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Abstract

In this paper, we develop distributed approaches for
power allocation and scheduling in wireless access net-
works. We consider a model where users communicate
over a set of parallel multi-access fading channels, as
in an OFDM or multi-carrier system. At each time, each
user must decide which channels to transmit on and
how to allocate its power over these channels. We give
distributed power allocation and scheduling policies where
each user’s actions depend only on knowledge of their own
channel gains. We characterize an optimal policy which
maximizes the system throughput and also give a simpler
sub-optimal policy which is shown to have the optimal
scaling behavior in several asymptotic regimes.

I. Introduction

It is well established that dynamically allocating trans-
mission rate and power are beneficial techniques to im-
prove performance of wireless networks. In this paper we
consider these approaches for the uplink in a wireless
network, modeled as a fading multiple access channel.
For such channels, power allocation and scheduling have
received much attention. For example, [1]–[4] consider
these problems in the context of the information theoretic
capacity region of a multi-access fading channel under
various assumptions. In other work, such as [5], [9],
adaptive bit and power allocation are studied in the context
of an OFDM system. In these cases, optimally allocating
resources requires a centralized controller with knowledge
of every user’s channel state. Because of the required
overhead and delays involved, this may not be feasible in
a fast-fading environment or a system with a large number
of users. Here, we instead consider distributed approaches,
where each transmitter allocates its transmission rate and

power based only on knowledge of its own channel con-
ditions. This can be obtained for example via a pilot
signal broadcast by the receiver in a time-division duplex
system. Previously, in [6], [7], we considered distributed
scheduling when all users communicate over a single flat
fading channel. In this paper, we consider the case where
each user may transmit over multiple ”parallel” channels.
For example, each channel may model a subcarrier or
groups of subcarriers in an OFDM system such as the IEEE
802.16. In this case, a user must also decide how to allocate
its transmission power across the available channels.

We first formulate a distributed power allocation and
scheduling problem with a finite number of users and
give the optimal solution to this problem. We next give a
simplified allocation scheme and analyze the performance
of both schemes in three asymptotic regimes: (i) the
number of users increases with a fixed number of channels,
(ii) the number of channels increase with a fixed number
of users, and (iii) both the number of channels and the
number of users increase with fixed ratio. In each case,
we characterize the asymptotic growth rate. The simplified
distributed approach is shown to achieve the same order of
growth as an optimal centralized approach with a different
asymptotic ratio in each regime. We also compare the per-
formance of several approaches that require a small amount
of additional coordination among the users. Finally, some
simulation results are given.

II. Optimal Distributed Power Allocation for
Parallel Channels

We consider a model of the uplink in a wireless
network with � users sharing � parallel channels and all
transmitting to a common receiver. Each channel between
each user and the receiver is modeled as a time-slotted,
block-fading channel; if only the � th user transmits on
channel � in a given time-slot, the received signal, ���
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Fig. 1. Two users with ����� parallel channels.

is given by

�
�
	 � ���� � � �
	�� � 	��������� ������ (1)

where � �
	 ���� is the transmitted signal,
� �
	 is the fading

channel gain of the � th channel for user � , and � ���� is ad-
ditive white Gaussian noise. The channel gain is assumed
to be fixed during each time-slot and to randomly vary
between time-slots. Here, � � ��� 	! are i.i.d. across both the
users and channels with a continuous probability density"$# � � � on % &'��( � 1. Let ) # � � �*�,+.-/ "$# � � �10 � denote the
channel gain’s complimentary distribution function.

At the start of each slot, user � has knowledge of� �1� � �3242425� � �1� 6 , but no knowledge of the channel gains
for any other users. For convenience, we drop the user
subscript and denote 78� � � � �3242524� � 	 � . Assume each user
allocates power 9 	��:7 � to channel � , and let ; �:7 �<�
�=9 � �=7 ����9 � �:7 �>�?252425�@9 	 �=7 � � . A power constraint 9BA con-
strains the total power allocated by each user across
all � channels during any time-slot, i.e. CEDF9 D �=7 �EG9�A . We assume no cooperation exists among users. In
particular, we assume that all users employ the same
power allocation and transmission scheme; i.e. they can
not cooperate in selecting these allocations. Similar to
[6], we consider an Aloha type of approach, where each
user randomly transmits over each channel. If more than
one user transmits on a given channel, a collision occurs
and no packets are received; however, a packet sent over
another channel without a collision will still be received. In
other words, if a user simultaneously transmits on multiple
channels, then the information sent over each channel
is independently encoded, so that a packet sent on one
channel may be decoded even if a collision occurs on
another. This random access technique can also be used
as a method of reservation in a practical system.

