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Abstract

We study auction mechanisms for sharing spectrum amongupgrbusers, subject to a constraint
on the interference temperature at a measurement pointu3ées access the channel using spread
spectrum signaling and so interfere with each other. Eaeh teceives a utility that is a function of
the received signal-to-interference plus noise ratio. Wipgpse two auction mechanisms for allocating
the received power. The first is an auction in which users hagged for received SINR, which, when
combined with logarithmic utilities, leads to a weightedxamain fair SINR allocation. The second is
an auction in which users are charged for power, which maémthe total utility when the bandwidth
is large enough and the receivers are co-located. Bothawatiechanisms are shown to be socially
optimal for a limiting “large system” with co-located reeers, where bandwidth, power and the number
of users are increased in fixed proportion. We also formudatéterative and distributed bid updating
algorithm, and specify conditions under which this aldoritconverges globally to the Nash equilibrium

of the auction.
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. INTRODUCTION

There has been growing interest in making more efficient ispectrum by shifting from the
conventional “command-and-control” spectrum usage meadehore flexible “Exclusive Use”
and “Commons” models (e.g. see [1]). In the Exclusive Use mdte licensee has exclusive
rights to the spectrum, but could allow other users to pwehaccess rights to the spectrum
when it is underutilized. In the Commons model, spectrum iBcensed and an unlimited
number of users can share spectrum with usage rights gal/bsnechnical standards. In either
model, a basic question is how to share the available speatfiiciently and fairly. A proposed
requirement (e.g. see [1]) is that tmterference temperaturi@ the spectrum band be kept under
some threshold, where interference temperature is defmdxb tthe RF power measured at a

receiving antenna per unit bandwidth.

In this paper, we study a spectrum allocation problem undeln sn interference temperature
constraint. This model is motivated by the scenario in whislers wish to purchase a local,
relatively short-term data service. The spectrum to be wsay be licensed to an independent
entity (e.g., private company) or controlled by a governtagency, either of which we refer to
as amanager Users may transmit to receivers at different locationgparo-located receivers at
a single access point. In both cases, the manager contelsntiount of bandwidth and power
assigned to each user in order to keep the interference tatape at a given measurement point
below a certain threshold. We assume that all users adopeadppectrum signaling format, in
which the transmitted power is evenly spread across theeeawailable band controlled by the
manager. This allows efficient multiplexing of data stredrom different sources corresponding
to different applications, and reduces the combined pdaadwidth allocation problem to a
received power allocation problem. Each user has a utiityich is a function of the received
Signal-to-Interference plus Noise Ratio (SINR), reflecting dresired Quality of Service (QoS).
The interference a user receives depends on the other aisersinission powers and the cross-

channel gains, as well as the bandwidth.

In this setting, an interference temperature constrainégsivalent to a constraint on the
received power at the measurement point. This allows usete the received power as a divisible
good; we study auction mechanisms for allocating this gdbi. well known that a Vickrey-

Clarke-Groves (VCG) auction can be used to achieve a socigtignal allocation, i.e., maximize



the total utility [2]. However, as discussed in Sect. II-Bistimay not be suitable here due to
the required information from the users and the computatiborden on the manager. Instead,
we propose two auctions mechanisms that allocate the extqiower as a function of bids
submitted by the users and the price announced by the maivdgenodel the resulting problem
as a non-cooperative game [2], and characterize the Nashbequand related properties of
the two auctions. We first analyze these auctions as a sinadtss move game, assuming all
information (i.e., utilities and link channel gains) is dahle to the users (but not to the manager).
We subsequently formulate an iterative and fully distrlglilgorithm, which only requires the
users to obtain limited local information in order to comemglobally to the Nash equilibrium
(NE). This makes the auction mechanisms easily impleméntaid scalable with the population
size.

