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Distributed Power Allocation and Scheduling

for Parallel Channel Wireless Networks

Xiangping Qin, Randall A. Berry

Abstract

In this paper we develop distributed approaches for power allocation and scheduling in wireless

access networks. We consider a model where users communicate over a set of parallel multi-access fading

channels, as in an orthogonal frequency division multiple access (OFDMA) system. At each time, each

user must decide which channels to transmit on and how to allocate its power over these channels. We

give distributed power allocation and scheduling policies, where each user’s actions depend only on

knowledge of their own channel gains. Assuming a collision model for each channel, we characterize

an optimal policy which maximizes the system throughput and also give a simpler sub-optimal policy.

Both policies are shown to have the optimal scaling behavior in several asymptotic regimes.

Index Terms

Multi-user diversity, OFDM, opportunistic scheduling, random access.

I. INTRODUCTION

It is well established that dynamically allocating transmission rate and power can improve the

performance of wireless networks. In this paper, we consider these approaches for the uplink

in a wireless network, modeled as a fading multiple access channel. For such channels, power

allocation and scheduling have received much attention. For example, [1]–[5] consider these

problems in the context of the information theoretic capacity region of a multi-access fading

channel under various assumptions. In other work, such as [6], [7], adaptive bit and power
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allocation are studied in the context of an OFDMA system. In these cases, optimally allocating

resources requires a centralized controller with knowledge of every user’s channel state. Because

of the required overhead and delays involved, it may not be feasible for a centralized controller

to acquire this information in a fast-fading environment or a system with a large number of

users. Here, we instead consider approaches where each transmitter allocates its transmission

rate and power based only on knowledge of its own channel conditions. This can be obtained, for

example, via a single pilot signal broadcast by the receiver in a time-division duplex system [8].

This requires much less overhead, but since each user has incomplete information, a distributed

approach for power allocation and scheduling is required. In prior work [8]–[10], we have

considered such approaches for the case where all users communicate over a single flat-fading

channel. In particular, in [8], [9], an approach based on the Aloha protocol is given, where

each user randomly transmits with a probability based on its own channel gain. It is shown

that as the number of users increases, the throughput of such a system scales at the same rate

as that obtained by an optimal centralized controller. In this paper, we extend this approach

to the case where each user may transmit over multiple ”parallel” channels. For example, each

channel may model a subcarrier or group of subcarriers in an OFDMA system, such as the IEEE

802.16 standard. A new consideration here is that each user must now decide how to allocate

its transmission power across the available channels.

In the next section, we begin by describing our basic model for an uplink with k parallel

channels. Using this model, we formulate a distributed power allocation and scheduling problem

with a finite number of users and characterize the optimal solution to this problem. We next give

a simplified allocation scheme and analyze the performance of both the optimal and simplified

schemes in three asymptotic regimes: (i) the number of users increases with a fixed number

of channels, (ii) the number of channels increase with a fixed number of users, and (iii) both

the number of channels and the number of users increase with fixed ratio. In each case, we

characterize the asymptotic growth rate. Both approaches are shown to achieve the same order

of growth as an optimal centralized approach in each asymptotic regime. The asymptotic ratio

of the throughput of the distributed approaches to that of the optimal centralized approach is

given in each regime. We also compare the performance of several approaches that require a

small amount of additional coordination among the users. Finally, some simulation results are

given.
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II. MODEL DESCRIPTION

We consider a model of n users communicating to a single receiver over k parallel channels.

Each channel between each user and the receiver is modeled as a time-slotted, block-fading

channel with frequency-flat fading and bandwidth Wc. At each time t, the received signal on the

jth channel is given by

yj(t) =
n∑

i=1

√
Hij(t)xij(t) + zj(t), (1)

where xij(t) and Hij(t) are the transmitted signal and channel gain for the ith user on channel j,

and zj(t) is additive white Gaussian noise with power spectral density N0

2
. To simplify notation

we assume that N0Wc = 1. The channel gains are assumed to be fixed during each time-slot

and to randomly vary between time-slots, i.e. Hij(t) = Hij for all t ∈ [mT, (m + 1)T ], where

T is the length of a time-slot. Here, {Hij}i=1,..,n,j=1,..,k are assumed to be independent and

identically distributed (i.i.d.) across both the users and channels with a continuous probability

density fH(h) on [0,∞).1 We assume that E(Hi,k) < ∞ and that fH(h) > 0, for all h > 0 and is

differentiable. It follows that the corresponding distribution function FH(h) is strictly increasing

and twice differentiable. Let F̄H(h) = 1 − FH(h) denote the channel gain’s complimentary

distribution function. For example, if each channel experiences Rayleigh fading, then H will be

exponentially distributed, and so F̄H(h) = e−h/h0 , where h0 = E(Hi,k).

Figure 1 around here.

We focus on the case where at the start of each slot, each user i has perfect knowledge of

Hi1, ..., Hik, but no knowledge of the channel gains for any other users. For convenience, we

drop the user subscript and let H = (H1, ..., Hk) denote the vector of channel gains for an

arbitrary user. Given the current realization of H, each user must determine on which channels

to transmit and how to allocate its power. This is represented by the user’s power allocation

P(h) = (P1(h), P2(h), ..., Pk(h)), where Pj(h) indicates the power allocated to channel j given

that H = h.2 This power allocation must satisfy a total power constraint of P̌ across all channels

in each time-slot, i.e.,
∑

j Pj(h) ≤ P̌ , for all h. No cooperation exists among users. In particular,

1In an OFDM system different sub-carriers will typically experience correlated fading. However, if each channel is a large

enough group of sub-carriers, then this independence assumption is reasonable.

2If a user does not transmit on channel j, then Pj(h) = 0.
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all users are required to employ the same power allocation and transmission scheme; i.e., they

can not cooperate in selecting these allocations.

During each time-slot, we assume that at most one user can successfully transmit on each

channel. If more than one user transmits on a given channel, a collision occurs and no packets are

received. However, a packet sent over another channel without a collision will still be received.

