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Abstract—Extensive spectrum markets have the potential to
enable more efficient use of this limited resource. Such markets
must account for particular properties of the underlying wireless
medium. In this paper we focus on one such aspect: the
role of interference created among different agents who may
purchase the right to use the same spectrum at nearby locations.
Such interference can result in “complementarities” among the
spectrum goods being traded, which complicates the design of an
efficient market. We begin with a simple linear model for these
complementarities that was shown to be computationally difficult
in earlier work. We give several approximation algorithms for
this model. We then consider several alternative models in which
the spectrum goods are defined in different ways and explore
the impact of these choices on the complexity of the resulting
market.

I. INTRODUCTION

It is widely recognized that current spectrum policy has
resulted in inefficiencies and underutilization. One proposed
solution to this is to establish markets to enable a more flexible
allocation of spectrum [1], [2]. Provisions for limited forms
of such spectrum markets have been adopted in the U.S. [3].
The design of spectrum markets must account for the fact that
transmitting in the same spectrum at nearby locations creates
interference, which differentiates spectrum from many other
goods. Namely, an agent’s value for spectrum at a particular
location may, because of interference, depend on the use of
the spectrum at nearby locations. Of course, one approach for
dealing with such interference is to only allocate a given band
of spectrum in two locations that are sufficiently far apart, in
effect creating a “spatial guard zone” between these locations
to avoid any interference. However, if spectrum is allocated
on a small geographic scale, the overhead from such guard
zones could become significant. Moreover, the acceptable
interference at one location may vary greatly depending on
the application and the underlying technology used.

Instead of avoiding interference between two spectrum
assets, here we consider markets in which interference does
occur but can be managed by agents purchasing neighboring
assets to preclude other interfering agents from using them,
effectively creating their own guard zones on demand. This
results in complementarities in “bundles” of spectrum assets
(i.e., the value of a bundle of assets may be greater than
the sum of the values of the individual assets). In addition
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to creating guard zones, an agent could mitigate interference
by coordinating transmissions across neighboring spectrum it
owns (in frequency and/or space). Such approaches would
again lead to complementarities.1

In [4] a simple linear model for allocating spectrum with
interference complementarities was presented. Determining an
efficient spectrum allocation for this model was shown to be
NP-hard. Here, we first return to this model and give several
approximation schemes. We then consider different models for
allocating spectrum in such a market. In Sect. IV, we present
a model that is based on using spatial guard zones, but allows
secondary users to utilize these zones. In Sect. V, we present
a model in which interference complementarities are related
to a “radius” over which an agent may transmit. We show
that allowing the market to specify this radius in addition to
the assignment of spectrum simplifies the calculation of an
efficient allocation.

In terms of related work, a number of papers have discussed
mechanisms for allocating spectrum to primary and/or sec-
ondary users including various types of auctions [5]–[7] and
pricing schemes [8]–[10]. Here, we do not consider an explicit
mechanism but instead focus on the problem of finding an
efficient spectrum allocation. This can be viewed as part of a
mechanism such as a VCG auction, in which agents submit
valuations for spectrum and the resulting problem is solved to
determine the allocation.2 We also note that the interference
complementarities we study do not arise in most of the prior
work because either the focus is on allocating spectrum at
a single location, or it is assumed that no two interfering
locations are allocated the same spectrum.

II. BASIC MODEL FOR SPECTRUM ALLOCATION

We start by reviewing the model from [4]. Let C denote
the set of available spectrum assets, where each asset j ∈ C
represents the right to exclusively transmit with a fixed power
mask over a given frequency band within a given geographic
area.3 We will also refer to assets as “cells” to emphasize
that they correspond to specific geographic regions. We are

1We focus on complementarities due to interference but note that comple-
mentarities between adjacent spatial locations can exist for other reasons as
well, e.g., supporting soft hand-offs in a CDMA network.

2In a VCG auction, a related problem would also have to be solved for
each agent to determine their payment.

3This definition is motivated in part by the discussion in [11].
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interested in the scenario where |C| is large so that there are
many such assets to be allocated, and these assets are small
enough relative to the given power mask that interference
effects among them are significant. This differs from most
current spectrum auctions in which the assets allocated are
large (e.g., on a national scale) so that interference between
assets is generally negligible.