Our approach is similar to share auctionsee [3]-[8] and the references therein)dorisible
auction where a perfectly divisible good is split among bidders séhpayments depend solely
on the bids. A common form of bids in a share auction is for easdr to submit his demand
curve (e.g., [3]-[5]), i.e., the amount of goods a user @ssas a function of the price. The
auctioneer can then compute a market clearing price basttee@et of demand curves. However,
in our problem, a user’s demand curve for received power @épends on the demands of other
users due to interference. On the other hand, if the demang<sare viewed in terms of SINR
so that they are mutually independent, the market clearmge gor SINR is not easy to find
since the constraint is on received power. To overcome tH#feulties, we adopt a signaling
system similar to [6]-[8], where users submit one dimeraidods for the resource.

We assume a weighted proportional allocation rule in whichsar's power allocation is
proportional to his bid. This type of allocation rule has mesudied in a wide range of
applications (e.g., see [9], [10]) including network resx@uallocation (e.g., [6]—[8]). Given this
allocation, the users participate in a game with the ohjeatif maximizing their own benefit.
It is well known that the NE typically does not maximize theéalasystem utility [11]. This has
been referred to as th@ice of anarchy(e.g., [6]). In order to achieve a more desirable NE, we
allow the manager to announce a unit price (e.g., [12], [E8]er for received SINR (a SINR
auction) or received power (a power auction). An SINR aurctiath logarithmic utilities leads
to a weighted max-min fair SINR allocation. A power auctioaximizes the total utility for a

large enough bandwidth with co-located receivers. Bothianstmaximize the total utility in a



large enough system with co-located receivers if the tatalgy and bandwidth are increased in
fixed proportion to the number of users. Related work on uptiower control for CDMA has
appeared in [13]-[16]. A key difference here is that thera isonstraint on the total received
power at all time& Because of this, a user’s interference depends on his owerpalocation,
which can make the problem non-convex.

We assume the user population is stationary, i.e., the @swtsheir corresponding utilities
stay fixed during the time period of interest. On a larger tsoale one can view time divided
into periods, during which the number of users and eachssélity are fixed and the proposed
auction algorithm is used. When a new period begins, users joiayor leave the system.
Remaining users may update their utilities to reflect changabeir QoS requirements. For
example, a user with data that must be delivered by a deadiight increase his utility (as
a function of SINR) as the deadline approaches. Here we do ewdider mechanisms and
associated dynamics over multiple periods.

The remainder of the paper is organized as follows. Afteoohicing the auction mechanisms
in Sect. Il, we analyze the performance for a finite system fandh limiting “large system”
in Sect. lll and IV, respectively. In Sect. V we give an itératand distributed bid updating
algorithm, and show that it converges globally to the unibjieof the auction when one exists.
Numerical results are given in Sect. VI and conclusions ict.Séll. Several of the main proofs
are given in the Appendix.

II. AUCTION MECHANISMS
A. System Model

Spectrum with bandwidthB is to be shared among/ spread spectrum users, where a
user refers to a transmitter and an intended receiver paer Ik valuation of the spectrum
is characterized by a utility/; (;), where~; is the received SINR at useis receiver. We
primarily consider the case where each user’s utility isegioy U; (v;) = U (6;,7:), where
0; is a user-dependent parameter. As a particular example,ongder thelogarithmic utility
U (i) = 0; In () 2

1We assume that any transmission power constraint for each userésdaoyigh so that it can be ignored.

This approximates the weighted rate of usén the high SINR regime.
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Fig. 1. System model foM transmitter-receiver pairs

Assumption 1:For each uset, U; (v;) is increasing, strictly concave, and twice continuously
differentiable in~;.
Utilities that satisfy this assumption are commonly usedntadel “elastic” data applications

[17]. For eachi, the received SINR is given by

Ny = 1 pili; ’ 1)
no + 3 <Zj;ﬁi pj’%’i)
where p; is userd’s transmission powerl;; is the channel gain from useis transmitter to
userj’s receiver, anth, is the background noise power that is assumed to be the sanadl fo
users. To satisfy an interference temperature constrdiatfotal received power at a specified

measurement point must satisfy
M
Zpihio <P, (2)
=1

where h;, is the channel gain from useis transmitter to the measurement point. The system
model is shown in Fig. 1. A power allocation Rareto optimalif no user’s utility can be
increased without decreasing another user’s utility.

Lemma 1:A power allocation scheme is Pareto optimal if and only if tibkal received power
constraint is tight, i.e.>>™, piho = P.

