and P̄μk → Pa(Ā). We restrict our attention to the class of policies that satisfy the following technical
assumptions.

†The following notation is used to compare the rates of growth of two real-valued sequences {an} and {bn}: an = o(bn)

if limn→∞ an
bn

= 0; an = O(bn) if lim supn→∞
|an|
|bn| < ∞; an = Ω(bn) if bn = O(an); and an = Θ(bn) if an = O(bn) and

an = Ω(bn).



1 1.5 2 2.5 3 3.5 4
9

10

11

12

13

14

15
Power/Delay Curve

P
ow

er

Delay

P
ex

(A)

 

P
d
(A) 

P* (D) 

Figure 2. Example of power/delay curve.

Definition: A sequence of buffer control policies {μk} is admissible (for a given fading process, {Hn} and arrival
process {An}) if it satisfies the following assumptions:

1. For all k, D̄μk < ∞, and limk→∞ D̄μk = ∞.
2. Under each policy, μk, {Sn} forms an ergodic Markov chain; we denote the steady state distribution under the

kth policy by πμk

S .
3. There exists an ε > 0, a δ > 0 and a M > 0 such that for all k > M and for all s ≤ 2E(Sμk),

Pr(A − μk(Sμk ,H) > δ|Sμk=s) > ε

where Sμk , A and H are random variables with respective state spaces S, A, and H and whose joint distribution
is the steady state distribution of (Sn, An,Hn) under policy μk.

We are interested in sequences of policies which characterize the tail behavior of P ∗(D) as D → ∞. The first
assumption says a sequence of policies is admissible only if the average delay of these policies has the desired behavior.
Under any stationary policy, the sequence of buffer states is a Markov chain. The policy, along with the fading process
and arrival process, determines the transition kernel for this Markov chain. By the second assumption, for each policy
in an admissible sequence, this Markov chain is ergodic. This will be true if the transition kernel is “well-behaved”.13

The third assumption means that for large k and any buffer state s < 2E(Sμk), there is a positive steady state
probability that the next buffer state is bigger than s + δ. If Amin > δ and Pr(U = 0) > ε for all U ∈ U , then this
assumption must be satisfied by any policy. If this is not the case, then this is a restriction on the allowable policies.‡

We also assume that at a = Ā, the first and second derivatives of Pa(a) exist and are non zero. Recall, Pa(a) is a
strictly convex and increasing function of a. For such a function, the first and second derivatives of Pa(a) exist and
are non-zero at every point except for a set with measure zero (This follows from Lebesgue’s theorem which states
that a monotonic function is differentiable almost everywhere14). Thus, this is not a very restrictive assumption.

‡It can be argued that for any sequence of policies satisfying the first condition and such that P̄ μk → Pa(Ā), then provided
that both An and Hn are not constant for all n, assumption 3 must hold, except not necessarily uniformly over s.



Let Δμ(s) = E(A − μ(Sμ,H)|Sμ=s) denote the expected drift given that the buffer is in state s under policy μ.
For any admissible sequence of policies, the average drift over the tail of the buffer will be negative. This is stated
in the following lemma.

Lemma 1. Let M , δ and ε be as given in the definition of an admissible sequence. For any admissible sequence of
buffer control schemes {μk}, for each k > M , there exists an sk ∈ S such that∫

s>sk

Δμk(s) dπμk

S (s) ≤ −εδ2

16E(Sμk)

The proof of this lemma is omitted due to space limitations. We will use this result to establish a bound on the
rate of convergence of P ∗(D). This bound is stated in the following proposition, which implies that the “tail” of
P ∗(D) converges to Pa(Ā) at least as slowly as 1

D2 .

Proposition 2. Any admissible sequence of policies {μk} must satisfy

P̄μk − Pa(Ā) = Ω((1/D̄μk)2).

