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Abstract

We study auction mechanisms for allocating power among a group of spread
spectrum users. The users are assumed to share the bandwidth with a licensed
user, or spectrum owner, which imposes a received power constraint (corresponding
to a constraint on interference) at a particular measurement location. Both co-
located and non-collocated receivers are considered. Each user receives a utility that
is a function of the received Signal-to-Interference plus Noise Ratio. We propose
two auction mechanisms for power allocation in which the spectrum owner charges
for SINR and received power, respectively, and compare the associated utility and
revenue achieved in some simple cases. We also derive an iterative and distributed
bid updating algorithm, and specify conditions for which this algorithm converges
globally to the NE of the auction.

1 Introduction

Recent advances in software-defined radio have made it possible to share both licensed and
unlicensed radio spectrum more efficiently. The current “command-and-control” policy
for spectrum allocation does not exploit this capability, and is stimulating investigation
into more flexible market-based mechanisms for dynamic sharing spectrum.

In this paper, we study spectrum sharing subject to an interference temperature con-
straint, which is a constraint on the RF power per unit bandwidth measured at a particular
location [1]. This is motivated by the scenario in which users (or service providers) wish
to share spectrum owned by, or licensed to another primary user, such as another service
provider or government agency. The primary user determines the interference tempera-
ture constraint(s) so as not to disrupt its own service. We assume that the primary user
provides a spectrum manager to control the amount of bandwidth and power assigned to
users sharing the spectrum. The users may transmit to receivers at different locations, or
to co-located receivers at a single access point.

This paper is an extension of prior work [2] in which auction mechanisms are studied for
allocating power among spread spectrum users. Namely, each user’s transmitted power
is uniformly spread across the entire available bandwidth controlled by the manager,
so that the combined power-bandwidth allocation problem reduces to a received power
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allocation problem. Each user has a utility function, which depends on the received
Signal-to-Interference plus Noise Ratio (SINR), reflecting the desired Quality of Service
(QoS).

As in [2], we consider simple auctions mechanisms for power allocation. (See also [3,4],
which consider similar mechanisms for wire-line resource allocation.) Namely, the manager
announces a price (for either received power or SINR), the users submit bids for the
amount of power they wish to purchase, and the manager allocates power proportional to
the bids received. In contrast to [2], which considers a multiple-access scenario in which
the measurement point and receivers are co-located, here we allow the measurement point
and receivers to be at different locations. This includes a peer-to-peer scenario in which the
different receivers are not co-located. The interference a user receives therefore depends
on the other users’ transmit powers, cross-channel gains, as well as the bandwidth. We
also extend some of the results in [2] for co-located receivers. For example, we compare
the revenue generated for pricing of power versus pricing of SINR.

We first analyze these auctions as a simultaneous move game [5], assuming all infor-
mation (i.e., utility functions and link channel gains) is available to the users, but not to
the manager. We give conditions under which this game has a unique Nash Equilibrium
(NE) and characterize this NE. We subsequently formulate an iterative and distributed
algorithm for power allocation, in which each user needs to know only the channel gains
associated with the links connected to that user. We show that this algorithm converges
globally to the unique NE of the simultaneous move game, when it exists. The auction
mechanisms considered are therefore scalable with the population size.

In the next section we present the system model and the auction mechanisms consid-
ered. We start with the Vickrey-Clarke-Groves (VCG) auction, which achieves a socially
optimal allocation, i.e., maximizes total utility [5]. To reduce the amount of information
exchange required and computational complexity, we present simpler share or divisible
auction mechanisms [4]. We then state our results on the properties of the NE of these
auctions, which generalize the results in [2] to the general case in which receivers are not
co-located. We evaluate the revenue collected by the manager in Sec. 5, assuming co-
located receivers. In Sec. 6 we give an iterative and distributed bid updating algorithm,
and characterize its convergence. Illustrative numerical results are given in Sec. 7 and
conclusions are presented in Sec. 8.