This follows because if the power constraint is not tighgntheach user can increase their
power by a factor of?/ Zf‘i 1 pilio, Which increases the SINR for every user. Lemhwoes not

require Assumption 1; in particulat]; (~;) does not have to be concaveqp although it must



be strictly increasing. Note that Pareto optimality doesindicate how to split resources among
users, only that the resource should be fully utilized. Armsger condition issocial optimality

where the total utiIityZZM1 Ui (v;) is maximized. Social optimality implies Pareto optimality

but the reverse is not true. Therefore, to achieve sociaimafity, the manager should always
ensure that the received power constraint is tight.

A special case, on which we will focus, is when the receivers eo-located with the
measurement point. This could model a situation where acgepvovider purchases the spectrum
usage rights from the manager and provides service from glesaccess point. In this case,
hij = hi for all 4,5 € {1,..., M}, and we denote useis received power ag; = p;h. In a
Pareto optimal allocation for this co-located receiverecage have for each user

pi
no+ 5 (P —pj)’

Yi =7 (p) =

so that usei’s utility U; (v; (p})) under a Pareto optimal allocation does not depend on how the
power is allocated among the interferers.

We assume that each user’s utility is private informatia®, ionly known to the user himself.
The manager must then devise a mechanism for allocatingrpeitfeout having this knowledge
a priori. Also the manager may not hagepriori knowledge of the channel gaing,;’s. One

such mechanism is the generalized VCG auction.

B. VCG Auction for Spectrum Sharing

A VCG auction results in a socially optimal outcome, and it iGv@akly) dominant strategy
for users to bid truthfully (i.e., state their true utilgle In our context, a VCG auction can
be described as follows: First, users are asked to submniit ukities {U; (v;)}. The manager
then computes the power allocatigri = (pf,--- ,p},) that maximizes the total utility, i.e.,
Umax = Zj]‘i L U;j (v; (p*)), given the received power constraint, and allocates powethéo
users accordingly. Furthermore, the manager computes thémmam total utility if useri is
excluded from the auction, i.€Unax/i = maxy,yp, >, U; (v;) for eachi € M. In total,
the manager must solvké/ + 1 optimization problems. The manager then charges uséne
amountUsax /i — Z#i U, (v; (p*)), which is the decrement in sum utility over all other users

from including user: in the auction.



The VCG auction may not be suitable in this context for sevesakons:(:) In order to
completely specify the users’ utilities, in particularet8INR in(1), for each usef, the channel
gainsh;; for all i, j € {1, ..., M} must be measured by the users and reported to the manager.
This might be a heavy burden for the users in a large netwarkThe manager must solve +1
optimization problems, which are typically non-convex doethe interference. This becomes
computationally expensive for large, and may not be suitable for online allocations. For these
reasons, we examine mechanisms that require less infameatichange and less computation

for the manager.

C. One-Dimensional Auctions with Pricing

We now describe two auctions (SINR- and power-based) in wiseins submit one-dimensional
bids representing their willingness to pay, and the manampeply allocates the received power
in proportion to the bids. The users then pay an amount ptigpat to their SINR (or power).
The manager announces a nonnegative reserved,bahd uses a corresponding reserve power
that interferes with the other users. In contrast with theasion where the manager submits a
reserve bid to extract more revenue from the other bidde8f fHere the main purpose of the
reserve bid is to guarantee a unique desirable outcome cdubgon. We will show that the
interference generated by the manager can be made atpisanall. Although the two auctions
are relatively simple, we show that under some mild conadgithey give power allocations that
are arbitrarily close to the allocation from a VCG auction.

Regarding the information structure of the auction, we fisgume that it is a complete
information game, i.e., all users’ utilities and all chahgains are known to all users. In Sect. V,
we present a distributed algorithm that can achieve the NEBso&uction with limited information,
where each useronly needs to measure the background noise dengjtthe channel gain ratio

hi; = hii/hio and the SINR at his own receiver.

Simultaneous Auction Algorithm:

1) The manager announces a reserve/bid 0, and a pricer® > 0 (in an SINR auction) or
™ > 0 (in a power auction).
2) After observings, 7 (or 7P), useri € {1, ..., M} submits a bidh; > 0.