Let A be the set of agents who wish to acquire these assets
and let G = (C, E) be an interference graph, in which the
set of directed edges E corresponds to pairs of interfering
cells. We further assume that G is planar, as would be the
case for interference due to spatial proximity. Let rij denote
the revenue that agent i accrues when assigned asset j if there
is no interference from any asset j ′ such that (j, j′) ∈ E.4

For example, if an agent is a service provider, then rij can
be assumed to be proportional to the number of end users
agent i serves in cell j. Furthermore, if agent i is assigned
asset j and agent q 6= i is assigned a neighboring asset
j′ with (j, j′) ∈ E, then agent i suffers an interference
cost of ci

jj′ and agent q suffers an interference cost of cq
j′j

(assuming (j′, j) ∈ E). These costs may be directional so that
ci
jj′ need not be equal to ci

j′j . We assume for each i ∈ A
and j ∈ C that rij ≥

∑

j′:(j,j′)∈E ci
jj′ so that an agent

never receives a negative utility (revenue minus costs) from
an asset. If agent i acquires both assets j and j ′, she will not
suffer this interference cost. The reduction in interference costs
models the complementarity between two neighboring cells as
discussed in the introduction. This reduction could be due to
a number of different causes, for example reducing power in
one cell, coordinating transmission schedules across cells or
utilizing some type of cooperative transmission scheme. For
now we do not focus on any particular underlying cause, but
will return to this in Sect. V.5

This model allows for multiple frequency bands at any
given location, in which case each band would correspond
to a distinct asset/cell. Assuming that there is no interference
across different frequencies, the resulting interference graph
consists of a separate component for each band.6 Furthermore,
we assume that the utility an agent receives from acquiring
multiple bands at a single location is simply the sum of the
utility for each band. This is is reasonable if an agent is
serving users that are tied to a given band or has sufficiently
many users to utilize all bands, but precludes cases where
different bands are substitutes for each other (e.g. where an
agent desires one of two bands but not both). With these
assumptions it follows that a problem with multiple bands
decomposes into a set of separate problems, one for each band.

4We assume that spectrum is scarce enough so that if agent i does not
acquire it, then another agent will.

5Of course this linear model is a simplification. More elaborate models
could be developed based on specific assumptions about how agents coor-
dinate the use of neighboring assets. Even in such cases, agents could be
restricted to report valuations in this linear form to simplify the market design.

6The model can be extended to allow interference across different bands
modeling for example out-of-band interference due to different choices of
receive filters. However, in this case, the resulting interference graph may not
be planar and some of the following analysis would need to be modified.

Hence, we assume a single frequency band in the following.

A. Efficient Allocations

Our interest is to find an efficient spectrum allocation, i.e.,
one that maximizes the total revenue minus costs summed over
all agents. Let xij = 1 if agent i ∈ A is assigned asset j ∈ C
and zero otherwise. The efficient allocation is then given by
the following integer program:

max
∑

i∈A

∑

j∈C

rijxij −
∑

i∈A

∑

(j,j′)∈E

ci
jj′ (xij − xij′ )

+ (P1)

s.t.
∑

i∈A

xij ≤ 1, ∀j ∈ C and xij ∈ {0, 1}, ∀i ∈ A, j ∈ C.

The objective function of this problem is concave but non-
differentiable. Note that if there are no complementarities
(i.e., ci

jj′ = 0 for all i ∈ A and (j, j ′) ∈ E), then (P1) is
easy to solve; one should simply give each asset j to the
agent with the largest value of rij . However, with non-zero
interference costs we have shown in [4] that this problem is
NP hard. Moreover, the problem remains NP-hard even if the
interference costs are arbitrarily small. Motivated by this we
next consider approximation algorithms for this problem.7

III. APPROXIMATION ALGORITHMS

Replacing the (xij − xij′ )
+ terms in the objective of (P1)

with xij(1 − xij′ ) and introducing the new variables zi
jj′ :=

xijxij′ yields the following equivalent formulation:

max
∑

i∈A

∑

j∈C

r̃ijxij +
∑

i∈A

∑

(j,j′)∈Ẽ

c̃i
jj′z

i
jj′ (P2)

s.t.
∑

i∈A

xij ≤ 1 ∀j ∈ C

zi
jj′ ≤ xij , ∀i ∈ A, (j, j′) ∈ Ẽ

zi
jj′ ≤ xij′ , ∀i ∈ A, (j, j′) ∈ Ẽ

xij ∈ {0, 1} ∀i ∈ A, j ∈ C,

where r̃ij = (rij−
∑

j′ :(j,j′)∈E ci
jj′ ), c̃i

jj′ = ci
jj′+ci

j′j and Ẽ is
the corresponding set of undirected edges for the interference
graph G formed by replacing all directed edges between a pair
of nodes by a single undirected edge. In this formulation r̃ij

can be viewed as the minimum revenue agent i can gain from
asset j (assuming she suffers interference from all neighboring
assets), and c̃i

jj′ can be viewed as the extra revenue gained if
agent i receives two complementary assets j and j ′ (or edge
(j, j′)). Let Zopt denote the optimal value of this problem (or
equivalently (P1)). Next we use this reformulation to develop
several approximation schemes.

7In the case of a VCG mechanism, if the market uses such an approximation
the mechanism is no longer guaranteed to be incentive compatible. We do not
address such incentive issues here.
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1) Max-r̃ij approximation: First we consider a simple
allocation scheme: allocate each cell to the agent with largest
value of r̃ij . The next proposition bounds the performance of
this scheme in terms of a bound on the interference costs.