Proof. For the kth policy, let Δμk(s) denote the expected drift in state s as above. The average transmission rate
conditioned on being in state s is E(μk(Sμk ,H)|Sμk=s) = Ā − Δμk(s). Recall that Pa(x) is the minimum average
power required to transmit at average rate x. Thus the average power used under policy μk when the buffer is in
state s is lower bounded by Pa(Ā − Δμk(s)). Averaging over the buffer state space we have:

P̄μk ≥
∫
S
Pa(Ā − Δμk(s)) dπS(s) (13)

Via a first order Taylor expansion around x = Ā, Pa(x) can be written as:

Pa(x) = Pa(Ā) + P ′
a(Ā)(x − Ā) + G(x − Ā) (14)

where the remainder term G(x) has the following properties: (i) G(x) is strictly convex, (ii) for x 	= 0, G(x) > 0 and
G(0) = 0, and (iii) G′(x) > 0 for x > 0 and G′(0) = 0. These all follow from the strict convexity and monotonicity
of Pa. Substituting this into (13) yields:

P̄μk − Pa(Ā) ≥ P ′
a(Ā)

∫
S
(−Δμk(s)) dπS(s) +

∫
S

G(−Δμk(s)) dπS(s) (15)

=
∫
S

G(−Δμk(s)) dπS(s). (16)

Here we have used that ∫
S

Δμk(s) dπS(s) = 0 (17)

for any policy μk which has ESμK < ∞. This follows from the fact that the buffer size is infinite and thus no bits
are lost due to overflow. Let sk be as defined in Lemma 1 and assume that k > M so that the lemma applies. Then
we have

P̄μk − Pa(Ā)

≥
∫

s>sk

G (−Δμk(s)) dπS(s)

=
∫

s>sk

G (−Δμk(s)) dπS(s) + πS([0, sk))G(0)

≥ G

(∫
s>sk

−Δμk(s) dπS(s)
)

≥ G

(
εδ2

16ESμk

)
(18)
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Figure 3. A simple policy with drift υ.

We have again used the concavity and monotonicity properties of G along with the result of Lemma 1. Finally,
expanding G in a Taylor series around 0, and using G′(0) = 0 we have:

P̄μk − Pa(Ā) ≥ 1
2
G′′(0)

(
εδ2

16ESμk

)2

+ o

((
εδ2

16ESμk

)2
)

. (19)

That G′′(0) exists and is non-zero follows from the assumption that the second derivative of Pa(x) exists and is
non zero at x = Ā. Thus we have P̄μk − Pa(Ā) = Ω(( 1

E(Sμk ) )
2). Using Little’s law, this gives us P̄μk − Pa(Ā) =

Ω((1/D̄μk)2) as desired. �

Next we show that this bound is tight. To do this we give a sequence of policies, which achieve the rate of
convergence given by the bound, i.e. we show that there exists a sequence of policies μk, such that P̄μk − Pa(Ā) =
O((1/D̄μk)2). Moreover the sequence of policies that we use have a relatively simple structure to them. First we
describe the type of policies to be used. Then, the convergence rate of these policies is demonstrated.

Definition: For a given υ > 0, partition the buffer state space into two distinct sets: [1/υ,∞) and [0, 1/υ). Recall,
Ψa : H �→ U denotes the policy with average rate a/Δ which achieves Pa(a). Under such a policy, the transmission
rate depends only on the channel state. Define a simple policy with drift υ, to be a policy μ with the form:§

μ(s, h) =

{
ΨĀ+υ(h) if s ∈ [1/υ,∞)
Ψmax(Ā−υ,0)(h) if s ∈ [0, 1/υ).

Under a simple policy the transmission rate now depends on the buffer state as well as the channel state, but it
depends only weakly on the buffer state. For such a policy, the drift in any buffer state s ≥ 1/υ will be −υ and the
drift in any state s ≤ 1/υ will be υ provided that υ < Ā (otherwise the drift will be Ā). Thus these policies tend
to regulate the buffer towards the state 1/υ as illustrated in Figure 3. A sequence of such policies can achieve the
optimal convergence rate; this is proved next.