3) The manager keeps reserve powgrand allocates to each usel transmission power



p; SO that the received power at the measurement point is gropak to the bids, i.e.,

bi s

pihiO = —P7 ande =— P (3)
S bi+ Y bi+ 8
The resulting SINR for user is
pilii
Vi = (4)

no+ 5 (Z#i pihji +p0h01) 7
whereh,; is the channel gain from the manager (measurement poingdni’s receivet.
It M b+ 3 =0, thenp; = 0.
4) In an SINR (power) auction, useémpaysC; = 7y; (C; = mPp;hy)
A bidding profileis the vector containing the users’ bitls= (b4, ..., bys). Thebidding profile
of useri’s opponentss defined a®_; = (b1, ..., 0;_1,b;41, ..., bar), SO thatb = (b;;b_;). In the

preceding auctions, each ugesubmits a bidh; to maximize hissurplus function
S; (bz‘; b—i) = U; (% (bi§ b—i)) - C;.

Here we omit the dependence gnand .
An NE of the auction is associated with a bidding protifesuch thatS;(b;; b* ;) > S;(}; b* )

for any b, € [0,00) and any uset. Define useti's best responsgivenb_; as the set

B; (b_;) = {l;l | by = arg birg&g;) S; (bi; bl)} ,
i.e., the set ofy;’s that maximizeS;(b;;b_;) given a fixedb_;.* The NE bidding profileb* is a
fixed point, i.e., no user has the incentive to deviate ugriédly. The existence and unigueness
of an NE are shown in the following to depend grand =* (or =P).

These auction mechanisms differ from some previously megauction-based network re-
source allocation schemes (e.g., [6], [7]) in that the biesehare not the same as the payments.
Instead, the bids are signals of willingness to pay. The m@nean therefore influence the NE
by choosings and «* (or #?). This alleviates the typical inefficiency of the NE, andoals us

to reach Pareto optimal, and in some cases, socially opswiations.

3If ho; =0 forall i € {1,..., M}, then the manager does not interfere with the users and many of this iiasihe following

section still hold. However, in the co-located case, we haye= 1 for all i.

“In general the best response set may contain more than one element.



[11. FINITE SYSTEM ANALYSIS

A. SINR Auction

i 8~ — 8 Dihii J
In this case(C; = 7%y, =« PN e — so that each user's payment depends on
both the transmission power and the interference.

Theorem 1:In an SINR auction:

(1) For >0, there exists a threshold priag, > 0 such that a unique NE existsif > 7,
and there is no NE ifr* < 7}, .

(2) For 5 = 0, one of the following is true(i) there is a unique NE with; = 0 for all i,
(17) there are an infinite number of Nash Equilibria, (o#i) there is no NE.

The proof is given in Appendix A; as shown there, wheén> 0 and 7* > =}, the best

response for each user is unique, and the vector of bestmesp@cross users is given by
B (b) = Kb + k0, (5)

whereK = [k;; (7°)] is a nonnegative matrix with;; (7*) = 0 for all ; and

ije{l,..M}

g; (7T8) (noB -+ Pil]2>
ki (%) = - >0,Vj # 1, 6
L L (6)
vector ko = (k1o, ..., kyo) has nonnegative elements

. s B Pha:
PBh“ — g; (’ﬁs) nOB

andg; (7°) is a nonnegative and continuously nonincreasing functefindd as

00, 0<7 <U!(0),
g (%) =< U (7)), U!(o0) <7 < U (0), (8)
0, U/ (0) < 7.

The spectral radius of matriK, px, satisfies) < px < 1. The unique NE is

b'=1-K) k=) K'kof.

n=0
wherel is the identity matrix.
Since we would like to avoid cage) in Theoreml, we assume’ > 0 in the rest of the paper.
Notice that the value of does not affect the power allocation at the NE, since all ldajivim

bids are proportional t@g. Thus the manager only needs to announce an arbittary 0. In
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general,m;, in Theorem 1 is difficult to find analytically. However, in tlw®-located receiver
case with logarithmic utilities, we have a closed-form tiela betweenr;, and the users’ utility
parameters. For € {1, ..., M}, define

g (7*) (P + Bny)

ki (7°) = .
() PB — g; (7%)noB

(9)

Proposition 1: In an SINR auction with co-located receivers and logarithatilities, &; (7},) >
0 for each usei and "M k; (n5,) / (1 + k; (75,)) = 1.