In other words, if a user simultaneously transmits on multiple channels, then the information

sent over each channel is independently encoded, so that a packet sent on one channel may be

decoded even if a collision occurs on another. Given that only one user transmits on channel j,

let R(γj) indicate the rate at which the user can reliably transmit as a function of the received

power γj = hjPj(h). We assume that R(γ) := log(1 + γ), which is proportional to the Shannon

capacity of the channel during a given time-slot. Provided that each time-slot is long enough to

permit the use of sophisticated codes, this will give a reasonable indication of the transmission

rate in a practical system. During a time-slot, each user will encode R(γj)T bits into a packet

to be transmitted on channel j. We assume that there is no coding done over successive time-

slots. Also, we do not consider any multiuser reception or power capture effects when multiple

users transmit on a channel. Given that users are received at different power levels, ignoring

such effects is a questionable assumption. This is done mainly to simplify our analysis. Such

techniques can be incorporated into our model and will result in improved performance.3

III. OPTIMAL DISTRIBUTED POWER ALLOCATION

In the above model, the power allocation P(h) for each user needs to be determined. To

begin, consider the simplest case, where there is only n = 1 user who must allocate its power

over the k available channels. In this case, for each channel realization h, the power allocation

that maximizes a user’s throughput is the well-known ”water-filling” allocation,

Pwf
j (h) =

(
λ − 1

hj

)+

, (2)

where λ is chosen so that
∑k

j=1 Pwf
j (h) = P̌ (see, e.g. [1]).

When there are multiple users, if more than one user transmits on a channel, a collision results

and no data is received. We consider a natural extension of the Aloha-based approach in [8],

3Moreover, since we achieve order optimal performance without these; such techniques can not improve the growth rate, only

the first order constant.
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where each user transmits on each channel with a certain probability p. Since each channel is

i.i.d., it is reasonable to require that each user transmits with the same probability p in each slot

and on each channel. The probability of some user successfully transmitting on one channel is

then np(1− p)n−1. Given this probability, for each channel j, each user chooses a subset Hj of

the possible realizations of H with Pr(H ∈ Hj) = p. The user then only transmits on channel j

when H ∈ Hj . To maximize the total throughput, each user will choose channel states in each

set Hj that can achieve higher transmission rates. However, the transmission rate that can be

achieved also relies on the specific power allocation, e.g. if a state h is in both Hj and Hl, the

user must allocate power across both channels, while if h is in only one set, the user can use

all the available power on the corresponding channel. For a given power allocation, Pj(h), the

expected transmission rate on channel j, conditioned on a user successfully transmitting on that

channel is given by

EH

(
R(HjPj(H))

∣∣H ∈ Hj

)
= EH

(
R(HjPj(H))

∣∣Pj(H) > 0
)
,

where we have used that the channels are independent across users. We now specify the following

distributed optimal throughput problem:

max
P(H),p

np(1 − p)n−1

k∑
j=1

EH

(
R(HjPj(H))

∣∣Pj(H) > 0
)

s.t.
k∑

j=1

Pj(h) ≤ P̌ , ∀h

Pr{Pj(H) > 0} = p, j = 1, ..., k.

(3)

The objective in (3) is the average sum throughput for all n users over all k channels. This is op-

timized over the transmission probability p and the power allocation (P1(H), P2(H), ..., Pk(H)),

which is used by each user. The second constraint ensures that the sets Hj all have probability

p. When this constraint is met, it follows that

pEH

(
R(HjPj(H))

∣∣Pj(H) > 0
)

= EH (R(HjPj(H)) .

Hence, the objective in (3) can also be written as

n(1 − p)n−1

k∑
j=1

EH (R(HjPj(H)) . (4)
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In the remainder of this section, we will characterize the solution to (3) and give an algorithm

for determining this solution. We begin with some preliminary results. First, recall that when

n = 1 the optimal solution to (3) is for the user to use the water-filling power allocation, Pwf (h),

for all channel realizations h. Let

pwf := Pr(Pwf
j (H) > 0) (5)

be the probability that a user will transmit on a given channel j when using this allocation.

Since the channel gains are i.i.d., this will be the same for all channels j. For n > 1 users, the

transmission probability also influences the probability of success. The next lemma states that

for any number of users the optimal p will never be larger than pwf .

Lemma 1: For any number of users, n, the optimal solution to (3) will satisfy p ≤ pwf .

The proof is given in Appendix A. Note that when n > 1, the optimal p may be strictly less

than pwf to decrease the probability of collisions.

The next property of the optimal solution to (3) involves the symmetry of the allocation. We

define a power allocation P(h) to be symmetric if the power allocation for any permutation of a

channel realization h is equal to the same permutation of P(h). For example if k = 2, then for

a symmetric power allocation P1(ha, hb) = P2(hb, ha) for all ha, hb. Note that Pwf (h) is always

symmetric.

Lemma 2: For any n and k, there exists an optimal power allocation for (3) that is symmetric.

We omit the proof due to space considerations. For a given channel realization h, let (h(1), h(2), ..., h(k))

denote the ordered channel gains from the largest to the smallest, with any ties broken arbitrarily.

If a power allocation is symmetric it will just depend on this ordered sequence in each time-slot.

Given this ordered sequence, for j ≤ l ≤ k, let Rl
(j)(h) denote the rate achievable over the jth

best channel when the transmitter uses the optimal (water-filling) power allocation over only the

l best channels. In other words, Rl
(j)(h) = log(1+P(j)(h)h(j)), where P(j)(h) = (λ− 1

h(j)
)+ and

λ is chosen such that
∑l

j=1 P(j)(h) = P̌ .

Lemma 3: As l increases,
∑l

i=1 Rl
(i)(h) − ∑l−1

i=1 Rl−1
(i) (h) is non-increasing.

The proof is given in Appendix B. Given a “threshold rate” Rth > 0 for each channel
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realization h, we introduce the following problem:

max
l=1,...,k

l

s.t.
l∑

i=1

Rl
(i)(h) −

l−1∑
i=1

Rl−1
(i) (h) ≥ Rth

(6)

If this problem has no feasible solution, we define the solution to be l = 0. When k = 1, the

constraint in (6) is R1
(1)(h) ≥ Rth, i.e., the rate when only transmitting on the best channel should

be greater than Rth. For k = 2, the constraint in (6) becomes R2
(1)(h)+R2

(2)(h)−R1
(1)(h) ≥ Rth,

which means that the increase in the total rate from using the best two channels versus only

using the best channel should be greater than Rth. In general, the objective of (6) is to find the

maximal number of channels l, such that the gain in the sum rate from transmitting on the l best

channels instead of only the l − 1 best channels is at least Rth. Note from Lemma 3 it follows

that if l∗ solves (6), then any l < l∗ will also satisfy the constraint in (6).