Proposition 1: Let γ > 0 be a constant so that
∑

j′ :(j,j′)∈E

ci
jj′ ≤ γr̃ij ∀i ∈ A, j ∈ C. (1)

Then allocating each cell to the agent with the largest r̃ij gives
a (1 + γ)-approximation to (P2).

Proof: Let Ẑ be the total utility achieved by this algorithm
and let i∗(j) be the agent assigned cell j in this solution. Note
that Ẑ ≥ Z|c̃=0 :=

∑

j∈C r̃i∗(j),j , where Z|c̃=0 can be viewed
as the solution to a modified version of (P2) in which each
of the c̃i

jj′ terms are set to zero. Similarly, let Z|r̃=0 be the
solution to (P2) in which all of the r̃ij terms are set to zero
and let î(j) be the agent assigned to cell j in the solution to
this problem. Note that Z|c̃=0 + Z|r̃=0 ≥ Zopt. Furthermore,
from (1), we have

Z|r̃=0 ≤
∑

j∈C

∑

j′ :(j,j′)∈E

c
î(j)
jj′ ≤

∑

j∈C

γr̃î(j),j ≤ γZ|c̃=0.

Combining, we have (1 + γ)Ẑ ≥ Zopt.
2) Max-rij: A related approximation is to assign each cell

to the agent with the largest value of rij . By a similar proof
this scheme has the following approximation bound.

Proposition 2: Let γ ′ > 0 be a constant so that
∑

j′:(j,j′)∈E ci
jj′ ≤ γ′rij , for all i ∈ A, j ∈ C. Then allocating

each cell to the agent with the largest rij gives a 1/(1 + γ ′)-
approximation.

3) Edge coloring approximation: Find a proper edge col-
oring of G̃ = (C, Ẽ), which divides Ẽ into q disjoint sets
E1, ..., Eq, one for each color. Decompose (P2) into q + 1
independent sub-problems on each of E1, ..., Eq and C. Each
of the sub-problems then can be solved independently and we
pick the best solution as the approximation.

Proposition 3: If a proper edge coloring of G can be found
using q colors, then the preceding procedure gives a (1 + q)-
approximation.

This approximation factor is minimized by finding an edge
coloring of G using the fewest colors, i.e., by setting q equal to
the chromatic index χ of G. For a general graph determining
χ is NP-complete, but it can be approximated to within 1 by
the maximum degree plus one. Moreover, for certain graphs
of interest such as regular lattices, χ is equal to the degree
and a χ-edge coloring can be easily found.

4) GRA-approximation: Let Z|c̃=0 and Z|r̃=0 be defined as
in the Max-r̃ij approximation. Since, Z|c̃=0 + Z|r̃=0 ≥ Zopt,
it follows that either Z|c̃=0 ≥ 1/2Zopt or Z|r̃=0 ≥ 1/2Zopt.
As we have noted previously, finding Zc̃=0 is easy. However,
exactly finding Z|r̃=0 is difficult in general. Indeed, by a
similar argument as in the proof of Proposition 2 in [4] it
can be shown that determining Z|r̃=0 is NP-hard. Instead
we consider approximating this by adapting the Geometric
Rounding Algorithm (GRA) in [12]. This involves solving the

natural LP relaxation to (P2) and then applying a randomized
dependent rounding scheme to get an integer solution. The
specific scheme in [12] is shown to give a constant factor
approximation to the Winner Determination Problem (WDP)
in a combinatorial auction with single-minded bidders. Specif-
ically, the problem is to efficiently allocate a collection of
distinct goods to a set of bidders, where each bidder only
desires a specific subset of the goods. The approximation
factor for the GRA scheme in [12] is equal to the maximum
cardinality of the subset desired by any agent.

Finding Z|r̃=0 can be viewed as a generalization of the
WDP problem in which the goods are nodes to be allocated
to each agent. Each agent i will only value pairs of goods
(j, j′) for which ci

jj′ > 0. However, in our case, agents are not
single minded and may value multiple pairs, with an additive
valuation across pairs. It can be seen that the results in [12]
still apply with such a generalization, i.e., applying the GRA
algorithm approximates Z|r̃=0 with an approximation factor
equal to the maximum cardinality of a subset desired by an
agent (2 in our case). Using this we have the following bound.

Proposition 4: Taking the minimum of Z|c̃=0 and the GRA
approximation to Z|r̃=0 is a 4-approximation.