This follows from the proof of Theorem 1 by using the fact thath co-located receivers
ki (%) = k; (z*) for all I € {0,..., M}, and explicitly solving for the NE. The bidding and
power profiles at the NE are:

ki(m*)

Toh 5 k; (m°)
b — Ltki(m) 3 and pf=——""_
) M kj(ms) ? . s
1— Zj:l ]_+]k;j(ﬂ-s) 1+ kl <7T )

P forie{l,..,M}. (10)

Given the existence of a unique NE, we next characterize ékelting resource allocation.

which $j/Wj < .CUZ/U}Z

Proposition 2: If a unique NE exists in an SINR auction with logarithmic s, the SINR

reserve powep;, and the paymentsq.*}»ze{1 . are proportional with the same weights.

Proof. User:’s unique best response satisfies

= ’]'['S7

OU; (i (B; (b—i) 3 b-i)) _ 0;
i (Bi (b-i) ;0-4) Vi (Bi (b-i) ;0-;)

i.e.,vr/0; = 1/=* for all i. Clearly, no user’s SINR can be increased without decreasiogher

user's SINR. Usei’s payment satisfie§'} /0, = (7°~}) /6; = 1. u

In [19], Kelly et al. consider an algorithm for rate allocatiin a wire-line network with
logarithmic utilitiesw; log (z;) for all usersi € {1,..., M }. In that case, the socially optimal rate
o 1€, for any
other feasible rate allocatiofy;},.; SM w; (), — a;) J; < 0. Their utility maximization

problem is convex and separable since there is no exterriadt, interference) among different

users. Here, due to the interference among users, the prablgenerally not separable (except
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in the co-located receiver case) and is typically not contlens the allocation achieved by the
SINR auction with logarithmic utilities typically is not si@lly optimal or proportional fait.
In a system with a unique NE, define tegstem usage efficienby
_ zz]\il p;hio _ Zﬁl b;
P RN
For Pareto optimalityy = 1, but the necessary condition for the uniqueness of a uniduesN

n < 1 due to the required positive reserve kidi.e., Pareto optimality and a unique NE are
conflicting objective®

We define anr-systerras one with paramete($°, B*, M¢,nf) = (P (1 —¢),B, M,no + ¢P/B),
wheree € (0,1). An e-Pareto optimalallocation is defined as a Pareto optimal solution for the
e-system.

Proposition 3:In an SINR auction, there exists a prigé for any ¢ € (0, 1), such that the
system has a unique NE and achieves-dtareto optimal solution (i.e; = 1 —¢ in the original
system).

Proof: From the proof of Theorem 1, it can be seen thatrasncreases fromr;, to oo,
pk (m°) decreases from to 0, and is continuous and nonincreasing in the interval. Atke,
bidding profiled” = (3", , K") ko changes fromx (for at least one user’s bid) to (for all
users’ bids), and is also continuous and nonincreasingearnnterval. This implies the same for
the summatiory .| b*, which means; = >°M b/ (Zfil bi + B) decreases from to 0, and
is continuous and nonincreasing in the interval. So theretraxist a pricer® € (7}, 00) that
achieves any) =1 —¢ € (0,1). u

In practice, the manager can achieve a targieby adjustingzn® after observing the usage
efficiency at the current NE: if it is too low, the price sholid decreased. Note that if the price

is decreased too much, there may not be an unique NE.

B. Power Auction

In this caseC; = nPp;h;o. For the co-located receiver case with logarithmic utdifi®roposi-

tion 1 still holds, but with a different expression fby(7*) than that given in(9). The bidding

®Moreover, in this setting the socially optimal allocation with logarithmic utilities is mopprtional fair.