When only one user transmits on channel � , we model

1In an OFDM system different sub-carriers will typically experience
correlated fading. However, if each channel is a large enough group of
sub-carriers, then this independence assumption is reasonable.

the user’s transmission rate on this channel byH � � 	 9 	 �=7 � ���JILK4MFN ��OP� � 	$9 	��=7 �
�RQ�I ���

where this indicates the Shannon capacity for a Gaussian
noise channel with noise power �TS�I and bandwidthI . This is a reasonable model for systems using so-
phisticated coding techniques such as Turbo codes. To
begin, consider the case where only one user must allocate
the power over � �U� channels. Let � Q I �VO to
simplify notation. In this case the power allocation that
maximizes a users throughput is the well-known ”water-
filling” allocation, 9 	 �:W �*� �:XZY\[]F^ �`_ , where X is chosen
so that C 	 9 	 �:W �*�,;ba (see e.g. [1]).

When there are multiple users, if more than one user
transmits on a channel a collision results and no data
is received. Still assuming � �U� , consider the case
where there are �dceO users, and each user transmits
on each channel with a certain probability f . Specifically,
for each channel � , each user chooses a subset g 	 of the
possible realizations of 7 with h*i �=7kjlg 	 ���<f and only
transmits on channel � when 7ej<glm . To maximize the
total throughput, each user will choose channel states in
each set g 	 which can achieve higher transmission rates.
The difficulty here is that if a state 7 is in both g � andg � , the user must allocate power across both channels,
while if 7 is in only one of these sets, the user can use all
the available power on the corresponding channel. Since
each channel is i.i.d., it is reasonable to require that each
user transmits with the same probability f in each slot and
each channel. The probability of some user successfully
transmitting on one channel is then �nf ��O.Yof ��pZq � . When
successful, the transmission rate for channel � is stillH � � 	 9 	 �=7 � � for �r�sOF��� . For a given power allocation9 	 , let t

	 �=9 	 �*�Euwvyx H � � 	 9 	 �=7 � �$zz 9 	 �:7 �|{�E&~}
denote the expected transmission rate on the channel �
conditioned on a user transmitting on that channel. We
now specify the following distributed optimal throughput
problem: �n�$�

���@� v�� � �F�3� v�� � � �nf �`O�Y�f � pZq � �
t
� �=9 � ���

t
� �:9 � ���

s.t. 9 � �:W ����9 � �=W ��G�9�Ao����W9��~��9 	 �:7 �|{�E& Z��f�� �T��OF���12
(2)

The objective in (2) is the total average throughput for
all � users over both channels. This is optimized over
the transmission probability f and the power allocation
�=9 � �:7 �>�@9 � �=7 ��� , which is used by each user. An example
of the optimal allocation is shown in Fig. 2, where the
double crossed area represents when users transmit on both
channels, and the single crossed area is when they transmit
on only one channel.
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Fig. 2. Optimal power allocation for �V�e�
parallel channels. The double crossed area
indicates when the user transmits on both
channels. The single crossed area indicates
transmission on only one channel.

This can be naturally generalized to a model with �
channels as follows:�n�$�

�B� v�� � � �nf �`O�Y�f � pZq �
6�
	�� �

t
	 �:9 	 �

s.t.
�
	
9 	 �:W ��G�9�A ���wW

9��~� 9 	 �:7 �Z{��& ��f�� �o� OF�?252424� �r2
(3)

To solve (3), we first consider a different but re-
lated problem. For a given channel realization 7 , let
� � � � � � � � � � �?252425� � � 6 � � denote the ordered channel gains from
the largest to the smallest. For �8� OF�?252424� � , let

t
	 � D �

denote the rate on channel � when using the optimal water-
filling power allocation over only the � best channels given
total power 9 A . For a given constant

t�� / , consider the
following problem:�n�$�

	�� � �	�	�	� � 6 �

s.t.
	�
D � �

t
	 � D � Y 	 q ��

D � �
t
	 q �� D ��


t�� / (4)

If this problem has no feasible solution, we define the
solution to be � � & . When � � O , the constraint in
(4) is

t � � � � 

t� / , which means that the rate when

only transmitting on the best channel should be greater
than

t � / . For � � � , the constraint in (4) becomes
t � � � � �

t � � � � Y
t �� � ��


t � / , which means that the rate
gained by using the best two channels over only using the
best channel is greater than

t � / . In general, the objective
of (4) is to find the maximal number of channels � , such
that the gain of the sum rate from transmitting on the �

best channels instead of only the � Y O best channels is no
less than

t� / . First, we have the following lemma, which
says as we transmit on more channels, the change in the
sum rate is non-increasing.

