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Abstract— We consider optimizing the packet-sizes and the re-
use factor to minimize the delay required to send a message
between two nodes in a linear multi-hop wireless network subject
to a reliability constraint. Initially assuming no re-use, we give
a bound on the required delay. Next, in a infinite system with
re-use, we analyze the rate of growth of the delay as a function
of the message size. Two cases are considered: one in which
packets are decoded/re-encoded on each hop and one in which
this is concatenated with an end-to-end outer code. The later is
shown to result in lower delays.

I. INTRODUCTION

Consider a wire-line network in which a message is to be
divided into several packets of equal size and sent over a
sequence of error-free links with transmission rate R. Fur-
thermore, suppose that an entire packet must be received over
one link before it may be sent over the next, and that the
network is lightly loaded so that whenever this condition is
true the packet may be sent. Ignoring any overhead per packet,
it is then well-known that the end-to-end delay of the message
is minimized by making the packet-size as small as possible
so as to benefit from pipelining. If overhead is not ignored,
there is an optimal packet-size which balances this pipelining
effect with the amortization of overhead given by using larger
packets.

In this paper, we consider a similar question in the context of
a linear multi-hop wireless network. Here, several new issues
arise. First we assume that all nodes transmit in a common
frequency-band and so multiple “links” interfere with each
other. Also, nodes are precluded from sending and receiving at
the same time (i.e. they must satisfy a half-duplex constraint).
Finally, we assume that links are not error free and that a node
has a constraint on the reliability (i.e. probability of decoding
error) at which a message must be obtained. Given this model
we consider optimizing the packet-size as well as the schedule
of transmissions with the objective of minimizing the total
delay for sending a packet from a given source node to a given
destination. In this setting for a given transmission schedule
packet sizes must now balance the pipe-lining gains with both
amortization of overhead as well as meeting the reliability
constraint.

We formulate a simple linear model for a multi-hop network
in which all transmissions transmissions are sent hop-by-hop
and interfering transmissions are treated as noise. To model the
reliability constraint we use an error exponent model derived

from the random coding bound for a Gaussian channel. We
initially consider a system without spatial re-use, i.e. each link
is scheduled in its own time-slot, and derive an upper bound on
the end-to-end delay. We then turn to a model with spatial re-
use consider the packet size and re-use distance which either
maximize the throughput or minimize the total delay. In the
later case, to gain insight we focus on the asymptotic growth
of the total delay as the message size L increases to infinity. In
this regime, we characterize the optimal number of packets,
m for two different coding schemes. In the first, each hop
is coded individually. In the second, a concatenated coding
scheme is used to add end-to-end coding. In the first case, the
optimal number of packets satisfies m2 log(m) = Θ(L), while
in the second it satisfies m2 = Θ(L). In other words, with
the concatenated coding scheme we use smaller packets. The
delay under both schemes grows at the same first order rate,
but the second order growth is smaller with the concatenated
scheme. Finally we conclude with some numerical examples.

Related work includes [1], which considers reliability
bounds for multi-hop networks but does not account for spatial
reuse and thus pipe-lining as we do here, and [2], which
addresses the re-use but focuses on throughput as opposed
to delay.

II. MODEL

We consider a one-dimensional model, where all nodes are
regularly placed on a one-dimensional line and labeled by an
integer. One node x is assumed to have L nats 1 of data to
send to another node y. Let D be the distance between node
x and y, and let H − 1 be the number of nodes between x
and y, each of which is assumed to be a relay for the message
(i.e. the number of “hops” is H). To simplify the analysis,
we assume the queuing delay on each hop is zero. This is
reasonable assuming that the given flow has higher priority
over other flows in the network.

All nodes are assumed to transmit in the same frequency
band (with normalized bandwidth of 1) and treat any inter-
fering transmission as noise. The channel between any pair
of nodes is modeled by a distance dependent path-loss plus
additive Gaussian noise. Furthermore, we assume that the
nodes employ a regular TDM-schedule of length K so that

1In order to simplify the notations, we use nat as the unit for information
in this paper.



in time-slot t, the nodes nK + (t mod K) are allowed to
transmit, for n = . . . ,−1, 0, 1, . . .. Figure 1 illustrates this
space-time reuse model.
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Fig. 1. Space-time reuse scheme.