®Here we are not including power used by the manager in our definitioraraftd® optimality.
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and power profiles at the NE are again given(bg), but it may be impossible to find a price
7P that gives an arbitraryy = 1 — ¢. This is becausé/; (v; (p})) is not always concave in the
received powep;, and so thep] that maximizes usei's surplus may not be continuous with
price 7, i.e., it may jump from one local optimum to the other. As aules) = Zj”ilp;?/P

may be discontinuous at some valuesréf

We say that a power allocation issocially optimalif it maximizes the total utility of the
e-system. In the case of co-located receivers, the poweicawcan achieve as-socially optimal

allocation for a more general class of utilities.

Assumption 2:For eachi € {1,..., M}, U; (~;) satisfies Assumption 1 and

— = (vi+B)>2 (11)

for any~; € [0, P/ny).

Inequality (11) follows from settingd?U; (v; (pl)) /0*pr < 0 for any p! € [0, P/hy), i.e., the
utility is strictly concave in the received power. For theseaf logarithmic utilities, Assumption
2 is satisfied if P/ (Bny) < 0 dB. For many utilities (e.g.f;log (1 + ), 1 — e %, and
0y (o € (0,1))), Assumption 2 is satisfied when the bandwidth is large ehpsg that the

interference among users is relatively small.

Theorem 2:In a power auction with co-located receivers and Assumgidior anye € (0, 1)
there exists a price” such that the system has a unique NE, and the NE achiegesial

optimality.

The proof is given in Appendix B. Theorem 2 implies that withgla enough bandwidth, so
that the externality effects among users are relativelyllsiiee power auction with co-located
receivers can achieve an allocation that is arbitrarilyselto that produced by a VCG auction,
and so is preferable to the SINR auction in terms of socialhaglity. When Assumption 2 is
not satisfied, the power auction may not be able to achievedose tol (e.g., with logarithmic

utilities); this can result in a lower total utility compakréo the SINR auction, which can achieve

any 1.
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C. Revenue Comparison between SINR and Power Auctions

From the manager’s point of view, revenue maximization mighanother important objective.
Here we restrict our discussion to the two auctions preWodisscribed for co-located receivers.
Let R? and R° be the revenue derived from the power and SINR auctionseo#isply. We first
consider the case where users are identical (i.e., haveathe sitilities) and the utilities are
concave in power.

Theorem 3:Given co-located receivers, identical utilities, and Asgtion 2, suppose further
that both auctions achieve the same system usage efficiefidyen R? > R°, and R?/R* — 1
asM — oc.

Proof: With identical utilities and same efficiency, both auctions allocate the same
received powep™ to all users. Lel (v (p")) = U; (v; (pl)) for 1 < i < M. From the first-order

conditions for surplus maximization,

7 = U (y (077 (1) e a7 = U (3 (07) |y (12)
so that
- , N . B(noB+P) %
P _ Mr"p _ U (v ()Y ®") lpr=prp _ (noB+P—pr)2P _ noB + P -
Re o Mmooy (p) U (v (7)) lpr=prey (P7) P et noB + P —p
As M — oo, p™* — 0, and soR?/R* — 1. u

When Assumption 2 is not satisfied, the power auction may cidiss revenue than the SINR
auction, since the former might not be able to achigweose tol. However, for logarithmic
utilities the relation between the revenues remains theesam

Proposition 4: Given co-located receivers with logarithmic utilitiessasie there exists &
such thatd; <6 for 1 <i < M. ThenR? > R* and R’ /R* — 1 as M — oo.

The proof is given in Appendix C. Notice that in Proposition 4 do not require identical
utilities or the same in both auctions. Hence with logarithmic utilities the povaection always

generates more revenue.

IV. LARGE SYSTEM ANALYSIS

In this section we consider the asymptotic behaviorPas3, M and (3 go to infinity, while

keeping P/M, B/M and 3/M fixed. We focus on co-located receivers and assume that each

"We note that other auction mechanisms may extract more revenue.
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user:’s utility parameter; is independently chosen according to a continuous prababdénsity
f(0) over [6,0], where0 < § < § < co. The expected value df is denoted as [6] .