A. Numerical Example

Here we present a numerical example that illustrates the
performance of the preceding approximations. We assume a
square lattice with nine cells and six agents (|C| = 9 and
|A| = 6). The revenue depends on the distribution of the
end users over the cells. For this example we assume that
each agent wishes to serve a set of pre-assigned users, which
are distributed over the region according to a spatial Poisson
process with intensity µ. The area of each cell is normalized to
one, and the locations of end-user groups are independent. We
assume that an agent’s revenue for a cell is proportional to the
number of assigned end users within the cell. The interference
cost is modeled as a loss in coverage area, due to an agent’s
inability to serve end users close to the cell boundary. Those
users experience the largest interference from the neighboring
cell when it is assigned to another agent. We therefore assume
that only a fraction of the total cell area 1 − λ can be used
to serve end users. The interference cost is then proportional
to the number of end users located within the corresponding
boundary area.

Fig. 1 shows total revenue versus the interference area λ
for the different approximation algorithms with spatial Poisson
intensities µ = 5 and µ = 20 users per cell (assumed to be the
same for all agents). These are compared with the upper bound
on total revenue obtained from the relaxed linear program of
(P1). Each point is an average over 200 realizations in which
the locations of the end users are randomly generated. The
agents’ revenues and costs are then determined by the number
of end users in the corresponding areas.

As expected, the figure shows that the approximation al-
gorithms achieve close to the maximum revenue for small λ.
The gap widens as both λ and the spatial intensity µ increase.
We also observe that the GRA-approximation performs best
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Fig. 1. Total revenue achieved by various approximation algorithms for a
3 × 3 lattice with six agents, and Poisson intensities of 5 and 20 users/cell.
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Fig. 2. Two adjacent cells showing the cell boundary area (shaded). The
dashed lines represent the original cell boundaries and the solid lines represent
new smaller cell boundaries.

for large λ and µ. However for smaller µ, the Max-rij

approximation performs best. This algorithm assigns cells
based on their total value assuming no interference, while the
other algorithms make assignments based on either the total
revenue from the cells’ boundary areas or interference-free
areas. For λ > 0.5, the probability that an agent has more
revenue in the boundary areas than in the interference-free
area is increasing with µ. Hence for large µ an algorithm that
focuses on the boundary areas such as the GRA approximation
performs better, while for smaller µ, the Max-rij , which
accounts for the entire cell performs better.

IV. MARKETS WITH SECONDARY CELL-EDGE USERS

In practice interference primarily affects the users near cell
boundaries, while users near the interior of a cell may receive
little interference. In this section we present an alternate model
in which the cell boundary areas are treated as separate assets
from the cell interiors. For example, the cell boundary areas
might be efficiently used by secondary agents that provide
local service within those regions with lower Quality of
Service. This model is partially motivated by the recent interest
in secondary spectrum usage in which secondary users can
make use of idle spectrum at a particular location provided
that they do not interfere with primary users [7], [13].8

8This model has been adopted by the FCC for secondary use of TV white
spaces [14].

The alternate model is illustrated in Fig. 2, which shows
two adjacent cells. The locations of the cells are the same
as previously defined, but the size of the cells are reduced
so that the cells do not receive significant interference. This
corresponds to the situation where the power mask for each
cell is low enough such that the interference from neighboring
cells can be ignored within the new smaller cells. As a
result of the new smaller cells (with solid lines in Fig. 2),
the area along the original cell boundary (shaded in Fig. 2)
becomes available for secondary use. Here we assume that
the spectrum assets in the cell boundary can be purchased
by any agent. An agent acquiring a cell boundary must not
cause significant interference to the neighboring primary users,
where the specific amount of interference may be specified by
the market-designer.

Next we describe the model in detail. As before, A denotes
the set of agents and C denotes the set of primary spectrum
assets. Again, these assets are related via an un-directed graph
G = (C, Ẽ), where Ẽ now represents the set of assets which
share a boundary area, i.e., each boundary area is uniquely
indexed by an edge in Ẽ. A boundary area (j, j ′) ∈ Ẽ only
experiences interference from the neighboring cells j and j ′.

Agent i receives revenue rij when assigned cell j regardless
of whether or not she is assigned the neighboring boundary
areas. Let ρi

jj′ denote the revenue agent i receives from
boundary area (j, j ′) in isolation. If the agent owns cell j
and the neighboring boundary area (j, j ′), then the agent
receives an additional (complementary) revenue of εi

jj′ . This
is again due to the possibility of mitigating interference by
coordinating transmissions across the cell and boundary-area.

For the preceding model, the efficient allocation can be
formulated as a total revenue maximization problem with
objective
∑

i∈A

(

∑

j∈C

rijxij +
∑

(j,j′)∈Ẽ

(ρi
jj′y

i
jj′ + εi

jj′z
i
jj′ + εi

j′jz
i
j′j)
)

(P4)

The optimization is over the binary variables {xij , y
i
jj′ , z

i
jj′}

where xij = 1 if agent i is assigned cell j, and is zero
otherwise, yi

jj′ = 1 if the boundary-area between cells j and
j′ is assigned to agent i (zero otherwise), and zi

jj′ = 1 if
agent i is assigned both cell j and the boundary (j, j ′) (zero
otherwise). Note that zi

jj′ is directional in the sense that zi
jj′

and zi
j′j refer to different assets.