2 Auction Mechanisms

2.1 System Model

A block of spectrum with bandwidth B is to be shared among M spread spectrum users.
In what follows, we will consider the two scenarios shown in Fig. 1. Namely, Fig. 1 (a)
shows co-located receivers, and Fig. 1 (b) shows non-co-located receivers. The users share
the spectrum with a primary user, who imposes a constraint on the total interference
received at a measurement point (node M in Fig. 1). In general, the measurement point
may or may not be co-located with a receiver.

It will be convenient to denote each transmitter–receiver pair by a single index i,
which we will refer to as a particular “user”. Assuming each transmitter spreads power
uniformly across the band, the received SINR for user i is given by

γi =
pihii

n0 + 1
B

(

∑

j 6=i pjhji

) , (1)



where pi is the transmit power for user i, hij is the channel gain from user i’s transmitter
to user j’s receiver, and n0 is the background noise power, which is the same for all
users. To satisfy the interference temperature constraint, the total received power at the
measurement point must satisfy

M
∑

i=1

pihi0 ≤ P, (2)

where the index 0 corresponds to the measurement point.
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Figure 1: Network scenarios: node M is the measurement point, and nodes Ti and Ri are,
respectively, the transmitter and receiver associated with user i.

Each user i is assigned a utility function Ui(γi) = Ui (θi; γi), which reflects the utility
derived by the user as a function of the received SINR. Here θi is a user-dependent priority
parameter. As an example, the logarithmic utility function Ui (γi) = θi ln (γi).

1 We will
assume that for each user i, Ui (γi) is increasing, strictly concave, and twice continuously
differentiable in γi. Utilities that satisfy this assumption are commonly used to model
“elastic” data applications [6].

A power allocation is socially optimal if it maximizes the total (sum) utility
∑M

i=1 Ui (γi).
A socially optimal allocation is Pareto optimal, i.e., no user’s utility can be increased with-
out decreasing another user’s utility. However, Pareto optimality does not imply social
optimality. We also note that a power allocation is Pareto optimal if and only if the total
received power constraint is tight, i.e.,

∑M
i=1 pihi0 = P , hence this is a necessary condition

for social optimality.
We assume that each user’s utility function is private information, i.e., is initially

known only to that user. The manager must then devise a mechanism for allocating
power without having this knowledge a priori. Also, the manager may not have a priori
knowledge of the channel gains, hij’s. In auction theory, a well known mechanism for
achieving a socially optimal allocation is the generalized VCG auction.

2.2 VCG Auction

In our context, a VCG auction can be described as follows: First, users are asked to
submit their utility functions {Ui (γi)}.

2 The manager then computes the maximum total
utility Umax = max{pj}

∑M
j=1 Uj (γj) given the received power constraint, and allocates

power to the users accordingly. Furthermore, the manager computes the maximum total
utility if user i is excluded from the auction, i.e., Umax/i = max{pj}/pi

∑

j 6=i Uj (γj) for each
i ∈ {1, ...,M}. In total, the manager must solve M + 1 optimization problems. The

1This approximates the weighted rate of user i in the high SINR regime.
2The users are not obligated to submit the correct utility functions, i.e., they may lie about their

utility.



manager then charges user i the amount Umax − Umax/i, which is the incremental social
benefit derived from including user i in the auction.

It can be shown that this mechanism results in a socially optimal outcome, and it
is a (weakly) dominant strategy for users to bid truthfully (i.e., state their true utility
functions). The VCG auction may not be suitable for dynamic spectrum sharing for the
following reasons: (i) To specify the users’ utility functions, in particular, the SINR in
(1) for each user i, the channel gains hij for all i, j ∈ {1, ...,M} must be measured by
the users and reported to the manager. (ii) The manager must solve M + 1 optimization
problems, which are typically non-convex due to the interference. Hence the information
exchange and computational requirements are likely to become excessive for large M . We
therefore examine simpler mechanisms for power allocation.