Lemma 1: C 	D � �
t
	 � D � Y C 	 q �D � �

t
	 q �� D � is non-decreasing

as � increases.
Proof: Consider the optimal (water-filling) power

allocation over the following ��� � YVO � channels� � � � � � � � � � � � � � � � � � � �?252424� � � 	 q � � � � � 	 q � � , with total power� 9 A . The resulting sum rate will be � C 	 q �D � �
t
	 q �� D � .

Next, consider C 	D � �
t
	 � D � � C 	 q �D � �

t
	 q �� D � , this

rate can be achieved by some power allocation
over � � � Y O � channels with channel gains� � � � � � � � � �3242425� � � 	 q � � � � � 	 q � � � � � 	 q � � � � � 	 � and the same
power constraint �F9 A . Since � � 	 ��� � � 	 q � � , and we are
using the optimal power allocation for the first case, it
can be seen that

� 	 q ��
D � �

t
	 q �� D � 
 	�

D � �
t
	 � D � � 	 q ��

D � �
t
	 q �� D � 2

Therefore, rearranging terms we have
	 q ��
D � �

t
	 q �� D � Y 	 q ��

D � �
t
	 q �� D � 


	�
D � �

t
	 � D � Y 	 q ��

D � �
t
	 q �� D � 2

�
Proposition 1: There exists a constant

t � / c & such
that the power allocation ; �=7 � corresponding to the
solution to (4), for each state 7 is also the optimal solution
to (3).

Proof: The problem in (3) can be solved by the follow-
ing two steps: first, given any f , find the optimal ; �:7 � ,
and second, find the optimal f for ; �:7 � given in the first
step. Given any

t�� / , the solution to (4) gives a uniquef and vice versa. Also, note that

t�� / is monotonically
decreasing as f increases. We prove that (4) gives the
solution to the first step of solving (3), i.e. for a givenf the optimal 9 � � � will be given by the solution to (4)
for some

t � / . It follows that the optimal solution to (3)
is then given by finding the optimal f or equivalently the
optimal

t � / .
To begin, we have two simple observations about the

optimal power allocation: First, given a channel realization
� � � � � � � � � � �?252424� � � 6 � � , if the � th best channel ��� � is allocated
positive power, then the channels � � � � �32425� � � D q � � whose
gains are better than � ��� � should also be allocated positive
power; second, for any chosen channel states � � � � �?2524� � � 	 � ,
in order to maximize the total transmission rate, the water-
filling power allocation should be used. Also note that
from Lemma 1, if C 	D � �

t
	 � D � Y�C 	 q �D � �

t
	 q �� D � �

t� / , thenC AD � �
t A � D � Y C A q �D � �

t A q �� D � �
t�� / for all �Lc � .

Now we complete the proof by contradiction. Let �
be the � dimensional space of possible channel state



vectors W � W [ �324252 W�� . Also, let
� 	,� C 	D � �

t
	 � D � and� 	 q � � C 	 q �D � �

t
	 q �� D � . Assume there is an optimal power

allocation for a given f is not a solution to (4). Let

t � /
be the threshold such that the solution to (4) using

t � /
results in a transmission probability f . Since the optimal
power allocation does not correspond to this, for some
channel � , there must exist a set of states � j � such that
when � is the � th best channel and

� 	 � � 	 q � � t � / ,� is allocated positive power. Likewise, to ensure that9��!��9 	��=7 �R{� &1 �� f , there must be another set of states� j � (with the same probability) such that when � is the
� th best state and

� 	 c � 	 q � � t� / , then � is not allocated
positive power. However by transmitting on � in

�
instead

of � , it can be seen that the total throughput will increase,
which contradicts this power allocation being optimal.