For a given Rth, let PRth(h) be the power allocation that corresponds to solving (6) for each

channel realization h; i.e. this will be a water-filling allocation over the l best channels, where

l is the solution to (6) for each given realization (note l may change with each realization). The

following proposition relates this to the solution of (3).

Proposition 1: There exists a constant Rth > 0 such that PRth(h) is also the optimal solution

to (3).

The proof is given in Appendix C. This proposition specifies the form of the optimal power

allocation; the corresponding transmission probability is given by p = Pr(PRth
i (H) > 0). It

follows from this proposition that the optimal solution to (3) can be found by solving (6) for a

given Rth, and then iteratively searching for the optimal Rth. Solving (6) for a given Rth and

channel realization h can be done via Algorithm 1, which determines the set of channels from

h that are transmitted on.
After each iteration in Algorithm 1, according to Lemma 3, the rate gain d − d−1 decreases.

Therefore, after at most k steps, the algorithm converges, and it converges to the optimal solution

to (6). Note that a feasible solution might not exist for some channel realizations, in which

case the algorithm returns W = ∅. For a given Rth, this algorithm can be used to find the

corresponding power allocation. The optimal value of Rth can then be found via a numeric

search; however, we note that this search is now only a one-dimensional search, instead of a k-
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Algorithm 1 k-best channels (h, Rth)
initialize:

M = {1, . . . , k}
j = arg maxi∈M hi

W = {j}
d−1 = 0

Water-fill over channels {hi : i ∈ W} giving sum rate d.

if d < Rth then

W = ∅
else

while d − d−1 > Rth do

d−1 = d

M = M/W
j = arg maxi∈M hi

W = {j}⋃W
Water-fill over channels {hi : i ∈ W} giving sum rate d.

end while

end if

return W

dimensional search over the possible power allocations.4 An example of the resulting allocation

for a system with k = 2 channels is given in Fig. 2, which shows the channel states (h1, h2)

during which a user will transmit for a given transmission probability p. For convenience, the

axis in this figure are the inverse of the channel gains, i.e. 1
h1

and 1
h2

. The double crossed area

indicates the channel states for which a user should transmit over both channels; the single

crossed areas are when the user should transmit on only one channel. The area of each single

crossed region has a total probability of p.

Figure 2 around here.

4Note that the objective in (6) is the average throughput over all channel states; evaluating this requires finding the power

allocation for each state, e.g. executing algorithm 1 for each state. For a large number of states, this can be approximated via

Monte Carlo simulation.
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For a given n and k, the optimal power allocation could be determined offline using the

above procedure. However, for a large number of channels k this will result in a large compu-

tational cost. In the next section, we introduce a simpler sub-optimal algorithm and analyze its

performance.

IV. SUB-OPTIMAL POWER ALLOCATION AND ASYMPTOTIC ANALYSIS

We consider a simplified distributed scheme, where instead of finding a threshold rate Rth

and solving (6), we set a threshold hth on the channel gain. Each user then transmits on the kth

channel when its gain is greater than hth, resulting in the transmission probability p = F̄H(hth).

If a user has more than one channel whose gain is higher than the threshold, then the total power

P̌ will be allocated equally to each of these channels.5 Given that a user transmits on i channels,

we assume it transmits at a constant rate of Ri(p) := R
(
F̄−1

H (p) P̌
i

)
on each channel. This is a

lower bound on the achievable rate and simplifies our analysis.

The total throughput using this scheme is a function of k, n and p. For i = 1, ..., k, let qk,p(i)

be the probability one user has i channels above the threshold hth = F̄−1
H (p), i.e.,

qk,p(i) =

(
k

i

)
(p)i(1 − p)k−i.

Among these i channels, for j = 1, ..., i, let ωp,i(j) be the probability a user transmits successfully

on exactly j channels, i.e. the probability there is no collision on exactly j channels, given that

i are above the threshold. This is given by

ωn
p,i(j) =

(
i

j

) [
(1 − p)n−1

]j [
1 − (1 − p)n−1

]i−j
.

The average sum throughput of this system is then given by

s(k, n, p) = n
k∑

i=1

qk,p(i)
i∑

j=1

ωn
p,i(j)jRi(p).

Note that ωn
p,i(j) is a Binomial probability mass function (p.m.f.) and so

∑i
j=1 ωn

p,i(j)j = (1 −
p)n−1i. Therefore,

s(k, n, p) = n(1 − p)n−1

k∑
i=1

(
k

i

)
(p)i(1 − p)k−iiRi(p). (7)

5Other equal power allocation approaches for multi-carrier systems have been studied in [11] for a single user channel and

in [12] for a downlink channel.
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The next lemma gives upper and lower bounds on s(k, n, p),

Lemma 4: For all k, n and p,

log

(
1 +

P̌ F̄−1
H (p)

p(k − 1) + 1

)
≤ s(k, n, p)

n(1 − p)n−1kp

≤ log

(
1 +

P̌ F̄−1
H (p)[1 − (1 − p)k]

kp

)
.

The proof is given in Appendix D.

Using these bounds, we next consider how the sum throughput of this scheme and the optimal

scheme scales in the three asymptotic regimes given in the introduction. We define two sequences

f(m) and g(m) to be asymptotically equivalent, denoted by f(m) � g(m), if limm→∞
f(m)
g(m)

= c.

In the special case where c = 1, we say that they are strongly asymptotically equivalent and

denote this by f(m) �̄ g(m). This implies that both sequences asymptotically grow at the same

rate and have the same first order constant. In each regime, we show that this simplified scheme

is strongly asymptotically equivalent to the optimal distributed algorithm (i.e., the solution to

(3)). For these results, we need to make an additional assumption on the tail of the fading

distribution. Specifically, we assume that as h → ∞,

fH(h) � f ′
H(h), (8)

where f ′
H(h) = d

dh
fH(h). This is satisfied by any fading distribution that has an exponential

tail, which is the case for most common fading models such as Rayleigh, Ricean and Nak-

agami fading. The follow lemma summarizes several other useful properties of such a fading

distribution.