2.3 One-Dimensional Share Auctions

We now describe a share, or divisible auction for power allocation in which the users
submit one-dimensional bids for the amount of resource they wish to purchase at an
announced price, and the manager simply allocates the received power in proportion to
the bids. Each user then pays the announced price times the amount of allocated resource
(i.e., power or SINR). We also assume that the manager announces a reserve bid β ≥ 0,
and transmits with the corresponding reserve power, which interferes with the other users.
Here the main purpose of the reserve bid is to guarantee a unique desirable outcome of
the auction, rather than to extract more revenue from the other bidders [7]. We will show
that the interference generated by the manager can be made arbitrarily small.

We first present an auction mechanism, which assumes complete information, i.e., all
users’ utility functions and all channel gains are known to all users. In Sec. 6, we present a
distributed bid updating algorithm that only requires limited information, i.e., each user
i needs to know only the channel gains ĥii = hii/hi0 and the SINR at his own receiver.
Simultaneous Auction Algorithm:

1. The manager announces a reserve bid β ≥ 0, and a price πs > 0 (in an SINR
auction) or πp > 0 (in a power auction).

2. After observing β, πs (or πp), user i ∈ {1, ...,M} submits a bid bi ≥ 0.

3. The manager keeps reserve power p0, and allocates to each user i a transmit power
pi so that the received power at the measurement point is proportional to the bids,
i.e.,

pihi0 =
bi

∑M
j=1 bi + β

P, and p0 =
β

∑M
j=1 bi + β

P. (3)

The received SINR for user i is given by (1) where the interference term contains
p0h0i, and h0i is the channel gain from the manager (measurement point) to user i’s
receiver. If

∑M
i=1 bi + β = 0, then pi = 0.

4. In an SINR (power) auction, user i pays Ci = πsγi (Ci = πppi)

A bidding profile is the vector containing all users’ bids b = (b1, ..., bM). The bidding
profile of user i’s opponents is defined as b−i = (b1, ..., bi−1, bi+1, ..., bM ), so that b =
(bi; b−i). In the preceding auctions, each user i submits a bid bi to maximize his surplus
function

Si (bi; b−i) = Ui (γi (bi; b−i)) − Ci (bi; b−i) . (4)

Here we omit the dependence on β and π.



Under this mechanism the users play a simultaneous move game, where their strategies
consist of the bids they submit and their pay-offs are the resulting surplus. An NE of this
game is a bidding profile b

∗ such that Si(b
∗
i ; b

∗
−i) ≥ Si(b

′
i; b

∗
−i) for any b′i ∈ [0,∞) and any

user i. Define user i’s best response, given b−i, as the set

Bi (b−i) =

{

b̂i | b̂i = arg max
bi∈[0,∞)

Si (bi; b−i)

}

, (5)

i.e., the set of bi’s that maximize Si(bi; b−i) given a fixed b−i.
3 The NE bidding profile b

∗

is a fixed point, i.e., no user has the incentive to deviate unilaterally. The existence and
uniqueness of an NE are shown in the following to depend on β, and πs or πp.

These auction mechanisms differ from some previously proposed auctions for network
resource allocation (e.g., [3,4]) in that the bids are not generally the same as the payments.
The manager can therefore influence the NE by choosing β and π. This alleviates the
typical inefficiency associated with the NE, and leads to Pareto optimal (and in some
cases socially optimal) solutions.

3 SINR Auction

In this case, Ci (γi) = πsγi so that each user’s payment depends on both the transmit
power and the interference. Here we assume logarithmic utility functions, although the
analysis applies to other utility functions as well (e.g., θi log (1 + γi)).

Theorem 1 In an SINR-based auction with logarithmic utility functions:

(i) For β > 0, there exists a threshold price πs
th > 0 such that a unique NE exists if

πs > πs
th; otherwise, no NE exists.