To begin consider a simple model where all the nodes have
the same transmission rate. Assume the L nats of information
are transmitted in m equal-size packets, and there are h
additional nats of overhead in each packet. Let R(H,K)
denote the transmission rate in terms of nats per channel use
under certain H and K and assume that all transmissions are
reliable. It follows that

L
m

+h

R(H,K) is the length of the time-slot
for one packet. The end-to-end delay in channel uses is then

D(H,K) = Km
L
m + h

R(H,K)
+ (H − K)

L
m + h

R(H,K)
, (1)

where the first term is the time for the source to send all the
L nats over the first K hops, and the second term is the time
required for the last packet to traverse the remaining H − K
hops. Essentially, this is a pipe-lining calculation as described
in the introduction, only now a packet must traverse K hops
before a new packet may be transmitted.

If H and K are fixed, and we ignore the integer constraint
on m, then the delay is minimized if m takes the value:

m∗(H,K) =

√

(H − K)L

Kh
, (2)

and the optimal delay is:

D∗(H,K) =

(√
KL +

√

(H − K)h
)2

R(H,K)
. (3)

Notice that if the overhead h is negligible, then the optimal
m goes to infinity, and so the optimal packet size of L/m

R(H,K)
channel uses goes to zero. We are also interested in the case
where each packet must also meet a reliability constraint, in
addition to overhead considerations, this will also prevent the
use of arbitrarily small packets. We next extend our model to
account for this. Specifically we assume that the end-to-end
message error probability for delivering the L nats must be no
greater than a constant η. Given this constraint, we then want
to minimize the end-to-end delay.

Assuming that each node uses a random Gaussian code,
then from [3], [4], the block error probability Pb of code with

a block-length of Nb channel uses is bounded by:

Pb ≤ exp(ρL − Nb(E0(ρ, SINR))), (4)

for any ρ ∈ [0, 1], where Lb is the number of information nats
contained in one block, SINR is the Signal-to-Noise-plus-
Interference ratio at receiver, and E0(ρ, SINR) is the error
exponent determined by ρ and SINR.

For a complex Gaussian channel with unit bandwidth, a
simple expression for the error exponent E0(ρ, SINR) is
given by:

E0(ρ, SINR) = ρ log

(

1 +
SINR

1 + ρ

)

. (5)

Given an upper bound ηhb on the block error probability Pb

for a single hop, the minimum Nhb satisfying

Nhbρ log

(

1 +
SINR

1 + ρ

)

≥ ρLb − log η (6)

is the minimum delay for sending a block of Lb nats over that
hop for which we can use (5) to guarantee that the reliability
constraint is met. In the rest of the paper, we this value of
Nhb as the minimum delay for each hop.

III. DELAY WITHOUT SPATIAL REUSE IN FINITE LENGTH
SYSTEM

Now we return to problem of sending L nats of data
between two nodes x and y over H equal length hops, but
include the reliability constraint. We assume that the distance
D between the source and destination is normalized to 1.2.
Furthermore, there is no other node beyond x and y, and no
other interference present.

Here we consider the simplest case where only one trans-
mission is possible in each time slot. Let N0 denote the noise
power spectrum density. Notice that there is exactly one active
transmitter in each time slot, we assume the transmission
power is P for each transmitter.

We consider what are the optimal number of hops H and
what is the number of blocks m containing the original L
nats. Before going into the details, we introduce following
basic result.

Lemma 1: In an optimized system, the delay for each hop
is the same for each packet.
This follows directly from the assumptions that each packet
has the same size and that the channel for each hop is the
same and thus so is its SINR.

Thus we assume that the delay is the same for each hop and
we denote this by Nhb. Let SINR = P

N0
Hα be the SINR

for a hop, where α is the path-loss factor3. Then, (6) can be
rewritten as:

Nhbρ log

(

1 +
P
N0

Hα

1 + ρ

)

≥ ρ

(

L

m
+ h

)

− log ηhb, (7)

2Changing this distance is equivalent to changing the transmission power.
Since our results are suitable for any power, we use the normalized distance
to simplify our notation.