Lemma 5: For any continuous, differentiable fading density fH that satisfies (8), then the fol-

lowing conditions hold: (a.) F̄H(h) � fH(h), (b.) limh→∞
F̄H(h)
hfH(h)

= 0, and (c.) limh→∞ d
dh

[
F̄H(h)
fH(h)

]
=

0.

The proof of these conditions follows directly from evaluating the limits using L’Hospital’s rule.

Conditions (b) and (c) were used in [9] to characterize the asymptotic performance of a single

channel system.

We also compare the throughput achieved by these distributed approaches to an optimal

centralized system that schedules the users to maximize the throughput in every slot (still
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assuming at most one user can transmit on each channel). This is given by solving6

max
{Pij ,cij}

n∑
i=1

k∑
j=1

R(Pijcijhij)

s.t.
k∑

j=1

Pijcij = P̌ , ∀i,

n∑
i=1

cij ≤ 1, ∀j, cnk ∈ {0, 1}, ∀i, j,

(9)

during each time-slot. Here, the integer variables, cij , indicate when user i is assigned to channel

j; the second constraint ensures that at most one user is assigned to each channel. Let sct(k, n)

be the sum throughput obtained by the optimal centralized scheduling policy that solves (9) in

each time-slot, averaged over the channel distributions. Denote the throughput of the optimal

distributed policy by s∗(k, n) and the optimal throughput of the threshold-based algorithm by

s(k, n, p∗), where p∗ is the transmission probability that optimizes s(k, n, p). For all n and k,

from their definitions we have,

s
(
k, n, 1

n

) ≤ s(k, n, p∗) ≤ s∗(k, n) ≤ sct(k, n), (10)

where the first term is the throughput with a transmission probability of 1/n.

First, we consider the case where k is fixed and n increases.

Proposition 2: Given any finite k, as n → ∞, s(k, n, 1
n
), s(k, n, p∗), s∗(k, n) and 1

e
sct(k, n)

are all strongly asymptotically equivalent to k
e
log

(
1 + P̌ F̄−1

H ( 1
n
)
)
.

The proof is given in Appendix E. This proposition states that asymptotically there is no

difference in the first-order performance compared to the optimal distributed approach when

using the simplified scheme or from choosing p = 1
n

instead of the optimal p∗. The throughput

for each distributed approach asymptotically increases like k
e
log(1+ P̌ F̄−1

H ( 1
n
)), as does 1

e
times

the throughput with the optimal centralized scheduler. In other words, the distributed approaches

all grow at the same rate as the centralized approach and asymptotically the ratio of their

throughputs approach 1
e
, the contention loss in a standard slotted Aloha system. As an example,

for the case of i.i.d. Rayleigh fading on each channel the throughput in each case will increase

at rate O(log(log(n)).

6This is similar to a problem studied for centralized OFDM systems in [6].
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The second regime we consider is when n is fixed and k increases.

Proposition 3: Given any finite n, as k → ∞, s(k, n, p∗), s∗(k, n), sct(k, n) are all strongly

asymptotically equivalent to nP̌ F̄−1
H ( 1

k
).

The proof is given in Appendix F. This proposition states that again the threshold based

approach is strongly asymptotically equivalent to the optimal distributed approach. In this case,

it is also asymptotically equivalent to the optimal centralized system; i.e. there is no loss of
1
e
. Intuitively, this is because as the number of channels increases, the probability of collision

becomes negligible. In this case, for a Rayleigh fading channel each of these terms grows like

O(log(k)) as k → ∞, with a first order constant that is linear in n.

The last regime we consider is where both k and n increase with fixed ratio k
n

= β.

Proposition 4: If k
n

= β, as n → ∞, s(βn, n, 1
n
), s(βn, n, p∗), s∗(βn, n) and 1

e
sct(βn, n) are

all strongly asymptotically equivalent to βne−1 log
(
1 + P̌ F̄−1

H ( 1
n
)
)
.

The proof uses similar ideas to Proposition 2 and is given in Appendix G. As in Proposition 2,

once again compared to the centralized scheme there is an asymptotic penalty of 1/e due to the

contention, and a transmission probability of p = 1
n

is asymptotically optimal for the distributed

system. For Rayleigh fading channels the throughput now grows like O(n log(log(n))), as n →
∞, with a first order constant that is linear in β.

V. COMPARISON WITH OTHER DISTRIBUTED APPROACHES

We next compare the distributed approaches to several schemes that require minimal coordi-

nation for assigning different power allocation policies to different sets of users. First, assume

that k
n

= β, where β is a positive integer. In this case, a “non-collision scheme” is to assign

β channels to each user for all time. Let snc(k, n) denote the average sum throughput of this

scheme. It follows that snc(k, n) = nsct(β, 1). Comparing this to s(βn, n, p∗), we have

lim
n→∞

snc(βn, n)

s(βn, n, p∗)
= lim

n→∞
sct(β, 1)

βe−1 log(1 + P̌ F̄−1
H ( 1

n
))

= 0,

where the first equality follows from Proposition 4. In other words, when enough users are

present, this non-collision scheme will perform worse than the simplified distributed approach.

This is because the non-collision scheme cannot exploit any “multi-user” diversity. Hence, it

has a constant throughput as n increases, while s(βn, n, p∗) is unbounded. On the other hand,

when n is fixed and β (i.e. k) increases, then from Proposition 3, sct(β, 1) �̄ P̌F−1
H ( 1

β
). Hence,



13

as k → ∞
snc(k, n) �̄nP̌F−1

H (
1

β
) �̄nP̌F−1

H (
1

k
) �̄ s(n, k, p∗).

In this case, both approaches see increased frequency diversity as k increases and are asymptot-

ically equivalent.

Next, assume α = n
k

> 1. In this case, an approach with fewer collisions is to assign α users

to each channel for all time. These α users then use the optimal distributed protocol for a single

channel. This results in a throughput of slc(k, n) = ks∗(1, α). Using Proposition 4, it follows

that for fixed α, as n (and k) increase, we have

lim
n→∞

slc(n/α, n)

s(n/α, n, p∗)
= lim

n→∞
s∗(1, α)

e−1 log(1 + P̌ F̄−1
H ( 1

n
))

= 0.

Again, the new scheme cannot fully exploit the available diversity. However, if k is fixed so that

α increases with n, then from Proposition 2, s∗(1, α) �̄ 1
e
P̌ log(F−1

H ( 1
α
)). Hence,

slc(k, n) �̄ K

e
P̌h0 log

(
F−1

H (
1

α
)

)
�̄ K

e
P̌h0 log(F−1

H (
1

n
))) �̄ s(k, n,

1

n
).