It can be shown that (P4) is equivalent to a special case
of (P2) with a special structure in the underlying interference
graph. Unfortunately, this structure does not make the problem
more tractable. Indeed, using similar arguments as in [4] it
can be shown that (P4) is still NP-hard. Moreover, from this
equivalency it follows that the approximation algorithms in
Sect. III apply to (P4) with similar approximation ratios. The
structure in (P4) can also be used to identify a condition
under which the problem can be solved by a simple greedy
procedure. The precise statement follows.

Proposition 5: If for any boundary-area (j, j ′) ∈ Ẽ, there
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Fig. 3. A sectoried radii model for two adjacent square cells each with four
sectors.

exists some agent i such that

ρi
jj′ ≥ ρi′

jj′ + εi′

jj′ + εi′

j′j

for all i′ 6= i, then (P4) can be solved by a two-stage greedy
algorithm which first assigns each boundary area to the agent
with the largest value of ρi

jj′ and then assigns each cell to the
agent with the largest revenue given the boundary assignment.

Proposition 5 can be proved simply by a backward induction
argument, which we omit.

V. MARKETS WITH FLEXIBLE CELL BOUNDARIES

In the models presented so far, a fixed interference cost is
incurred by neighboring assets if they are not assigned to the
same agent. The previous models are generic in the sense that
this cost can arise from many scenarios. In this section, we
consider a more specific model for mitigating interference,
namely by adjusting the “radius” over which an agent can
transmit in a given cell. For example, if agents serve users in
each cell via downlink transmissions from a single access point
this can be accomplished by adjusting the transmission power
of the access point.9 Moreover, we focus on a model in which
the market mechanism assigns cells along with associated cell
radii to the agents.

For a given radius, a cell incurs an interference cost if
the interference boundary of a neighboring cell overlaps its
transmission area. Here, “interference boundary” refers to the
range of significant interference generated by a particular cell,
which lies beyond the cell boundary.10 We consider this model
with and without sectorization. Compared to the original
allocation mechanism in Sect. II, the additional flexibility of
having variable cell radii will be shown to simplify the search
for an efficient allocation.

Here we focus on the special case in which the underlying
interference graph is a square lattice, and we again let G =
(C, Ẽ) be the corresponding undirectional interference graph.
Many of the following results can also be easily extended
to other common topologies such as triangular or hexagonal
lattices.

9In other cases, such as uplink transmissions, the model can be viewed as
simply determining the radius within which users may transmit.

10This is similar to the interference footprint in the standard protocol model
from [15].

A. Model with Sectorization

Fig. 3 illustrates the radii model for two adjacent square
cells. The length of a cell edge is L, which is also the distance
between the centers of neighboring cells. Each cell in the fig-
ure has 90-degree sectors. For example this could correspond
to the case where an access point in the center of the cell uses
directional antennas, so that the transmit power/cell radius for
each sector can be independently determined. As shown, we
assume that each sector experiences interference from only the
closest sector in the neighboring cell. We can identify each
edge (j, j′) ∈ Ẽ with a pair of interfering sectors; we will
abuse notation and denote the corresponding sector in cell j
(or j′) by jj′ (or j′j).

Let Ri
jj′ ∈ [0, L/2] be the radius of agent i in sector

jj′, which is the minimal distance from the cell center to
its boundary over which agent i can serve customers in the
absence of interference. Let wij be the revenue per unit area
of agent i in cell j. For example, wij can be related to the
density of customers agent i serves in cell j. Agent i’s revenue
from sector jj′ is then taken to be the revenue density times
the sector area wijR

i2
jj′ in the absence of interference from

the opposite sector j ′j.
Interference costs are incurred when the interference bound-

aries of two neighboring cell sectors overlap. Specifically,
Ri

jj′ +Rk
j′j ≥ L−∆, where ∆ is the width of an interference

guard zone. That is, interference from cell j in sector (j ′j)
can be ignored beyond distance Ri

jj′ + ∆ from the center
of cell j. Hence if Ri

jj′ + Rk
j′j ≥ L − ∆, then agent i’s

coverage in sector (jj ′) will create interference to agent k in
sector (j′j), and vice versa (agent k will interfere with i). Let
zik

jj′ = max{Ri
jj′ + Rk

j′j − (L−∆), 0} denote the amount of
overlap of interference boundaries in such neighboring sectors.
Fig. 3 shows a scenario where zik

jj′ > 0. The shaded areas are
where the interference occurs. We assume that interference
externalities (i.e., loss in revenue due to interference) are
proportional to the area of the shaded regions since users
within those regions may not receive adequate service. Hence
the revenue of agent i in sector jj ′ is wij(R

i
jj′ − zik

jj′ )
2.