3Here, P/N0 is also normalized



where ηhb is the per hop per block error constraint. Assuming
no retransmissions, and that coding is done independently over
each hop then ηhb and the end-to-end error constraint η will
satisfy

1 − η = (1 − ηhb)
mH . (8)

Considering that η < 1 and mN ≥ 1, we have

(1 − η

mH
)mH ≥ 1 − η, (9)

which means that setting ηhb = η
mH guarantees the end-to-end

message error probability is less than η.
Let N = Nhb × H × m denote the total delay, then the

minimum N satisfying

N ≥
HL + Hmh − Hm

ρ log η
Hm

log

(

1 +
P

N0
Hα

1+ρ

) (10)

can be guaranteed to satisfy the reliability constraint.
Proposition 1: Without an integer constraint on H , the total

delay is upper bounded by

H∗L + H∗h − H∗

ρ log η
H∗

log

(

1 +
P

N0
(H∗)α

1+ρ

) , (11)

where H∗ = ( (1+ρ)z(α)
P/N0

)
1
α , and z(α) is the solution to (1 +

z−1) log(1 + z) = α.
Proof: Notice that H and m are positive integers. The

right-hand-side of (10) is monotonically increases with m.
Thus any given H , the m that minimizes (10) is 1. Note that

HL + Hh − H
ρ log η

log

(

1 +
P

N0
Hα

1+ρ

) <
HL + Hh − H

ρ log η
H

log

(

1 +
P

N0
Hα

1+ρ

) . (12)

Minimizing, the left-hand side of (12) with respect to H yields
the desired result.

IV. INFINITE LENGTH SYSTEM

Now we consider the situation where simultaneous trans-
missions are enabled so that the SINR includes the effect of
interference. To calculate the interference, the knowledge of
the sets of transmitters in each time slot is necessary, which
complicated the problem. To simplify this we assume there are
infinitely many nodes regularly placed in a one-dimensional
line that each node in the line always has traffic to send. Thus,
for a given transmission schedule each node will see the same
SINR.

In this section, we normalize the distance between adjacent
nodes to be 14 and assume the number of hops H between
the source node x and the destination node y is a constant.

The nodes follow the space-time reuse schedule as in Fig. 1,
so that for a schedule of length K the distance between two
adjacent transmitters is K hops. Each user has an average

4Notice this is a different assumption than the one in previous sections.

power constraint of P 5 and so transmits with power KP when
scheduled. We are still assuming that the message from x can
be sent to y via multi-hop transmission without queuing delay
and are primarily interested in the case where the message
size L is large.

A. Throughput Optimization

Before considering the optimal delay problem, we address
the related problem of optimizing the end-to-end throughput
given a fixed block size of Lb nats and an end-to-end error
constraint of η. Let Nhb be the one-hop minimum delay for
L nats of information which meets the corresponding per-hop
reliability constraint in (6) The average throughput can then
be written as

R =
Lb

KNhb
. (13)

We next consider maximizing this over Lb and K.
Let γ(N0

P ,K) be the received SINR at each node, where

γ(
N0

P
,K) =

1
N0

P
1
K +

∑

∞

i=1(iK + 1)−α +
∑

∞

j=1(jK − 1)−α
.(14)

Now, the reliability constraint (6) can be written as

Nhb log

(

1 +
γ(N0

P ,K)

1 + ρ

)

≥ Lb −
1

ρ
log

η

H
. (15)

Substituting (15) into (13) yields

R ≤ L

L − 1
ρ log η

H

log

(

1 +
γ(

N0
P

,K)

1+ρ

)

K
. (16)

The right-hand side of (16) can be decomposed into two parts,
denoted by RL and RK respectively, Assuming a fixed value
of ρ, the first part RL = L

L−
1
ρ

log η

H

only depends on L, and

the second part RK =
log(1+

γ(
N0
P

,K)

1+ρ
)

K only depends on K.
It is clear that RL is maximized if L takes the largest

possible value, and a finite K maximizes RK . To gain some
insight, we consider the optimal K when N0

P takes extreme
values. In the low SINR regime, where N0

P goes to ∞,
γ(N0

P ,K) goes to 0 and optimal K is the smallest possible
K. On the other hand, if N0

P goes to 0, then the system is in
interference limited region and the optimal K is a bounded
constant determined by the system parameters.