In this case, the throughput ratio of the two schemes approaches to 1 asymptotically because

both exploit increasing multiuser diversity as n increases.

To summarize, we have seen that grouping users to avoid contention is not desirable unless

the users can still exploit the available diversity. Even when the users can exploit the diversity,

such approaches do not improve on the first order asymptotic performance.

VI. NUMERICAL EXAMPLES

In this section, we give some numerical examples to illustrate the performance of the optimal

and simplified distributed algorithms with a finite number of channels and users. All the results

in this section are for an i.i.d. Rayleigh fading model, with E(Hij) = 1, and a total power

constraint of P̌ = 1. The performance is averaged over multiple channel realizations. Figure 3

shows the average throughput achieved by the optimal distributed power allocation scheme from

Section III compared to the simplified power allocation scheme in Section IV. The throughput

of both approaches is shown as a function of the number of users for a system with k = 10

channels. As the number of users increases, both throughputs increase and the difference between

the two curves decreases.
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Figure 4 shows upper and lower bounds on the ratio of the average throughput of the optimal

distributed scheme s∗(k, n) to the centralized scheme sct(k, n) defined in (9) as a function

of the number of users, for k = 5 and 10 channels. Calculating sct(k, n) requires solving the

optimization problem in (9) for every channel realization, which is complicated due to the integer

constraints. Instead we compare s∗(k, n) to upper and lower bounds on sct(k, n). We upper bound

sct(k, n) by relaxing the total power constraint on the channels,
∑

k Pnkcnk = P̌ . Instead, we

allow each user to transmit with Pnk = P̌ over each channel. The maximum throughput is

achieved for this relaxed system by letting the best user on each channel transmit at each time.

We take the resulting throughput as our upper bound. To lower bound sct(k, n), we still choose

the best user to transmit on each channel, but if one user is chosen to transmit on more than

one channels, its power P̌ is divided equally across these channels. The resulting throughput

is then a lower bound on sct(k, n). Figure 4 shows that as the number of users increases, the

two bounds approach each other. The reason is that the probability that one user is chosen to

transmit on more than one channel is small for a larger number of users. It can be seen that the

ratio of the throughputs of the distributed to the optimal scheme is decreasing as the number of

users increases and is larger than the limiting value of 1/e (see Proposition 2) for all finite n.

As the number of the channels, k, increases, the throughput ratio also increases for a fixed n.

This is due to the increased frequency diversity with more channels.

Figure 5 shows upper and lower bounds on the ratio of the throughput of the optimal distributed

scheme to that of the optimal centralized approach as the number of channels increases, for a

system with n = 5 and 10 users. In this case, we upper bound sct(k, n) by the information

theoretic capacity of this multi-access system. In other words, joint decoding is used when

multiple users transmit on the same channel. We use the iterative water-filling algorithm from

[4] to obtain this capacity. One channel can be assigned to multiple users to achieve the capacity.

By only allowing the user who has the best channel to transmit on that channel, we obtain a

lower bound of the system. Figure 5 shows that as the number of channels increases, the two

bounds quickly converge. The throughput ratio increases as the number of channels increases.

From Proposition 3, as k increases, these bounds should approach 1. In this asymptotic regime,

the convergence appears to be much slower than in Figure 4.

Figure 3 around here.
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Figure 4 around here.

Figure 5 around here.

VII. SUMMARY

In this paper we have presented distributed algorithms for scheduling and power allocation

in a parallel channel wireless network, where each user only has knowledge of its own channel

gains. Using a contention model, an optimal distributed algorithm is characterized. A simplified

distributed approach is also given. In three different asymptotic regimes, the simplified algorithm

is shown to be asymptotically equivalent to the optimal distributed algorithm. Both algorithms are

also shown to scale at the same rate as the optimal centralized scheduler. These results suggest

that it is possible to develop near optimal approaches for scheduling and power allocation without

requiring a centralized controller with complete channel knowledge. There are several important

issues that we have not addressed here. For example, we have not considered asymmetric models,

where the fading is not identically distributed across the channels or the users, or models where

the fading is correlated across the channels. We also assumed that each user knows the fading

distribution; in practice, an adaptive approach would be required to estimate this distribution.

APPENDIX A

PROOF OF LEMMA 1:

To establish a contradiction, suppose that for a given number of users, n, the optimal p satisfies

p > pwf . This will require that each user transmits on a larger set of channels than they would

under Pwf (h). Let P̃(h) denote the resulting power allocation. Since Pwf (h) maximizes the

sum throughput for one user, it must be that

k∑
j=1

EH

(
R(HjP

wf
j (H))

)
>

k∑
j=1

EH

(
R(HjP̃j(H))

)
. (11)

Also since p > pwf ,

n(1 − pwf )n−1 > n(1 − p)n−1. (12)

Substituting (11) and (12) into (4), it follows that using Pwf (h) results in a larger throughput.

Hence, p cannot be optimal. �
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APPENDIX B

PROOF OF LEMMA 3:

Given a channel realization h, consider the optimal (water-filling) power allocation over

the following 2(l − 1) channels h(1), h(1), h(2), h(2), ..., h(l−1), h(l−1), with total power 2P̌ . The

resulting sum rate will be 2
∑l−1

i=1 Rl−1
(i) (h). Next, consider

l∑
i=1

Rl
(i)(h) +

l−2∑
i=1

Rl−2
(i) (h),

this rate can be achieved by some power allocation over 2(l − 1) channels with channel gains

h(1), h(1), ..., h(l−2), h(l−2), h(l−1), h(l), which satisfies the same power constraint 2P̌ . Consider

using the same power allocation as in the first case. Since h(l) ≤ h(l−1), and we are using the

optimal power allocation for the first case, it can be seen that

2
l−1∑
i=1

Rl−1
(i) (h) ≥

l∑
i=1

Rl
(i)(h) +

l−2∑
i=1

Rl−2
(i) (h).

Therefore, rearranging terms we have

l−1∑
i=1

Rl−1
(i) (h) −

l−2∑
i=1

Rl−2
(i) (h) ≥

l∑
i=1

Rl
(i)(h) −

l−1∑
i=1

Rl−1
(i) (h).