�
From Prop. 1, the optimal solution to (3) can be

found by solving (4) for a given

t�� / , and then iteratively
searching for the optimal

t�� / . Solving (4) for a given

t�� /
can be done via the following algorithm, which determines
the set of channels from W that are transmitted on.

Algorithm 1 K-best channels ( WP���	� ] )
initialize:
 � �~OF�32?232�� �� � � � i@N �n�$� D��� � D� � � �  0 q � �,&
Water-fill over channels � � D�� � j �  giving sum rate0 .
if 0 �

t � / then� ���
else

while 0bY�0 q � c
t� / do0 q � �,0
 � 
�� �� � � i�N �n� � D��� � D� � � �  �� �

Water-fill over channels � � D � � j �  giving sum
rate 0 .

end while
end if
return

�
After each iteration, according to Lemma 1, the rate

gain 0�Y 0 q � decreases. Therefore after at most � steps, the
algorithm converges. It converges to the optimal solution
of (4). Note a feasible solution might not exist for some
channel realizations, in which case the algorithm returns� ��� .

III. Sub-optimal Power Allocation and
Asymptotic Analysis

In this section, we introduce a simplified distributed
scheme where instead of finding a threshold

t�� / and
solving (4), we set a threshold �

� / on the channel gain.
Each user then transmits on the � th channel when its gain
is greater than �

� / , resulting in a transmission probabilityf��E) # � �
� / � . If a user has more than one channel whose

gain is higher than the threshold, then the total power 9.A
will be allocated equally to each of these channels.2 Given
that a user transmitts on � channels it uses a constant rate
of
H D � f ��� H x ) q �# � f � ���	 } . This simplified scheme is

easy to impliment and analyze. We will show that this
simplified scheme is “asymptotically optimal” has defined
below.

The total throughput using this scheme is a function of
�r� � and f . For �B� OF�?252425� � , let �?6�� ����� � be the probability
one user has � channels above the threshold �

� / �E) q �# � f � ,
where � 6�� � ��� �*� � � ��� � f � D �`O Y�f � 6 q D 2
Among these � channels, for

� � OF�?252424� � , let  ��$� D � � � be the
probability a user transmits successfully on

�
channels, i.e.

the probability there is no collision on
�

channels, given �
are above the threshold. This is given by ���� D � � ��� � �� �"! ��O�Y f � pZq �$#&% ! O�Y �`O Y�f � pZq �&# D q % 2
Then the total throughput is given by� � � � � �:f �*� �

6�
D � � � 	 � � ��� �

D�% � �  �$� D � � � � H D � f ��2
Note  ��$� D � � � is a Binomial distribution andC D% � �  �$� D � � � � � �`O�Y�f ��pZq � � . Hence,� � � � � �:f �*� � ��O!Y.f � pZq � 6� D � �

� � ��� � f � D ��O!Y.f � 6 q D � H D � f ��2
(5)

Recall that
H �=� ����K5M!N �`O�� � � . Using this the next lemma

gives bounds on
� � �r� � �=f � ,

Lemma 2: For all � , � and f ,

K5M!N('!O�� � ��)+* �, � � �� � 6 q � � _ �.- G / � 6�� p � � �p � � q � �10 * � 6P�G�K5M!N('FOP� �2� ) * �, � � �43 � q � � q � �15766P� - 2
The proof is given in appendix .
Using these bounds, we next consider how the through-

put scales in the three regimes given in the introduction.
First we introduce the notation

" � � �98:<; �=� � , which means

2This is similar to an approach studied in [8] for a single user channel
and in [9] for a downlink OFDM channel.



K��
�
��� -

� � � �� � � � � O , i.e.
" �=� � and ; � � � are asymptotically

equivalent. In each regime, we show that this simpli-
fied scheme is asymptotically equivalent to the optimal
distributed algorithm. For finite number of users, the
throughput gain of the optimal scheme is shown in the
simulation result in the last section. We also compare
the throughput achieved by the distributed approach to an
optimal centralized approach which schedules the users to
maximize the throughput in any slot (still assuming at most
one user can transmit in each channel). This is given by:3�n�$�

� �	��
 � �  ��
 ��� � �
�
	
H �=9 �
		� �
	 � �
	 �

s.t.
�
	
9 �
	�� �
	b��9 A � ��� �
	b��� &�?O  ~� � � � �
	b� OF2

(6)