(ii) For β = 0, there are either an infinite number of Nash Equilibria, or no NE.

Proof. (outline): Substituting Ui(γi) = θi log(γi) in (4) and setting the derivative with
respect to bi equal to zero gives

b = Kb + βk0 (6)

where b is the M × 1 vector of best response bids across users, K is an M × M matrix,
which depends on all channel gains and the θi parameters, and k0 is an M × 1 vector,
which depends on the channel gains h0i, hi0 and hii. The number of Nash equilibria is
therefore the number of positive solutions to (6). Statement (i) in the theorem follows
from an application of the Perron-Frobenius theorem [8]. If β = 0, then (I−K)b = 0, for
which there is either no feasible solution (i.e., b = 0), or an infinite number of solutions
(i.e., if K is singular).

Theorem 1 and the following two propositions were proven in [2] for the case of co-
located receivers using different methods, which do not directly apply to the non-co-
located scenario.

Note that β does not affect the power allocation at the NE since all equilibrium bids
are proportional to β. The manager can therefore announce an arbitrary β > 0. This
observation also follows from (3), and so applies to any utility function.

The relation (6) is similar to power control updates for CDMA, which have been
analyzed, for example, in [9]. A key difference between that work and the auction model
considered here is that here we consider elastic data traffic without a preset target SINR.

3In general the best response set may contain more than one element.



Also, the price can be adjusted so that a unique NE always exists. In contrast, in the
CDMA model the power control updates may not converge if the target SINR is too high.
The mathematical similarity arises from the fact that by designing appropriate auction
mechanisms, we convert the constrained power allocation problem into an unconstrained
noncooperative game, in which each user updates his bid in an attempt to reach the
desired equilibrium SINR level.

An allocation {xi}i∈{1,...,M} is weighted max-min fair with weights {wi}i∈{1,...,M} if for
each i ∈ {1, ...,M}, xi can not be increased without decreasing some xj, j ∈ {1, ...,M},
for which xj/wj ≤ xi/wi.

Proposition 1 If a unique NE exists in an SINR-based auction with logarithmic utilities,
the SINR allocation {γ∗

i }i∈{1,...,M} and the payments {C∗
i }i∈{1,...,M} are weighted max-min

fair with the weights {θi}i∈{1,...,M} given a fixed reserve power p∗0.

We call a system stable if there exists a unique NE. In a stable system, define the

system usage by η =
∑M

i=1 p∗i hi0/P =
∑M

i=1 b∗i /
(

∑M
i=1 b∗i + β

)

. For Pareto optimality

η = 1, but the necessary condition for stability is η < 1 since the reserve bid β must be
positive. Hence Pareto optimality and stability are conflicting objectives4.

We define an ε-system as one with parameters (P ε, Bε,M ε, nε
0) = (P (1 − ε) , B,M, n0+

εP/B), where ε ∈ (0, 1). An ε-Pareto optimal allocation is defined as a Pareto optimal
solution for the ε-system.

Proposition 2 In an SINR-based auction with logarithmic utility, there exists a unique
price πsε for any ε ∈ (0, 1), such that the system is stable and achieves an ε-Pareto optimal
solution (i.e., η = 1 − ε in the original system).

In practice, the manager can achieve a target η∗ by adjusting πs after observing the
usage efficiency at the current NE; if it is too low, the price should be decreased. Note
that if the price is decreased too much, the stability conditions in Theorem 1 may be
violated.

4 Power Auction

Here we focus on co-located receivers, as shown in Fig. 1 (a), where hij = hi0 for all
i, j ∈ {1, ...,M}. We denote user i’s received power as pr

i = pihi0. Given a Pareto optimal
allocation, we have for each user i,

γi ≡ γi (p
r
i ) =

pr
i

n0 + 1
B

(P − pr
i )

, (7)

which, in contrast to the more general SINR expression (1), does not depend on the
distribution of powers among the other users.