No explicit coordination is assumed here to avoid interfer-
ence between neighboring sectors assigned to the same agent.
Namely, zii

jj′ is not necessarily zero. This is because the market
is able to manage interference among the sectors assigned to
the same agent by optimizing over the corresponding radii of
the sectors.

The efficient allocation problem for this model can be
written as the following mixed-integer quadratic program
(MIQP) :

max
x,R,z

∑

i∈A

∑

j∈C

∑

j′ :(j,j′)∈E

wij(R
i
jj′ −

∑

k∈A

zik
jj′ )

2 (P5)

s.t. xij(
L

2
− ∆) ≤ Ri

jj′ ≤ xij

L

2
, ∀i ∈ A, (j, j′) ∈ E

0 ≤ Ri
jj′ + Rk

j′j − zik
jj′ ≤ L − ∆, ∀i, k ∈ A, (j, j′) ∈ Ẽ

∑

i

xij ≤ 1, ∀j ∈ C
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zik
jj′ ≥ 0 , ∀(j, j′) ∈ Ẽ, xij ∈ {0, 1} ∀i, k ∈ A, j ∈ C

This is clearly a simplified model that we have chosen to
highlight the potential advantages of having a market deter-
mine both cell assignments and the assignment of power/radii.
Before discussing the solution to (P5), we briefly comment on
a few of these simplifications. The assumption that cells are
located on a regular lattice is one simplification; this could
be relaxed for example by introducing different distances Ljj′

for different pairs of cells. Another simplifying assumption
is the model for interference costs; one could use a more
sophisticated physical layer model to capture these effects
and moreover the cost of such interference could vary among
providers who use different technologies and/or have different
QoS requirements. Finally, when determining the revenue of a
provider, we do not account for any constraints on the number
of users a provider can serve within a cell. This is reasonable
if spectrum is relatively abundant; if this is not the case then
adding such constraints appears to make the problem more
difficult.

Problem (P5) can be solved via the following two-step
procedure: first, determine an assignment of cells to each agent
and second, determine the radii of each sector for the assigned
cells. The following lemma shows that the first step in this
procedure can be solved independently of the second.

Lemma 1: If {x∗

ij} is a solution to (P5), then x∗

ij = 1 if
and only if i = argmax

i

wij for each cell j ∈ C.

Proof: Let {x̃ij , R̃i
jj′ , z̃

ik
jj′} be an optimal solution to

(P5) and suppose that the lemma is not true for some cell
j. Let ĩ be the user currently assigned cell j and let i∗ =
arg maxi wij . Then consider a new solution where cell j is
assigned to agent i∗ with the same radii for each sector and the
same choice of the corresponding zik

jj′ as assigned to user ĩ in
the original solution. All other variables are unchanged. It can
be seen that this must still be a feasible solution with the same
area served in each cell. Moreover, the revenue density in cell
j will increase, resulting in a larger total revenue. Hence, the
original solution cannot be optimal, proving the lemma.

Given an optimal cell assignment as in Lemma 1, we
next consider optimizing the cell radii. This is given by the
following quadratic program (QP):

max
R,z

∑

(j,j′)∈Ẽ

wj(Rjj′ − zjj′ )
2 + wj′(Rj′j − zjj′)

2 (P6)

s.t. 0 ≤ Rjj′ + Rj′j − zjj′ ≤ L − ∆, ∀ (j, j′) ∈ Ẽ

L

2
− ∆ ≤ Rjj′ ≤

L

2
, ∀ (j, j′) ∈ E

zjj′ ≥ 0, ∀ (j, j′) ∈ Ẽ

where we have dropped the agent indicies, since the agent
assigned to each cell is given. The objective of this QP is
convex and so it cannot be solved directly by using first order
conditions. However, its extreme points have the following
useful property:

Lemma 2: An optimal solution to (P6) must satisfy R∗

j ∈
{L/2− ∆, (L − ∆)/2, L/2}.

Fig. 4. Illustration of the omnidirectional radii model for a square lattice.

The proof of this uses the same technique in the proof of
Proposition 2.1 in [16] and so we omit it here.

Since each sector jj ′ only interferes with the neighboring
sector j′j, it can be seen that (P6) can be separated into a
collection of sub-problems, one for each pair of neighboring
sectors (j, j′) ∈ E. Furthermore, the subproblem for (j, j ′) ∈
E only involve the variables Rjj′ , Rj′j and zjj′ , which from
Lemma 2 can take on only a finite number of values each.
Hence, we can solve (P6) and thus (P5) in polynomial-time.