�

APPENDIX C

PROOF OF PROPOSITION 1:

First note that for a given rate threshold Rth, PRth(h) will result in a transmission probability,

p(Rth) = Pr(PRth
i (H) > 0).7 This probability will satisfy p(0) = pwf , where pwf is defined in

(5), and p(Rth) will be a monotonically decreasing function of Rth.

Let P(h) be the optimal power allocation for problem (3) with a given n and k, and let p∗ be

the corresponding transmission probability. From Lemma 1, p∗ ≤ pwf , and from Lemma 2, we

can assume that P(h) is symmetric. It can be easily shown that the optimal allocation must also

satisfy the following two properties: first, given an ordered channel realization (h(1), h(2), ..., h(k)),

if the ith best channel is allocated positive power, then the channels h(1), .., h(i−1) whose gains

are no worse than h(i) should also be allocated positive power; second, for any set of channel

7By construction, it can be seen that this probability will be the same for each channel i.
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states h(1), .., h(l) allocated positive power, in order to maximize the total transmission rate, the

water-filling power allocation should be used over these states, resulting in rate
∑l

i=1 Rl
(i)(h).

Also note that from Lemma 3, if
∑l

i=1 Rl
(i)(h) − ∑l−1

i=1 Rl−1
(i) (h) < Rth, then

∑m
i=1 Rm

(i)(h) −∑m−1
i=1 Rm−1

(i) (h) < Rth, for all m > l.

Let H be the k dimensional space of possible channel state vectors h. Also, for l = 1, . . . , k,

let sl(h) =
∑l

i=1 Rl
(i)(h) and s0(h) = 0. We complete the proof by contradiction. Namely, let

R∗
th be the rate threshold that satisfies p(R∗

th) = p∗, and assume that P(h) is not equal to the

solution to (6) with this rate threshold for some set of channel states with positive probability.8

In particular, for some channel j, there must exist a set of states N ∈ H such that for all h ∈ N ,

j is the lth best channel (for any l) with sl(h) < sl−1(h)+R∗
th, and j is allocated positive power.

Likewise, to ensure that Pr{Pj(H) > 0} = p∗, there must be another set of states B ∈ H (with

the same probability) such that when j is the lth best state and sl(h) > sl−1(h) + R∗
th, then j

is not allocated positive power. However, by transmitting on channel j in B instead of N , and

using the above properties of the optimal allocation, it can be shown that the total throughput

will increase, which contradicts this power allocation being optimal. �

APPENDIX D

PROOF OF THE LEMMA 4:

Let

Rk =
k∑

i=1

(
k

i

)
(p)i(1 − p)k−ii log

(
1 +

P̌ F̄−1
H (p)

i

)

=kp
k−1∑
j=0

(
k − 1

j

)
pj(1 − p)k−1−j log

(
1 +

P̌ F̄−1
H (p)

j + 1

)
.

The function g(x) = log(1 +
P̌ F̄−1

H (p)

x+1
) can be shown to be a convex function, for x > 0. Also

Πj =

(
k − 1

j

)
pj(1 − p)k−1−j, j = 0..k − 1

is a p.m.f. Hence, using Jenson’s inequality, we have

Rk ≥ kp log

(
1 +

P̌ F̄−1
H (p)

p(k − 1) + 1

)
.

8Note since p∗ ≤ pwf such a R∗
th must exist.
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Therefore,

s(k, n, p) ≥ n(1 − p)n−1kp log

(
1 +

P̌ F̄−1
H (p)

p(k − 1) + 1

)
,

which gives the desired lower bound.

Next, we derive the upper bound. Let f(i) = i log(1 +
P̌ F̄−1

H (p)

i
), so that

Rk =
k∑

i=1

(
k

i

)
(p)i(1 − p)k−if(i)

=

∑k
i=1

(
k
i

)
(p)i(1 − p)k−if(i)∑k

i=1

(
k
i

)
(p)i(1 − p)k−i

k∑
i=1

(
k

i

)
(p)i(1 − p)k−i.

The function f(i) can be shown to be concave for i > 0. Taking expectation with respect to the

p.m.f.

Πi =

(
k
i

)
(p)i(1 − p)k−i∑k

i=1

(
k
i

)
(p)i(1 − p)k−i

, i = 1, . . . , k,

and again using Jenson’s inequality, we have

Rk = Ef(i)[1 − (1 − p)k]

≤ f(Ei)[1 − (1 − p)k]

= f

(
kp

1 − (1 − p)k

)
[1 − (1 − p)k]

= kp log

(
1 +

P̌ F̄−1
H (p)[1 − (1 − p)k]

kp

)
.

Therefore, we have the upper bound

s(k, n, p) ≤ n(1 − p)n−1kp log

(
1 +

P̌ F̄−1
H (p)[1 − (1 − p)k]

kp

)
.

�

APPENDIX E

PROOF OF PROPOSITION 2:

From (10), to prove that s
(
k, n, 1

n

)
, s(k, n, p∗), and s∗(k, n) are all asymptotically equivalent

to k
e
log

(
1 + P̌ F̄−1

H ( 1
n
)
)
, it is sufficient to show that

lim
n→∞

s(k, n, 1
n
)

k
e
log

(
1 + P̌ F̄−1

H ( 1
n
)
) ≥ 1, (13)
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and

lim
n→∞

s∗(k, n)
k
e
log

(
1 + P̌ F̄−1

H ( 1
n
)
) ≤ 1. (14)

From Lemma 4,

s(k, n, 1
n
) ≥ (1 − 1

n
)n−1k log

(
1 +

P̌ F̄−1
H ( 1

n
)

n−1(k − 1) + 1

)
.

Letting sl(k, n, 1
n
) denote this lower bound, it can be seen that

lim
n→∞

sl(k, n, 1
n
)

k
e
log

(
1 + P̌ F̄−1

H ( 1
n
)
) = 1.

It follows that (13) holds.

To show that (14) holds, consider a new system with k parallel channels, that is identical to the

original system, except each user now has peak power constraint of P̌ for each channel, instead

of having the total power across all the channels constrained by P̌ . Denote the optimal distributed

throughput of this new parallel system by s∗p(k, n). It follows that s∗(k, n) ≤ s∗p(k, n) = ks∗(1, n).