Let
�  � � � � � � be the average throughput obtained by

this scheduling policy. Denote the throughput of the op-
timal distributed policy by

��� � � � � � (i.e. the policy in
Prop. 1) and the optimal throughput of the threshold-based
algorithm as

� � �r� � �=f � � , where f � is the transmission
probability that optimizes

� � � � � �:f � . Note that for all �
and � ,� x � � � � �p }�G � � �r� � �=f � ��G � � � �r� � ��G �  � � �r� � �>�

(7)
where the first term is the throughput with a transmission
probability of O � � . In the following discussions, we
will give results for a Rayleigh fading channel, where) # � � �*���

�
� ��Y � � � Q � . Extensions can be made to fading

distribution that satisfy certain restrictions as in [6].
First we consider the case where � is fixed and �

increases.
Proposition 2: Given any finite � , as � � ( ,� � � � � � �p � , � � � � � �:f � � , ��� � �r� � � and

�� �  � � �r� � � are
all asymptotically equivalent to 6 � K5M!N ��OP��9 A � Q K4MFN � � � � .

In other words, asymptotically there is no loss in per-
formance from using the threshold based scheme or from
choosing f�� �p . The throughput in each case is asymptot-
ically increases like 6 � K4MFN ��OP��9�A � Q K5M!N � � ��� . Also, the
ratio of the throughput of each approach compared to that
of a centralized scheduler is asymptotically equal to

� �
.

Proof: From (7), to prove that
� x � � � � �p } ,� � � � � �:f � � , and

� � � �r� � � are all asymptotically
equivalent to 6 � K5M!N ��OP��9�A � Q K4MFN � � � � , it is sufficient to
show that

K��
�

p � -
� � � � � � �p �6 � K5M!N ��OP��9�A � Q K4MFN � � ��� 
 OF�

and K��
�

p � -
��� � � � � �6 � K5M!N ��OP��9�A � Q K4MFN � � ��� G OF2

3This is similar to a problem studied for centralized OFDM systems
in [5].

From Lemma 2,� � �r� �r� �p �

 �`O�Y � q � � p q � � K4MFN � OP� 9 A � Q K4MFN � � �

� q � � � Y O � �EO � 2
Letting

��� � �r� � � �p � denote this lower bound, it can be
seen that

K��
�

p � -
� � � �r� �r� �p �6 � K5M!N ��O*� 9 A � Q K4MFN � � � � � O!2 (8)

Therefore, we have

K��
�

p � -
� � �r� �r� �p �6 � K5M!N ��O*� 9 A � Q K4MFN � � � � 
 O!2

Now consider a model with � parallel channels, where
each user has peak power 9 A for each channel, instead of
having the total power across all the channels constrained
by 9 A . Other assumptions remain the same. Denote the
optimal throughput of the parallel model as

� � � �r� � � ,
and

� � � �r� � �R� � � ����OF� � � . In [6], we proved that for
a single channel

� � �`OF� � � 8: � � K5M!N �`O���9 A � Q K4MFN � � ���>2 So
we have

��� � �r� � ��G 6 � K4MFN �`OP��9 A � Q�K5M!N � � ���>2
Next, we show that

� � �r� � � �p ��8: �� �  � � �r� � �>2 Con-
sider a centralized parallel channel model, where the user
who has the best channel to transmit at each channel and
users are not constrained by total power 9 A , i.e. each trans-
mission will use power 9 A , if one user transmit at more
than one channel, the power constraint is violated. The
throughput of this model the upper bound of

�  � � �r� � � ,
denoted as

�  � � � � � � � . Again in [6] for a single channel,
it is shown that K��

�
p � - /� "!�# � 6�� p �6%$ &(' � � _ �2�*/�) $ &(' � p � � � O . There-

fore K��
�
p � - / � 6�� p � �0 �/  *! � 6�� p � 
 ��

. Now consider a lower bound
of
�  � � � � � � . The same as the parallel model, we chooose

the user who has the best channel to transmit at each
channel. However, if one user is chosen for more than one
channel, it will split the power and allocate equal power
to each channel. Denote the throughput of this model as�  � � � � � � � , which is a lower bound of

�  � � � � � � . This is
given by�  � � � � � � �*�
�
6�
D � �

� � ��� � O� � D ��O�Y O
� � 6 q D � u � K5M!N �`O�� 9 A � A,+ �� � � 2

In [6] it is shown that

K��
�

p � -
u x K5M!N �`OP� �2� # �.-0/D � }
K5M!N ' OP� �2�*/�) $ &(' � p �D - � OF2

Combining this with (5), we have

K��
�

p � -
� � �r� �r� �p ��  � � � � � � � � O1 2



Hence,

K��
�

p � -
� � � � � � �p ��  � � �r� � � � O1 2�

Next, we consider the case, where � is fixed, and �
increases.