Proposition 5: In an SINR auction with logarithmic utilities and co-locdteeceivers, a unique
NE exists in the large system limit if and only if

M

m* > my, = B 0] (no + P/B) 5. (13)

In this case, the power and SINR allocations at the NE are eigmax-min fair with weights

{0}, <i<pr» @nd user paysd;. If condition (13) is not satisfied, no NE exists.

E[60](no+P/B)
™P/M

As nn — 1, the pricer® converges tar},, which is proportional to the system load/P. This

The proof is given in Appendix D. The system usage efficieridyh@ NE isn =

coincides with thecongestion pricing schempgroposed in [16], where the equilibrium price
reflects the system congestion.

In the limiting system with co-located receivers, all userseive the same fixed noise plus
interference leveln, + P/B) at the NE, because each user gets a negligible proportiomeof t
total power. This makes the SINR and power auctions equivaler® = (no + P/B) nP. The
socially optimal allocation maximizes the average utifiigr user. (Note that the total utility is
infinite.)

Assumption 3:The utility U (0, ~) is asymptotically sublinear with respectioi.e.,

llm lU(6’,7) =0, V6.

Theorem 4:In the limiting systevm ov?i?h co-located receivers[if(f, v) satisfies Assumptions
1 and 3, then both the SINR and power auctions can achiseeial optimality for any: € (0, 1).

A sketch of the proof is given in Appendix £EAssumption 3 is valid for common utilities,
e.g.,f0ln(v), ln (1 +~), andbv“ for any a € (0,1), and any upper-bounded utility. Under
this assumption, even if a finite number of users are alldcata-negligible proportions of the
total power, their contributions to the average utility tee negligible as the number of users
increases. Because of this, the socially optimal allocafjimes each user finite power, and so
each user sees the same interference lewek- P/B). In that case, both auctions can achieve

results that are arbitrarily close to that of a VCG auction.

8Theorem 4 can be generalized to the case of a non-collocated meastiEwnt. Here we consider only the co-located case

to simplify the proof.
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V. ITERATIVE AND DISTRIBUTED BID UPDATING ALGORITHM

In Sect. Il, we assumed that the users’ utility functions atidhe channel gains are public
information, so that the auction can be analyzed as a simagdizs-move game with complete
information. In practice, the users’ utilities are likely be private information, and it is difficult
for user: to measure the channel gains associated with other userg,;j. for j, k£ # 7. In that
case, users cannot find the NE of the auction in one iteralNemt, we present an iterative and
fully distributed algorithm that converges to the NE of th&B auctions.

Suppose users update their bids according to the best ms@grsimultaneously in iterations
t=1,2,---,le.,

b = KbV 4 kB, (14)

whereb® is an arbitrarily chosen feasible initial bidding profile.
Proposition 6: If there exists a unique NE in the SINR auction, then the upadgorithm
(14) globally converges to the NE from any positit€.
Proof: For a unique NE we must had& > 0 (component-wise)k, > 0 and px < 1.

Under this conditions iteratingl4) gives

t—o0 t—o00 t—o00

lim b = lim [K'] +m42whw (I—K) " ko3,

which is the unique NE. [ |
Next, we show that14) can be equivalently written in a distributed fashion, wheaeh user
only needs to measure the channel g’%niiin: hii/hi, the background noise density, and his
received SINR%(” in each iteratior.
Proposition 7: In the SINR auction{14) is equivalent to the following distributed updating

algorithm for each user in iterationt = 1,2, ...

g: (7°) Phyi — g; (7°) %(t_l)no P i 4D S

pH — (t=1) pj s (t—1) i Vi > U,
i =9 % Phi—gi(m)y ng (15)

0, if 47 =0,

with an arbitrarypositiveinitial profile 5.