In [9], it is shown that for a single channel system, if fH(h) satisfies condition (b) in Lemma 5,

then s∗(1, n) �̄ 1
e
log(1+P̌ F̄−1

H ( 1
n
)). By assumption, fH(h) satisfies (8), and hence this condition.

Combining the above observations, (14) follows.

Next, we show that s(k, n, 1
n
) �̄ 1

e
sct(k, n). For this we again consider the parallel channel

system where each user has a peak power constraint of P̌ for each channel. In this case, the

optimal centralized system would simply schedule the user with the best channel gain to transmit

on each channel using the maximum power P̌ . Let sctu(k, n) denote the throughput of this new

system; this will clearly upper bound sct(k, n) and will satisfy sctu(k, n) = ksct(1, n). Again

referring to [9], it is shown that for a single channel system, if fH(h) satisfies condition (c) in

Lemma 5, then sct(1, n) �̄ log(1+ P̌ F̄−1
H ( 1

n
)). Likewise, the above results show that s(k, n, 1

n
) �̄

k
e
log(1 + P̌ F̄−1

H ( 1
n
)). Combining these, it follows that

lim
n→∞

s(k, n, 1
n
)

sct(k, n)
≥ 1

e
. (15)

To complete the proof we lower bound sct(k, n). In this case, we consider a sub-optimal

centralized scheduler for the original system. Specifically, the system schedules the user who

has the best channel to transmit on each channel. However, if one user is scheduled for more
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than one channel, it will split its total power and allocate equal power to each channel. Denote

the throughput of this model by sctl(k, n); this is given by

sctl(k, n) = n

k∑
i=1

(
k

i

)(
1

n

)i (
1 − 1

n

)k−i

iE

(
log

(
1 +

P̌Hmax

i

))
.

Clearly, sctl(k, n) ≤ sct(k, n).

It can be shown (see [9]) that if fH(h) satisfies condition (c) in Lemma 5, then for any i, as

n → ∞,

EH

(
log

(
1 +

P̌Hmax

i

))
�̄ log

(
1 +

P̌ F̄−1
H ( 1

n
)

i

)
.

Comparing this to (7), we have that s(k, n, 1
n
) �̄ 1

e
sctl(k, n), and so

lim
n→∞

s(k, n, 1
n
)

sct(k, n)
≤ 1

e
.

Combining this with (15), it follows that s(k, n, 1
n
) �̄ 1

e
sct(k, n), as desired. �

APPENDIX F

PROOF OF PROPOSITION 3:

Again from (10), it is sufficient to show that

lim
n→∞

sct(k, n)

nP̌ F̄−1
H ( 1

k
)
≤ 1, (16)

and

lim
n→∞

s(k, n, p∗)

nP̌ F̄−1
H ( 1

k
)
≥ 1. (17)

We first upper-bound sct(k, n) by considering the optimal throughput in n parallel systems

with one user each. For a given set of n channel realizations the n parallel systems must have a

throughput no smaller than the original system, since any power allocation used in the original

system is also feasible for the new system. In other words, sct(k, n) ≤ nsct(k, 1). Next we upper

bound sct(k, 1) . Given any ordered realization of the channel gains, (h(1), h(2), ..., h(k)), the

maximum throughput in the centralized system is upper bounded by the maximum throughput

over k parallel channels all with gain h(1), which is given by k log
(
1 +

P̌ h(1)

k

)
. For all k, this

satisfies

k log
(
1 +

P̌ h(1)

k

)
≤ (log2 e)P̌ h(1).
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Combining the above observations, we have

sct(k, n) ≤ nsct(k, 1) ≤ n log2 EH(log2 e)P̌H(1).

In [9], it is shown that if fH(h) satisfies condition (c) in Lemma 5, then

(log2 e)EH(P̌H(1)) �̄(log2 e)P̌F−1
H ( 1

k
).

Using this, (16) follows.

Next, we lower bound s(k, n, p∗). Let p̃ = log2(k)
k

, for k > 1. Clearly, s(k, n, p∗) ≥ s(k, n, p̃).

From Lemma 4, s(k, n, p̃) is lower bounded by

sl(k, n, p̃) = n

(
1 − log2(k)

k

)n−1

log2(k) log

(
1 − P̌ F̄−1

H ( log2(k)
k

)

log2(k)k−1
k

+ 1

)
.

From Lemma 5, fH(h) � F̄H(h). Using this it can be shown that

lim
k→∞

P̌ F̄−1
H ( log2(k)

k
)

log2(k)k−1
k

+ 1
= 0,

and so, as k → ∞,

sl(k, n, p̃) �̄n(log2 e)P̌ F̄−1
H

(
log2(k)

k

)
. (18)

Now, we show that the condition F̄H(h) � fH(h) implies that F̄−1
H ( log2(k)

k
) �̄ F̄−1

H ( 1
k
). Since both

limk→∞ F̄−1
H ( log2(k)

k
) = ∞ and limk→∞ F̄−1

H ( 1
k
) = ∞, L’Hospital’s rule can be applied, yielding

lim
k→∞

F̄−1
H ( log2(k)

k
)

F̄−1
H ( 1

k
)

= lim
k→∞

fH(F̄−1
H ( 1

k
))

fH(F−1
H

(
log2(k)

k
)
) · (log2(k) − 2 log(k)

)

= lim
k→∞

F̄H(F̄−1
H ( 1

k
))

F̄H

(
F̄−1

H ( log2(k)
k

)
) · (log2(k) − 2 log(k))

= 1,

where the second line follows from the fact that F̄H(h) � fH(h). Combining this with (18), it

follows that sl

(
k, n, log2(k)

k

)
�̄nP̌ F̄−1

H ( 1
k
), and so (17) holds, as desired. �
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APPENDIX G

PROOF OF THE PROPOSITION 4:

To prove that s(βn, n, 1
n
), s(βn, n, p∗) and s∗(βn, n) are all asymptotically equivalent to

βn
e

log
(
1 + P̌ F̄−1

H ( 1
n
)
)
, it is sufficient to show that

lim
n→∞

s(βn, n, 1
n
)

βn
e

log
(
1 + P̌ F̄−1

H ( 1
n
)
) ≥ 1, (19)

and

lim
n→∞

s∗(βn, n)
βn
e

log
(
1 + P̌ F̄−1

H ( 1
n
)
) ≤ 1. (20)

From Lemma 4, s(βn, n, 1
n
) ≥ sl(βn, n, 1

n
), where

sl(βn, n,
1

n
) = (1 − n−1)n−1βn log(1 +

P̌ F̄−1
H ( 1

n
)

n−1(βn − 1) + 1
).