Proposition 3: Given any finite � , as � � ( ,� � � � � �:f � � , ��� � �r� � � , �  � � �r� � � are all asymptotically
equivalent to �r9 A � Q�K5M!N � � � .

Proof: Note for all � and � ,
� x �r� � � �p } G� � � � � �:f � ��G ��� � � � � ��G �  � � �r� � � , it is enough to

show that K��
�

p � -
�  � � �r� � �

� 9 A � Q�K5M!N � � � G,O!�
and K��

�
p � -

� � � � � � �p �
� 9�A � Q K5M!N � � � 
 O!2

Shown in [8], the optimal throughput for one user,�  � � �r�?O � satisfies,

K��
�

6 � -
�  � � � �3O �9�A � Q K4MFN � ��OF2

With � users, the maximum throughput could be no more
than � �  � � � �3O � , therefore

K��
�

p � -
�  � � �r� � �

� 9�A � Q K5M!N � � � G,O!2
Choose f � � � 6 �6 , where

" � � � satisfiesK��
�
6 � -

� � 6 �6 �8& and K��
�
6 � - $ &(' � 6 �� � 6 � �8& . Therefore

the increasing rate of
" � � � with � is slower than � ,

but faster than K4MFN � � � . One example of
" � � � could be" � � �.� � K4MFN � � � � � .

Then we have��� � � � � �:f �*� � ��O!Y.f � pZq � � f K4MFN � O�Y 9�A � Q K4MFN � f �f � � Y�O � ��O � �
thus� � � �r� � � " � � �

� �P�
�
� O�Y " � � �

� � pZq � " � � �1K5M!N
�
O�Y 9 A � Q�K5M!N �

� � 6 �6 �" � � � 6 q �6 ��O�� 2
Because K��

�
6 � -

� � 6 �6 � & , we have

K��
�
6 � - '!O�Y � � 6 �6 - pZq � ��O .
Also because K��

�
6 � - $ & ' � 6 �� � 6 � �,& , we have

K��
�

6 � -
" � � ��K5M!N � O�Y ���*/�) $ & ' ����� 5��5 �� � 6 � �9 A � Q K4MFN � � � � O!2

Therefore, we have

K��
�

6 � -
� � � � � � � � � 6 �6 �
�r9�A � Q K5M!N � � � � OF�

and K��
�

p � -
� � �r� �r� �p �

�r9 A � QwK5M!N � � � 
 OF2�
This implies that again the threshold based approach

is asymptotically equivalent to the optimal distributed
approach. In this case there is no asymptotic loss compared
to the centralized approach. This is because as the number
of channels increases the probability of collision becomes
negligible. For a Rayleigh fading channel each of these
terms grows like K5M!N � � � as � � ( . Finally, we let both
� and � increase with fixed ratio 6 p �
	 ,

Proposition 4: If 6 p � 	 , as � � ( ,� ��	 � � � � �p � , � ��	 � � � �=f � � , ��� ��	 � � � � and�� �  � ��	 � � � � are all asymptotically equivalent to	 � 1 q � K5M!N ��OP��9 A � Q K5M!N � � ��� .
Proof uses similar ideas to Prop. 2. See appendix .
As in Prop. 1, once again compared to the centralized

scheme there is an asymptotic penalty of O � 1 due to the
contention, and the throughput grows like K5M!N �=K5M!N � � ��� .

Next we compare the distributed approach to several
schemes that require minimal coordination for assigning
different users different power allocation policies. First
assume that 6 p �	 , where 	 is a positive integer. In
this case a “non-collision scheme” is to assign 	 channels
to each user for all time. The throughput of this scheme� �	 � � � � �*� � �  � ��	��3O � . Compared to

� � � � � � , we have

K��
�

p � -
� �  ��	 � � � �� ��	 � � � �

�VK��
�

p � -
�  � ��	*�3O �	 1 q � K4MFN ��O���9 A � Q K5M!N � � ��� ��&2

This is because the non-collision scheme can
not exploit any “multi-user” diversity. However,
if � is fixed and let 	 increases, i.e. �
increases, because

�  � ��	*�?O ��8: 9 A � Q K4MFN ��	 � , we have� �	 � � � � � 8: �r9 A � Q K4MFN ��	 ��8: � 9 A � Q�K5M!N � � � . In this
case, both approaches see increased frequency diversity
as � increases.