We say that a power allocation is ε-socially optimal if it maximizes the total utility
of the ε-system. It is shown in [2] that there exists a price πpε such that the system is
stable and the NE achieves ε-social optimality for any ε ∈ (0, 1) provided that for each
i ∈ {1, ...,M}, U (θi, γi) satisfies

|U ′′
i (γi)|

U ′
i (γi)

(γi + B) > 2, (8)

4Here we do not include the power allocated to the manager in our definition of Pareto optimality.



for any γi ∈ [0, P/n0]. Inequality (8) guarantees that the utility Ui (γi (p
r
i )) is strictly

concave in the received power pr
i . For many common utility functions, this condition is

satisfied when the bandwidth is large enough, which implies that the interference among
users is relatively small.

When (8) is not satisfied, the utility may not be concave in the received power, and
the power auction may not be able to achieve an η close to 1. An example is shown in
Fig. 2 with two users and logarithmic utility functions. Total demand for power (from
the best response function) is plotted versus price. The maximum efficiency η = 0.41 is
achieved at πp = 0.935. At a lower price the demand exceeds the power constraint so that
the auction cannot converge to an NE. In contrast, an SINR auction can achieve any η,
which may lead to higher total utility.
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Figure 2: Demand for power versus price with logarithmic utility functions (power auc-
tion). M = 2, P = 10, B = 1000, n0 = 10−3, θ1 = 1, θ2 = 2. The condition (8) is not
satisfied.

5 Revenue Comparison

Here we compare the revenue obtained from power and SINR auctions for co-located
receivers.5 We also assume that all users have the same utility function, which satisfies
(8). Let Rp and Rs be the revenue derived from power and SINR auctions, respectively.

Theorem 2 If a power and SINR auction achieve the same usage η, then Rp > Rs and
Rp/Rs → 1 as M → ∞.

Numerical examples indicate that Theorem 2 is still valid when the users have different
utilities (see Fig. 3). If (8) is not satisfied, then the power auction may collect lower
revenue than the SINR auction, since the former may not be able to achieve a particular
η close to one. However, Theorem 2 remains valid for logarithmic utility functions.

Proposition 3 Given logarithmic utility functions, assume that there exists a finite θ̄
such that θi < θ̄, 1 ≤ i ≤ M , for all M . Then Rp > Rs and Rp/Rs → 1 as M → ∞.

Notice that Proposition 3 does not assume that all users have the same utility function,
or that both auctions give the same η. Hence with logarithmic utilities the power auction
always generates more revenue than the SINR auction.

5We note that other auction mechanisms may provide more revenue.



6 Distributed Bid Updating Algorithm

In Sec. 2, we assumed that the users’ utility functions and channel gains are known
to the other users, so that the auction can be analyzed as a simultaneous-move game
with complete information. Here we relax this assumption, and present an iterative and
distributed algorithm that converges to the NE of the simultaneous auction. In this section
we consider only an SINR auction with logarithmic utilities, but note that the following
results also apply to other scenarios, e.g., power auction with co-located receivers. (In
what follows the receivers do not have to be co-located.)

As an example, consider the SINR auction with logarithmic utilities. Suppose the
users iteratively update their bids according to the best response (5), i.e.,

b
(t) = Kb

(t−1) + k0β, (9)

for t = 1, 2, · · · , where b
(0) is an arbitrary (positive) initial bidding profile. Clearly,

if the bid profile converges, it will converge to the unique solution to (6), if it exists.
Furthermore, it can be shown that when (6) has a unique solution, then K will have a
spectral radius less than 1 and so (9) will converge from any initial bid profile.

Proposition 4 For the SINR auction with logarithmic utility functions, (9) is equivalent
to the set of individual user updates

b
(t)
i =

θi/π
s − γ

(t−1)
i ϕi

γ
(t−1)
i − γ

(t−1)
i ϕi

b
(t−1)
i , (10)

for 1 ≤ i ≤ M , where ϕi = n0θi/
(

ĥiiPπs
)

.