Proposition 3. Let {μk} be a sequence of simple policies with drifts {υk}, where {υk} is a nonnegative decreasing
sequence such that υk → 0 as k → ∞. Then we have P̄μk − Pa(Ā) = O(( 1

D̄μk
)2).

Proof. We show that D̄μk = O( 1
υk

) and P̄μk − Pa(Ā) = O((υk)2). The desired result then follows directly. First we
show that D̄μk = O( 1

υk
). This relies on the following lemma.

lemma 2. For a simple policy μ with drift υ, the average delay satisfies:

D̄μ ≤ 1/υ

Ā
+

er∗(υ)η(υ)

Ār∗(υ)
(20)

where η(υ) is a nonnegative function such that η(υ) → 0 as υ → 0, and r∗(υ) is the unique positive root of
γ(r) = ln(E[e(A−ΨĀ+υ(H))r]) (Note the expected value is taken with respect to both A and H).

We omit a proof of this lemma but briefly mention two key ideas which are used in the proof. First, Little’s law
is used to relate the average delay to the average buffer occupancy. Second, for the memoryless case, while the buffer

§More generally, we could partition the buffer into the sets [0, K/υ) and [K/υ,∞) where K > 0. These sets could then be
used in the definition of a simple policy. The following results still hold with such a generalization.



process stays in [1/υ,∞) it behaves as a random walk with a negative drift. Thus the steady-state probability that
the buffer is in state s, decays exponentially for s large enough.

From Lemma 2 we have a bound on D̄μk given by (20). The first term on the right hand side of (20) is clearly
O(1/υk). We focus on the second term of (20). To bound the growth of this term, we need to know how r∗(υk)
changes with υk. This is given in the following lemma whose proof is also omitted.

Lemma 3. Let r∗(υ) denote the unique nonzero root of the semi-invariant moment generating function of A −
ΨĀ+υ(H) (for υ 	= 0). Assume that for all υ in a neighborhood of 0, that d2

dυ2 Eer∗(υ)(A−ΨĀ+υ(H)) exists and that¶

d2

dυ2
Eer∗(υ)(A−ΨĀ+υ(H)) = E

d2

dυ2
er∗(υ)(A−ΨĀ+υ(H)).

Then, r∗(0) = 0 and

dr∗(υ)
dυ

∣∣∣∣
υ=0

=
2

Var(A − ΨĀ(H))
.

Taking the Taylor series of r∗(υ) around υ = 0 and using this lemma we have

r∗(υ) = 0 + Λυ + o(|υ|) (21)

where Λ = 2
Var(A−ΨĀ(H))

. Recall in Lemma 2 it was shown that η(υ) → 0 as υ → 0. From this it follows that
r∗(υ)η(υ) = Λη(υ)υ + o(|υ|). With these expansions we have

er∗(υk)η(υk)

Ār∗(υk)
=

eΛη(υk)υk+o(υk)

Ā(Λυk + o(υk))
. (22)

Now since:

lim
k→∞

υkeΛη(υk)υk+o(υk)

Ā(Λυk + o(υk))
=

1
ĀΛ

(23)

it follows that:

er∗(υk)η(υk)

Ār∗(υk)
= O(1/υk) (24)

and therefore D̄μk = O(1/υk) as desired.

Next we show that P̄μk − Pa(Ā) = O((υk)2). For the simple policy μk, the average power is

P̄μk = πμk

S ((1/υk,∞))Pa(Ā + υk) + πμk

S ([0, 1/υk])Pa(Ā − υk) (25)

Taking the Taylor series of P(x) around x = Ā we have

P̄μk = Pa(Ā) + P ′
a(Ā)(πμk

S ((1/υ,∞))υk − πμk

S ([0, 1/υ])υk) + O((υk)2) (26)