The key difference between the current model and the
original model in Sect. II is due to the flexibility in having the
market assign the radii. Indeed if the radii are not determined
by the market, then it can be shown that this model is
equivalent to a special case of the model in Sect. II which
is still NP-hard. Specifically, suppose that an agent always
uses the maximum radius L/2 if she is assigned sector jj ′

but not sector j′j, so that zik
jj′ = ∆. If agent i is assigned

both sectors jj′ and j′j, she can optimize the radii of the two
sectors herself by solving the corresponding sub-problem in
(P6). We can then map this to the problem in Sect. II by letting
rij be the revenue obtained from cell j using the optimal radii
{Ri∗

jj′}j′:(j,j′)∈E and letting the interference cost ci
jj′ be the

cost to agent i from using L/2 instead of the optimal radius
Ri∗

jj′ , i.e., ci
jj′ = wij(R

i∗
jj′ )

2 − wij(L/2 − ∆)2.

B. Omnidirectional Model

In this section we consider a variation of the radii model in
which cells are not sectorized so that each cell has the same
radii in each direction. For example, this could model a system
in which agents transmit from an access point in the center of
a cell using an omnidirectional antenna. With sectorization, the
optimization of cell radii for a given assignment is decomposed
into a separate problem for each pair of interfering sectors.
In an omnidirectional model this is no longer the case and
the optimization of cell radii becomes coupled across multiple
cells. Nevertheless, we will show that a linearized version of
this problem can still be efficiently solved.

The model we consider here is the same as in the previous
section except a single cell radius Rij is used for each sector
of a cell j assigned to agent i, where again this denotes the
minimal distance from the cell center to its boundary. This
means that the resulting cells are always squares as shown in
Fig. 4. Agent i’s revenue when it is assigned a cell j with
radius Rij is then 4wijR

2
ij minus interference costs resulting

from any overlap with the interference footprint of neighboring
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cells (shown as a shaded area in Fig. 4). In this section, we
assume that the interference footprints are also squares, i.e.,
interference from a neighbor is not limited to a single 90
degree sector. The revenue agent i receives from cell j is then
given by

wij

(

2Rij −
∑

k∈A

(zik
jjn + zik

jjs )

)(

2Rij −
∑

k∈A

(zik
jjw + zik

jje )

)

(2)
where zik

jj′ again denotes the amount of overlap of a neighbor-
ing cell’s interference area and jn, js, jw, and je denote the
cells to the north, south, east and west of j (with respect to
an arbitrary choice of north). The efficient allocation is then
given by the following MIQP:

max
x,R,z

∑

i∈A

∑

j∈C

wij

(

2Rij −
∑

k∈A

(zik
jjn + zik

jjs)

)

(P7)

×
(

2Rij −
∑

k∈A

(zik
jjw + zik

jje )

)

s.t. 0 ≤ Rij + Rkj′ − zik
jj′ ≤ L − ∆, ∀i, k ∈ A, (j, j′) ∈ Ẽ

xij(
L

2
− ∆) ≤ Rij ≤ xij

L

2
, ∀i ∈ A, j ∈ C

∑

i

xij ≤ 1, ∀j ∈ C

zik
jj′ ≥ 0, ∀(j, j′) ∈ Ẽ, xij ∈ {0, 1}, ∀i, k ∈ A, j ∈ C

Lemmas 1 and 2 can be generalized to this problem.
However, given an assignment of cells to users, the resulting
QP for determining the cell radii is coupled across the cells
due to the omnidirectional radii. Moreover, the objective is
neither concave or convex, making this difficult to solve for
a large number of cells. However, note that after making the
assignment of cells to users the number of remaining variables
is much smaller; there will be no more than 3|C| variables
while before making an assignment the number of variables
are on the order of 2|A|2|C| + |A||C|; hence for a moderate
number of cells, it is feasible to use a commercial solver to
determine the optimal radii.11 Alternatively, we next consider
a linearized version of this problem which yields a more
tractable solution.

Note that since Rij ≤ L/2, no interference costs will be in-
curred if an agent uses a radius L/2−∆. Thus, the revenue that
an agent gains from a cell can be represented as the sum of the
revenue from a square with radius L/2−∆ and the remaining
area, which may incur an interference cost. Specifically, by
replacing Rij in (2) with (L/2−∆)+(Rij − (L/2−∆)) and
simplifying the resulting expression we have:

wij

(

2Rij −
∑

k∈A

(zik
jjn + zik

jjs )

)(

2Rij −
∑

k∈A

(zik
jjw + zik

jje )

)

11Note that by using Lemma 2 this can be formulated as an integer QP.