The update (10) requires that user i know only the channel gain ratio hii/hi0, the

background noise n0, and the received SINR γ
(t)
i at each iteration. Hence this mechanism

is distributed and scalable, and, from the above discussion, it will converge to the unique
NE of the simultaneous auction, if it exists. In practice, the manager would adaptively
search for a price πs a little higher than πs

th (unknown a priori), which guarantees a unique
NE, and achieves an efficiency η close to one.

7 Numerical Results

Fig. 3 compares utility and revenue for SINR and power auctions for co-located receivers.
The total power constraint P = 10, the background noise power n0 = 10−3, and users
have the rate utility θi log (1 + γi), where θi is a uniformly distributed random variable
in [1, 100]. Fig. 3(a) shows the ratio of revenue for the power auction to the revenue
for the SINR auction versus Bn0/(P + 2n0), which is the left side of the condition (8),
and indicates the degree to which Ui(·) is a non-concave function of the transmit powers.
Fig. 3(b) shows the corresponding ratio of utilities. Each point is averaged over 100
independent realizations. When condition (8) is satisfied, corresponding to Bn0/(P +
2n0) > 0 dB, the target efficiency η∗ = 1− 10−6 can be achieved. In that case, the power
auction generates more revenue than the SINR auction, and the ratio diminishes to one
as M increases. When (8) is not satisfied (Bn0/(P + 2n0) < 0 dB), the manager adjusts
the price to achieve the highest possible η, and the revenue ratio could be less than one.
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Figure 3: Comparison of revenue and utility for power and SINR auctions with rate utility
functions and co-located receivers.

Fig. 3(b) shows that the utility ratio is essentially one when (8) is satisfied, since both
auctions achieve close to the maximum total utility. When Bn0/(P + 2n0) < 0 dB the
utility ratio is less than one, since the power auction cannot achieve an η close to one.

Figs. 4 (b) and (c) show the convergence of users’ bids and transmit powers in an SINR
auction using the distributed algorithm in Sec. 6 for the network shown in Fig. 4(a). The
network has three users and non-co-located receivers located at grid points. The link
gains between nodes are inversely proportional to the square of the distance. All users
have the same logarithmic utility with θi = 10. Proposition 1 says that all users achieve
the same SINR at the NE. The final bids and transmit powers depend on the distance
between the users’ transmitters and the measurement point. Since user 3’s transmitter is
furthest from the measurement point, user 3 can obtain a relatively high transmit power
with a small bid. It is easy to see that if all users transmit with the same power, user
2 receives the most interference, and user 1 receives the least. Fig. 4(c) shows that after
compensating for the interference, user 2 transmits with the highest power, and user 1
transmits with the lowest power.
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8 Conclusions

We have studied auction mechanisms for distributed spectrum sharing among a group of
spread spectrum users with non-co-located receivers. The interference temperature, or
total received power, is constrained at a particular measurement point. For the SINR
auction with logarithmic utility functions, a large enough price guarantees a unique NE
(provided that the manager announces a positive reserve bid). With co-located receivers,
general utility functions, and large enough bandwidth, the power auction achieves the
socially optimal allocation. (The SINR auction was observed numerically to give similar
performance.) This is because a large bandwidth implies that the utilities are concave
functions of the transmit powers. Also, in this scenario the power auction generates more
revenue than the SINR auction, although the ratio diminishes to one as the number of
users becomes large. The utilities may not be concave for smaller bandwidths, in which
case the power auction cannot achieve usages η close to one. In that case, we observed
numerically that the total utility and revenue for the power auction can be lower than
the utility and revenue for the SINR auction. We also presented an iterative, distributed
bid updating algorithm, which requires that each user know only local information, and
converges globally to the NE.
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