B. Optimal Delay

The analysis in Section IV-A shows that longer block
lengths are preferred to maximize throughput. However, this
prohibits pipe-lining and introduces longer delay. Now we
return to the problem of minimizing the delay to send a
message of L nats of information over H hops. As before this
message can be divided m blocks of equal size Lb = L

m +h, h

5Notice this is also a slightly different normalization than in the previous
section.



denotes the additional overhead needed per packet. The delay
D1 of sending one block over one hop must now satisfy

D1 ≥
(

L
m + h

)

− 1
ρ log η

mH

log

(

1 +
γ(

N0
P

,K)

1+ρ

) , (17)

to ensure the reliability constraint is met. Note that D1 is also
the length of one time-slot.

From the discussion in Section II, the number of time slots
from x sending out the first block until y receives the last
block is H + (m− 1)K. Thus the total delay satisfies should
satisfy

D ≥
(H + (m − 1)K)

[

(

L
m + h

)

− 1
ρ log η

mH

]

log

(

1 +
γ(

N0
P

,K)

1+ρ

) . (18)

To gain insight into the parameters which optimize this we
next consider an asymptotic regime, where L goes to ∞.

V. ASYMPTOTIC ANALYSIS

In this section, we consider study the asymptotic behavior
of the optimal parameters m, ρ and K as the total information
L goes to ∞.

A. Optimal orders of ρ and m

The right-hand side of (18) can be rewritten as

D(ρ,m) =
1

log

(

1 +
γ(

N0
P

,K)

1+ρ

)

(

KL + b1
L

m

+K
1

ρ
m log m + K(h + b2)m

+ b1
1

ρ
log m + b1(h + b2)

)

, (19)

where b1 = H −K, and b2 = − log η
H . We next consider the

behavior of this as L → ∞ for a fixed K.
Proposition 2: Let ρ∗ and m∗ minimize (19) over 0 ≤ ρ ≤

1 and m ≥ 1. If L → ∞, then ρ∗ and m∗ satisfy ρ∗ → 0,
m∗ → ∞, and 1

ρ∗
m∗2 log m∗ = Θ(L).

Proof: On the right-hand-side of (19), note that
(

1 +
γ(

N0
P

,K)

1+ρ

)

is bounded, no matter what value ρ is used.
The highest order term is KL, and all the other terms are
of smaller orders than L. This implies that m → ∞, and
1
ρm log m = o(L). The coefficient of the highest order term,

KL, is
(

1 +
γ(

N0
P

,K)

1+ρ

)

−1

. It requires ρ → 0 to minimize the

delay. Therefore, ρ → 0, m → ∞, and 1
ρm log m = o(L).

Now the candidates for the second highest order terms are
b1

L
m and K 1

ρm log m. These two terms should be asymptoti-
cally equivalent to minimize the total delay. Thus

b1
L

m
³ K

1

ρ
m log m, (20)

which yields the desired result.

Proposition 2 shows that 1
ρ∗

m∗2 log m∗ increases linearly
with L, if ρ is fixed. Suppose that there is no reliability
constraint, i.e. the transmission rate is determined by SINR
and is independent of m. In this case, from (2), it follows that
m∗ should increase at the order of Θ(L

1
2 ). This implies that

m grows faster without a reliability constraint than when one
is present. In other words, with the reliability constraint, an
order larger block-size is preferred.

B. Optimal K

From the proof of Proposition 2, the highest order-term of
D(ρ,m) as L → inf is

D1(ρ,m) =
KL

log

(

1 +
γ(

N0
P

,K)

1+ρ

) .