It can be seen that,

lim
n→∞

sl(βn, n, 1
n
)

βn
e

log
(
1 + P̌ F̄−1

H ( 1
n
)
) = 1. (21)

Therefore, (19) is satisfied.

To upper bound s∗(βn, n) as in the proof of Proposition 2 consider a new system with k parallel

channels, where each user has a peak power constraint of P̌ for each channel. Denote the optimal

throughput of this new system by sp(k, n). Clearly, sp(k, n) ≥ s∗(k, n) and sp(k, n) = ks∗(1, n).

Again, referring to [9], it is shown that if fH(h) satisfies condition (b) in Lemma 5, then

s∗(1, n) �̄ 1
e
log(1 + P̌ F̄−1

H ( 1
n
)). Therefore, (20) is also true.

With the same argument as proof of Proposition 2, we also have s(βn, n, 1
n
) �̄ 1

e
sct(βn, n). �

REFERENCES

[1] D. Tse and S. Hanly, Multi-Access Fading Channels: Part I: Polymatroid Structure, Optimal Resource Allocation and

Throughput Capacities, IEEE Trans. on Information Theory, Vol. 44 (November 1998) pp. 2796-2815.

[2] R. Knopp and P. A. Humblet, Information capacity and power control in single-cell multiuser communications, in Proceedings

of IEEE ICC ’95, Seattle, WA (June 1995).

[3] R. Cheng and S. Verdu, Gaussian Multiaccess Channels with ISI: Capacity Region and Multiuser Water-Filling, IEEE

Transactions on Information Theory, Vol. 39 (May 1993) pp. 772-785.

[4] W. Yu, W. Rhee, S. Boyd and J. Cioffi, Iterative Water-filling for Gaussian Vector Multiple Access Channels, in Proceedings

of IEEE International Symposium on Information Theory (2001).

[5] W. Yu and J. Cioffi, FDMA Capacity of Gaussian Multiple Access Channels with ISI, IEEE Trans. on Communications,

vol. 50 (January 2002) pp. 102-111.



23

[6] C. Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, Multiuser OFDM with adaptive subcarrier, bit, and power

allocation, IEEE Journal on Selected Areas in Communications, Vol. 17 (October 1999) pp. 1747–1758.

[7] M. Ergen, S. Coleri, and P. Varaiya, QoS Aware Adaptive Resource Allocation Techniques for Fair Scheduling in OFDMA

Based Broadband Wireless Access Systems, IEEE Trans. on Broadcasting, Vol. 49 (Dec. 2003) pp. 362-370.

[8] X. Qin and R. Berry, Exploiting Multiuser Diversity for Medium Access Control in Wireless Networks, in Proceedings of

2003 IEEE INFOCOM, San Francisco, CA (March 2003), pp. 1084-1094.

[9] X. Qin and R. Berry, Distributed Approaches for Exploiting Multiuser Diversity in Wireless Networks, IEEE Transactions

on Information Theory, Vol. 52 (February 2006) pp. 392-413.

[10] X. Qin and R. Berry, Opportunistic Splitting Algorithms for Wireless Networks, in Proc. of 2004 IEEE INFOCOM, Hong

Kong, PR China (March 2004) pp. 1662-1672.

[11] Y. Sun and M. Honig, Asymptotic Capacity of Multi-Carrier Transmission over a Fading Channel with Feedback, in

Proceedings of IEEE International Symposium on Information Theory (2003).

[12] L. Hoo, B. Halder, J. Tellado and J. Cioffi, Multiuser Transmit Optimization for Multicarrier Broadcast Channels:

Asymptotic FDMA Capacity Region and Algorithms, IEEE Transaction on Communications, Vol. 52 (June 2004) pp. 922-

930.



24

PLACE

PHOTO

HERE

Xiangping Qin received the B.S. and M.S. degrees in Electrical Engineering from Tsinghua University,

China in 1998 and 2000 respectively, and the PhD degree in Electrical Engineering from Northwestern

University in 2005. She is currently a senior engineer at Samsung Information Systems America. In

2005/2006, She was a postdoctoral associate in the Department of Electrical and Computer Engineering

at Boston University. In 2004, she was an intern on the technical staff of Intel Cooperate Technology

Laboratory, Oregon. Her primary research interests include wireless communication and data networks.

She is the recipient of a Walter P. Murphy Fellowship for the 2000/2001 academic year from the ECE Department at Northwestern

University.

PLACE

PHOTO

HERE

Randall A. Berry received the B.S. degree in Electrical Engineering from the University of Missouri-

Rolla in 1993 and the M.S. and PhD degrees in Electrical Engineering and Computer Science from the

Massachusetts Institute of Technology in 1996 and 2000, respectively. In September 2000, he joined the

faculty of Northwestern University, where he is currently an Associate Professor in the Department of

Electrical Engineering and Computer Science. In 1998 he was on the technical staff at MIT Lincoln

Laboratory in the Advanced Networks Group, where he worked on optical network protocols. His current

research interests include wireless communication, data networks and information theory.

Dr. Berry is the recipient of a 2003 NSF CAREER award and the 2001-02 best teacher award from the ECE Department at

Northwestern. He is currently serving on the editorial board of IEEE Transactions on Wireless Communications and is a guest

editor of an upcoming special issue of IEEE Transactions on Information Theory on “Relaying and Cooperation in Networks.”



25

+

+

Receiver

User 1

User 2

H11

H12

H21

H22

y1

y2

x11

x12

x21

x22

z1

z2

Fig. 1. Two users with k = 2 parallel channels.
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Fig. 2. Optimal power allocation for k = 2 parallel channels with multiple users. The double crossed area indicates when the

user transmits on both channels. The single crossed area indicates transmission on only one channel.
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Fig. 3. Average throughput (bps) per channel of the optimal distributed scheme and the simplified distributed scheme as a

function of the number of users for k = 10 channels.
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Fig. 4. Lower and upper bounds on the ratio of average throughputs of the optimal distributed scheme to the optimal centralized

scheme versus the number of users, for k = 5 and 10 channels.
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centralized scheme versus the number of channels, for n = 5 and 10 users.