= 8

(

L

2
− ∆

)



wijRij −
∑

j′:(j,j′)∈E

1

4
wij

∑

k∈A

zik
jj′





− 4wij

(

L

2
− ∆

)2

+ O(∆2),

where here we have used the fact that Rij ≤ L/2 and zik
jj′ ≤ ∆

to get the O(∆2) bound on the missing terms.
If we drop the O(∆2) terms then the remaining terms are

linear in the optimization variables. Furthermore, without loss
of generality we can drop the constant term 4wij(

L
2 −∆)2, and

the scaling term of 8
(

L
2 − ∆

)

(which is always non-negative).
This gives the following linear expression for the revenue in
cell j:

wijRij −
∑

j′ :(j,j′)∈E

∑

k∈A

αwijz
ik
jj′ (3)

where for a square lattice α = 1
4 . A similar objective can be

derived for triangular or hexagonal lattices, where α is 1/3 or
1/6, respectively. Using this as an agent’s revenue, the efficient
allocation is given by

max
x,R,z

∑

i∈A

∑

j∈C



wijRij −
∑

j′ :(j,j′)∈E

∑

k∈A

αwijz
ik
jj′



 (P8)

s.t. (x,R, z) ∈ P

where P denotes the same constraint set as in (P7).
Lemma 1 can be extended to (P8) and so this problem

can again be solved by first allocating each cell to the agent
with the largest wij and then optimizing the radii given this
assignment. In (P8), the second step is a linear program, which
can be efficiently solved.

If we take the linear formulation in (P8) as the objective,
then with omnidirectional radii we can again find the efficient
solution provided that the market determines the optimal radii.
Of course, if the true valuation is given by the objective in
(P7), then solving this linear version will lead to a loss in
revenue. The ratio of the loss in revenue from this approxi-
mation and the optimal revenue from (P7) can be shown to be
no greater than 8∆/L for a square lattice, suggesting that this
approximation is the most reasonable for small ∆. Numerical
results in the next section, show that the loss may be small
even for large values of ∆.

C. Numerical Examples

In this section we present some numerical results to compare
the revenue achieved by the original model and the radii
models both with and without sectorization. We focus on a
square lattice with 4× 4 cells and six agents. The cell size is
normalized to 1, so that L = 1, and for the radii model the
revenue density (wij ) for each agent in each cell is randomly
generated following a Poisson distribution with intensity µ =
50. As in Sect. III-A, we let 1−λ denote the fraction of each
cell which is always interference free. For the radii models,
this is equivalent to choosing ∆ = (1 −

√
1 − λ)/2. We

choose the revenues and costs for the original model by using
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the mapping described in Sect. V-A between the sectorized
model and the original model. For the original model, we
exactly solve the integer program. For the omnidirectional
model, we solve the linear approximation to determine the
cell assignment and radii used, but then plot the corresponding
revenue using the original quadratic formulation. We also
directly solve the original quadratic formulation numerically.
As a benchmark, we also show results for a model with spatial
guard bands, i.e., one in which each agent is required to always
use a radius of L/2−∆ so that no two cells interfere. In this
case the efficient allocation is simply to assign each cell j to
the agent with the largest value of wij . Figure 5 shows the total
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500

550

600

650

700

750

800

850

900

950

λ

Total Revenue
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Radii, omni, sol. of quadratic obj.

Radii, 90o sectorized
Spatial guard bands

Fig. 5. Total revenue in different market models.

revenue achieved for each of these models versus λ. Each point
is averaged over 200 realizations of the wij ’s, with the same set
of realizations used for each model. As expected, the model
with fixed spatial guard bands achieves the lowest revenue,
which goes to zero as λ approaches 1 since no revenue is
obtained from users in the guard zones. Even for moderate
values of λ all of the other approaches achieve significantly
higher revenue, demonstrating the potential benefit from allow-
ing the spectrum market to manage interference. The highest
revenue is achieved by the radii model with sectorization
which is expected as this offers the most flexibility in assigning
resources. Both curves for the omnidirectional radii model
are indistinguishable for the entire range of λ, suggesting
that at least for this scenario, the linear model is a good
approximation for the quadratic model. For small enough
λ (equivalently small ∆), the omnidirectional radii model
outperforms the original model. However, for relatively large
λ (large ∆), the revenue from the omnidirectional radii models
is less than that from the original model. Note that while the
omnidirectional model has the flexibility of optimizing cell
radii across agents, the costs for the original model are based
on allowing agents to adapt cell radii on a sector basis when
they own neighboring cells. Hence, it is not clear that one of
these schemes should always dominate the other. For large λ
the revenue from “boundary regions” is greater, and apparently
in that case the original model has better performance.

VI. CONCLUSIONS

We have examined several simple models of spectrum
markets with interference complementarities to demonstrate
how different assumptions on the market structure can impact

both the computation of an efficient outcome and the resulting
revenue. We began with a basic linear model in which the
market specified only the assignment of cells to users. Since
determining an efficient assignment of cells to agents was NP-
hard, we focused on several constant factor approximations,
which had good performance in numerical examples. Next
we considered a market where guard zones between primary
cells were allocated for secondary use. This did not improve
the complexity of the finding an efficient allocation, but does
provide structure that can be exploited in several cases. Next,
we considered models in which in addition to the assignment
of cells the market also determined a cell radii, which led to
simpler allocation problems as well as higher total revenue.

Future research directions include developing more refined
models for interference costs and studying their effect on the
resulting markets, studying strategic behaviors of agents in
such markets and developing mechanisms to implement the
markets.
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