Next assume �s� p6 c\O ; in this case an approach
with fewer collisions is to assign � users to each channel
for all time. This results in a throughput of

� �  � �r� � ���
� ��� ��O!��� � . It follows that

K��
�

p � -
���  � � � � �� � �r� � �=f � �

� K��
�

p � -
��� �`OF��� �1 q � K4MFN ��OP��9�A � Q K5M!N � � ��� �,&2

Again, the new scheme cannot fully exploit the
available diversity. However, if � increases for fixed
� , because

� �  ��OF� � � 8: �� 9�A � Q K4MFN � K4MFN�� � , we have���  � � � � � 8: 6 � 9�A � Q K4MFN � K4MFN�� � 8: 6 � 9�A � Q K4MFN �=K5M!N � � ��� .
The throughput ratio of the two schemes approaches to O
asymptotically, because both exploits multiuser diversity.



IV. Numerical Examples

To conclude we give some numerical examples. Fig. 3
shows the throughput gain achieved by the optimal power
allocation scheme compared to the simplified power al-
location scheme. As the number of users increases, the
throughput gain decreases. Fig. 4 shows the upper and
lower bounds of the throughput ratio of the optimal
distributed scheme

��� � � � � � to the centralized scheme�  � � �r� � � defined in (6). Calculating
�  � � �r� � � requires

solving the optimization problem in (6), which is compli-
cated due to the integer constraints. Instead we compare� � � �r� � � to the upper and lower bounds of

�  � � �r� � � .
Fig. 4 shows the two bounds for the throughput ratio for
fixed number of channels as the number of users increases.
Here we obtain the upper bound of

�  � � �r� � � by relaxing
the total power constraint on the channels C 	 9 �
	�� � 	T�9 A . Instead, we allow each user transmit with 9 �
	 �9�A over each channel. The maximal throughput is then
achieved for this relaxing system by letting the best user
of each channel to transmit at each time. We take this
maximal throughput as our upper bound. To lower bound�  � � �r� � � , we still choose the best user to transmit on
each channel, but if one user is chosen to transmit on more
than one channels. The power 9 A is divided equally to
these channels. The achievable throughput is then a lower
bound of

�  � � � � � � . Fig. 4 shows that as the number
of users increases, the two bounds comes closer. The
reason is that the probability that one user is chosen to
transmit at more than one channel is small for a larger
number of users. It can be seen that the actual throughput
ratio is decreasing as the number of users increases, and
is higher than the contention factor O � 1 inherent in an
Aloha system. Therefore the actual average transmission
rate is higher than the average transmission rate for a
centralized system. The same behavior has been observed
in the single channel case in [6]. Also as the number of
the channels � increases, a throughput gain is achieved by
exploiting frequency diversity. Fig. 5 shows the upper and
lower bounds for the throughput ratio for fixed number of
users as the number of channels increases. In this case,
we upper bound

�  � � �r� � � by the information theoretic
capacity of this multi-access system. In other words, joint
decoding is used when a collision happens. We use the
iterative water-filling algorithm [4] to obtain the upper
bound. One channel can be assigned to multiple users
to achieve the capacity. By only allowing the user who
has the best channel to transmit on that channel, we
obtain a lower bound of the system. Fig. 5 shows as the
number of channels increases, two bounds becomes closer.
The throughput ratio increases as the number of channels
increases.
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Fig. 3. Average throughput (bps) per chan-
nel for � � O & versus number of users.
Optimal scheme with optimal rate thresh-
old and simplified scheme with channel
gain threshold, both schemes use water-
filling power allocation over the channels
selected.
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APPENDIX

Proof: Lett
6�� 6�

D � �
� � ��� � f � D �`O Y f � 6 q D �~K5M!N � OP� 9�A|) q �# � f �� �

� 6�
D � �

���
� � Y � ��� ����Y O ��� f D �`O Y f � 6 q D

K4MFN � OP� 9 A ) q �# � f �� �
� � 6 q ��% � Q � � Y O ���

� � Y O�Y � ��� � � f % _ � �`O Y�f � 6 q % q �
K4MFN � OP� 9 A ) q �# � f �� ��O �

� �lf 6 q ��% �wQ
� � Y O� � f % �`O Y�f � 6 q � q %

K4MFN � OP� 9 A ) q �# � f �� ��O �
The function ; �=� ���,K4MFN ��OP� �2� ) * �, � � �� _ � � can be shown to
be a convex function, for �rc & . Also

� % � � �8Y�O� � f % ��O�Y f � 6 q � q % � � �E&242 � Y O
is a pmf. Hence, using Jenson’s inequality, we havet

6 
 � f K4MFN � OP� 9 A ) q �# � f �f � � Y�O � ��O � 2

Therefore,� 	 
 � �`O�Y�f � pZq � � f K4MFN � OP� 9 A ) q �# � f �f � � Y�O � ��O � �
which gives the desired lower bound.

Next, we derive the upper bound. The function
" ��� �*��!K4MFN ��O � � ��)�* �, � � �D � can be shown to be a concave function,

for �*c & . Hence, we havet
6 � 6�

D � �
� � ��� � f � D �`O Y�f � 6 q D " ��� �

� C 6D � � x 6 D } � f � D ��O�Y f � 6 q D " ��� �C 6D � � x 6 D } � f � D ��O Y f � 6 q D6�
D � �

� � � � � f � D ��O Y f � 6 q D 2
Taking expectation with respect to pmf

� D � x 6 D } � f � D ��O�Y f � 6 q DC 6D � � x 6 D }
� f � D �`O Y�f � 6 q D � �.� O!252 �r�
and again using Jenson’s inequality, we havet

6 �Eu " ��� �!% O�Y ��O�Y f � 6��G " � u � ��%5ORY ��O�Y f � 6��
� " � � fO�Y �`O Y f � 6 � %5O�Y �`O�Y�f � 6��
� � f K5M!N � OP� 9 A ) q �# � f �3% O�Y ��O�Y f � 6 �

� f � 2
Therefore, we have the upper bound� 6 G � ��O!Y.f � p q � �lf K5M!N ��O$� 9 A ) q �# � f ��%5O�Y �`O�Y�f � 6 �

� f ��2�
Proof: Note for all � , to prove that

� x 	 � � �r� �p } ,� ��	 � � � �:f � � , and
��� ��	 � � � � are all asymptotically

equivalent to 	 p� K4MFN ��OP��9�A � Q K5M!N � � ��� , it is sufficient to
show that
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p � -
� ��	 � � �r� �p �

	 p� K5M!N ��OP��9 A � Q K4MFN � � � � 
 O!�
and K��
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p � -

� � ��	 � � � �
	 p� K5M!N ��OP��9�A � Q K4MFN � � � � GJO!2

From Lemma 2,� � ��	 � � � � O� �
� ��O�Y � q � � pZq � 	 � K5M!N �`O�� 9 A � Q K4MFN � � �

� q � ��	 � Y O ����O �>�
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	 p� K5M!N ��OP��9 A � Q K4MFN � � � � ��O!2 (9)



Therefore, we have

K��
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p � -
� ��	 � � � � �p �

	 p� K4MFN ��OP��9�A � Q K5M!N � � � 
 O!2
Now consider a model with � parallel channels, where
each user has peak power 9 A for each channel same
as proof of Prop. 2. Denote the optimal through-
put of the parallel model as

� � � � � � � , � � � �r� � � 
��� � �r� � � and
� � � �r� � ��� � � � �`OF� � � . In [6], we proved

that
� � ��OF� � � 8: � � K4MFN ��O �89�A � Q K4MFN � � � �>2 So we have��� ��	 � � � ��G 	 p� K4MFN �`O���9�A � Q K5M!N � � ���>2

With the same argument as proof of Prop. 2, we also
have

� � � � � � �p � 8: �� �  � � �r� � �>2 �
In this paper, we proposed a distributed channel-aware

Aloha for multiple channel model. The optimal distributed
algorithm is given and the simplified algorithm is analyzed
and asymptotic results are shown for three different cases.
The centralized optimal problem is formulated. And sim-
ulation results are shown with comparison to the optimal
solution.
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