Now πμk

S ((1/υ,∞))υk − πμk

S ([0, 1/υ])υk ≥ 0 and thus P̄μk − Pa(Ā) = O((υk)2) as desired. �
The simple policies used in the proof of Proposition 3 involved splitting the buffer into two regions. In each region

a policy was used that depended only on the current channel state. When the transmission rate is a function of
the buffer state, this information may need to be relayed to the receiver. Conveying this information to the receiver
requires some overhead. When a simple policy is used, the receiver only needs to know in which region of the buffer
the current buffer state lies; this requires only one bit of overhead. An even simpler policy would be to use one policy
for the entire buffer; the policy just depending on the channel gain. With such a policy, the receiver would require

¶As an example of when these assumptions will hold, assume that |A| < ∞ and |H| < ∞. In this case if the second

derivative of ΨĀ+υ(h) with respect to υ exists and is continuous at υ = 0 for all h, then the above assumptions hold.



no information about the transmitter’s buffer state. Proposition 4 below shows that a sequence of such policies can
not achieve the optimal convergence rate. Before stating this proposition some preliminary notation is established.

We want to consider a sequence of policies {μk} which depend only on the channel state. Let υk = Ā−Eμk(H);
the average transmission rate in every buffer state s ∈ S is then Ā + υk. For the buffer to be stable under policy
μk it must be that υk > 0. To prove Proposition 4, we will use a result similar to Lemma 3. However, we do not
want to restrict the policy μk to be a policy of the form Ψx as in Lemma 3. Instead we assume that that each policy
μk is determined by an arbitrary parameterized function Φx. Specifically, for every x ≥ Ā, let Φx : H �→ R

+ be
an arbitrary policy which depends only on the channel gain such that EΦx(H) = x. Assume that each policy μk is
given by μk = ΦĀ+υk . Let r∗(υ) denote the unique nonzero root of the semi-invariant moment generating function
of A − ΦĀ+υ(H). Assume that for all υ in a neighborhood of 0, that d2

dυ2 Eer∗(υ)(A−ΦĀ+υ(H)) exists and that

d2

dυ2
Eer∗(υ)(A−ΦĀ+υ(H)) = E

d2

dυ2
er∗(υ)(A−ΦĀ+υ(H)).

Note this is the same set of assumptions used in Lemma 3 and they serve a similar purpose here. Any sequence
of policies μk satisfying the above assumptions can not achieve the optimal convergence rate; this is stated in the
following proposition, which is given without proof..

Proposition 4. Let {υk} be a nonnegative decreasing sequence such that υk → 0 as k → ∞. Let {μk} be a sequence
of policies such that for each k, μk = ΦĀ+υk , where Φx satisfies the above assumptions. Then P̄μk −Pa(Ā) = Ω( 1

D̄μk
).

Thus using more than one policy allows the rate of convergence to be squared. Some intuition as to why two
policies are needed is given by the following argument. With two policies we regulate the buffer towards the point 1

υ ,
while with one policy (with finite average delay) the buffer is regulated towards the empty state. When considering
average delay, keeping the buffer empty appears more desirable. However, when considering the average power, there
is a disadvantage to keeping the buffer nearly empty– when the buffer is nearly empty, one can not take advantage
of a good channel by transmitting at a high rate, which is desirable for minimizing power. By using two policies and
regulating the buffer towards the point 1

υ , a better balance is obtained between these two considerations.

5. A GENERALIZATION TO UTILITY BASED QOS

In the previous section we assumed that a user’s QoS was given by the average delay experienced by the data. In
this section we give a generalization this formulation which allows for a larger classes of QoS specifications. We
consider the case where during the nth time interval the user receives a utility Ut(μ(Sn,Hn)) which is a function of
the transmission rate distribution during the time slot. Additionally, assume the user incurs a penalty Qd(Sn) which
is a function of the buffer occupancy at the start of the time interval. In this setting instead of (5), we consider
minimizing the objective

lim sup
m→∞

1
m

m∑
n=1

E(Qd(Sn) − Ut(μ(Sn,Hn)))

This corresponds to the time average penalty minus utility received. For a particular stationary policy μ, we denote
the above quantity by Q̄μ

Assume that Qd(s) is a non-negative, increasing, convex function of s. Likewise, assume that Ut(u) is a non-
negative, non-decreasing, concave function of u. In the following we show that with some additional assumptions the
asymptotic analysis in the previous section can be generalized to this case. The bound on the rate of convergence in
Proposition 2, is generalized in the following proposition.