Furthermore, ρ∗ is shown to go to 0 in Proposition 2. Thus
the optimal K is given by

K∗ = arg min
k

K

log
(

1 + γ(N0

P ,K)
) . (21)

K

log(1+γ(
N0
P

,K))
→ ∞ as K → ∞. Thus the optimal K is

a bounded constant. Notice that (21) is the inverse of RK in
Section IV-A, and so the same results are valid for the extreme
values of K in high and low SINR regimes.

VI. CONCATENATED CODING SCHEME

Previously, we considered that a message containing L nats
is divided into m blocks, and the message is successfully
received when there is no error for every block on every hop.
Next we relax this assumption and consider a concatenated
coding scheme as in [5], in which an outer code is also used to
correct missing packets which do not arrive at the destination.

Assume that the inner code length is Ni channel uses, and
the outer code length is Nout. Assume the dimensional rate
of the outer code is r, then

Nout =
m

r
Ni. (22)

Now, consider the error probability per block per hop, it is
given by

Pbh ≤ exp

(

ρ

(

L

m
+ h

)

− Niρ log

(

1 +
γ(N0

P ,K)

1 + ρ

))

.

(23)
Then the end-to-end block error, which is also the inner

code error, can be upper bounded as

Pb ≤ HPbh ≤ exp{−NiEi}, (24)

where Ei = ρ log

(

1 +
γ(

N0
P

,K)

1+ρ

)

− ρL
mNi

− ρh
Ni

− log H
Ni

can
be interpreted as the error exponent of the inner code.

Based on [5], the error exponent of the outer code can be
expressed as

Eo(Ro) = max
rRi=Ro

(1 − r)Ei(Ri), (25)



where Ri and Ro are the rate for the inner and outer codes,
respectively. And Ri = L

mNi
and Ro = L

Nout
.

Proposition 3: Let ρ∗ and m∗ minimizes the total delay
over 0 ≤ ρ ≤ 1 and m ≥ 1. With the concatenated coding
scheme, if L → ∞, then the optimal ρ∗ and m∗ satisfy ρ∗ →
0, m∗ → ∞, and 1

ρ∗
m∗2 = Θ(L).

Proof: The total message error can be expressed as6

Pe

≤ exp

{

− max
rRi=Ro

[

(1 − r)

(

ρ log

(

1 +
γ(N0

P ,K)

1 + ρ

)

− ρL

mNi
− ρh

Ni
− log H

Ni

)]

Nout

}

= exp







−





√

√

√

√Noutρ log

(

1 +
γ(N0

P ,K)

1 + ρ

)

−
√

ρL + ρmh + m log H
)2
}

, (26)

where the optimal r in the final step is

r∗ =

√

√

√

√

√

ρL + ρmh + m log H

Noutρ log

(

1 +
γ(

N0
P

,K)

1+ρ

) . (27)

To satisfy the end-to-end error requirement η, we have
√

√

√

√Noutρ log

(

1 +
γ(N0

P ,K)

1 + ρ

)

≥
√

ρL + ρmh + m log H +
√

− log η. (28)

Using the same argument as the previous section, the total
end-to-end delay is

D(ρ,m) = (H + (m − 1)K)
rNout

m
. (29)

Plugging (27) and (28) into (29), and using the same
technique as in Proposition 2, yield the result.

Notice that the total end-to-end delay still grows linearly
with L. However, the second highest order terms now grow
at a slower rate than the scheme without concatenated coding,
which implies that this scheme will have a order smaller end-
to-end delay.

VII. NUMERICAL RESULT

To illustrate the asymptotic, some numerical results are
provided in this section. Figure 2 shows the growth order of
the minimal delays for both the schemes with and without
concatenated coding. It is clear that the highest order term
dominates the total delay, when the amount of information
goes to infinity. It also illustrates the changes of optimal K
according to different L. Figure 3 are the optimal ρ and m.
The results shown in these two figures are consistent with our

6Notice Eo is the actual error exponent when r is close to 1. We use Eo to
calculate the error probability since r indeed approaches 1 when L is large.

analysis. In all of above figures, α = 3, η = 0.001, N0/P = 1,
h = 10, and H = 10.
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Fig. 2. Minimum delays and optimal K’s.
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Fig. 3. Optimal ρ’s and m’s.
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