Proposition 5. Any admissible sequence of policies {μk} must satisfy:

P̄μk − Pa(Ā) = Ω
(
1/(Q−1

d (Q̄μk))2
)
.

Proof. Note that Qd(s) − Ut(u) is convex in (s, u) thus for all m,

1
m

m∑
n=1

E(Qd(Sn) − Ut(μk(Sn,Hn))) ≥ Qd

(
1
m

m∑
n=1

ESn

)
− Ut

(
1
m

m∑
n=1

Eμk(Sn,Hn)

)
.



Thus letting m → ∞, we have Q̄μk ≥ Qd(ESμk) − Ut(Ā). Since Qd is nondecreasing it has a well defined inverse,
Q−1

d which is also nondecreasing, thus

Q−1
d (Q̄μk) ≥ Q−1

d (Qd(ESμk) − Ut(Ā))
≥ Q−1

d (Qd(ESμk))
= ESμk

= D̄μkĀ.

Using this the proposition then follows directly from Proposition 2. �
If Qd(D) satisfies an additional assumption then once again this bound can be shown to be tight and achieved by

a sequence of simple policies. This is summarized in the following proposition; here Q′
d indicates the first derivative

of Qd.

Proposition 6. Assume that there exist M1 and M2 such that for all s ∈ S, 0 ≤ M1 ≤ Q′
d(s) ≤ M2 ≤ ∞. Let {μk}

be a sequence of simple policies, with drifts υk, where υk is a nonnegative decreasing sequence such that υk → 0 as

k → ∞. Then we have P̄μk − Pa(Ā) = O

((
1

Q−1
d (Q̄μk )

)2
)

.

Proof. By assumption we can find a M2 < ∞ such that Q′
d(s) < M for all s. Thus

Qd(Sn) ≤ Qd(ESμk) + M2Sn ∀n.

From this it follows that for all n,

E(Qd(Sn) − Ut(μk(Sn,Hn))) ≤ Qd(ESμk) + M2ESn − EUt(μk(Sn,Hn))
≤ Qd(ESμk) + M2ESn

Thus averaging over n and taking the limit, we have

Q̄μk ≤ Qd(ESμk) + M2ESμk

Since Qd is increasing and convex, Q−1
d will be increasing and concave. From this fact it follows that:

Q−1
d (Q̄μk) ≤ Q−1

d (Qd(ESμk) + M2ESμk)
≤ Q−1

d (Qd(ESμk)) + M2/M1ESμk

= (1 + M2/M1)ESμk

= (1 + M2/M1)ĀD̄μk

Combining this with Proposition 3 we get the desired result. �
We also note that by a similar argument to that used in the proof of Proposition 5, Proposition 4 can also be

generalized to this setting.

6. CONCLUSIONS

In this paper we have looked at a simple model of transmission scheduling over a time-varying channel which takes
into account both physical layer and network layer concerns. We investigated the trade-off between long term average
power and average buffer delay. In the asymptotic region of large delay, we bounded the rate of convergence of the
required transmission power, and we found simple buffer control policies which exhibit the asymptotic convergence
rate. Next we extended this analysis to a case where the user’s quality of service is specified in a more general utility
framework. In this paper we only considered a single user setting, clearly extensions to multi-user situations would
be desirable. Also in this paper our emphasis was on users with a long term average power constraint. Such a model
is appropriate for the reverse link in a cellular system, but less appropriate for the forward link. However in the
forward link setting other resource allocation issues arise, extensions to these situations is also of interest.
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