®Note that here we are still referring to the NE of the simultaneous move ganie Sect. 1I-C.
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Proof: From the proof of Theorem 1, we know that by following the bestponsg14)
in iterationt, each uses submits a bidb,gt) in an attempt to achieve; <b§t); bﬁ;”) = g; (7%),

which maximizes his surplus during iteratiossuming the other bids are fixedb&fl). Using
(3) and (4), we have

g (1) (no (Z#i bg‘t_l) T ﬁ) +(P/B) (Z#i bﬁ‘t_l)ﬁﬁ * ﬁhm))

b = _
' Phy — g; (%) ng

(16)

Again using(3) and(4) for the SINR at iteratiort — 1, we have

ng (iw: b+ ﬁ) +(P/B) (i bV hy; + ﬂhm) = p{Y <Pﬁn~ - fyi(t*”nO) /Y (@)
J#i j#i

if ~"! > 0. By substituting this into(16) and noticing the fact that"™" = 0 if and only if
bz(.t_l) = 0, we get the desired result. n

The update(15) requires only that user measureh,;;. There is no need to know the other
users’ bids. This makes the algorithm distributed and dbala

The updateg(14) is similar to the Parallel Update Algorithm in [20] where tsepdate their
bids via a myopic strategy. Unlike Fig. 2 in [20], here the smtre of bids does not oscillate
if each useri chooses an initial bicbz(o) that is very small (close to zero). This is due to the
nonnegativity of the matri¥. Intuitively, this is because the users’ best responses tsirategic
complementarity” [21] — roughly, this means when one usensts a higher bid, the others want
to do the same. In that case, gradient-based or random gpdateot improve convergence.

The update(14) is mathematically similar to the power control algorithnoposed in [22]
(see also [23], [24]) for a cellular network, where usersuatiheir powers (without any power
constraints) to meet some preset target SINRs. In those gaper matrixiK depends only on
the channel gains and the target SINRs, and so may not satisfyx 1 (in which case there
would not be a feasible allocation). There are several kéfgrdnces betweeril4) and the
algorithm in [22]: (1) We consider elastic data traffic with@ preset target SINR; (2) We have
a total received power constraint; (3) We use the algoritbradjust bids instead of the power
itself; and (4) We can adjust the price so that a unique NE y#wexists. The mathematical
similarity arises from the fact that by designing approjgriauction mechanisms, we convert
the constrained power allocation problem into an uncoimgtanon-cooperative game, in which

each user updates his bid in an attempt to reach the desitgidoegm SINR level.
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In practice, we would like to guarantee a unique NE, whichumag7* > 7}, and to achieve
high efficiencyn, which requires thatr® be close tor},, without knowing the exact value of
m,- The manager must adaptively search for a suitable priceumsimulations, we use the
following search method:

1) Initialization: Set(w,7) = (0,00); choose an arbitrary initial price® > 0, and a

maximum number of iteration®. Setn = 0.

2) Start the auction at price™, setn = n + 1.

a) If the auction does not converge within iterations, then stop. Let = 7=V, If
7 = 0o, setr(™ = 2x(»=1); otherwise, setr™ = (r +7) /2. Go to2.
b) If the auction converges withifi” iterations withn < n*, then sett = 7(*~Y and
7™ = (z +7) /2. Go t0 2,
c) If the auction converges withiir iterations withn > n*, then stop.
Although we only discuss SINR auctions with logarithmiditiés, the bid updating algorithm
also works for a power auction with co-located receivers kgadrithmic utilities, as well as

some other utilities such ds; (v;) = 6;log (1 + ;). 1°

VI. NUMERICAL RESULTS

We first present some numerical results with logarithmitties and co-located receivers. In
graph represents an average oved independent realizations.

Figures 2 and 3 show average utility per user for the two anstialong with the socially
optimal allocation. In both auctions, we set the prices stshs close tol. From Theorem 2, the
power auction achieves social optimality 8y (Bn,) < 0 dB. Figure 2 shows that the difference
in utilities achieved by the two auctions is negligible insthregime. ForP/ (Bn,) > 0 dB, the
utility is not concave with power, and the SINR auction aghga higher utility higher than the
power auction. In Fig. 3, we scale the system as in Sect. Id,cwoseP/ (Bny) = 20 dB so
that the utility is not concave in poweWhen M < 14, the auctions do not achieve the socially
optimal solution. For largeV/, the utilities for both auctions and the socially optimalusion

converge to a constant. For this example, the asymptotiavi@his accurate fon/ > 14.

again, we note that in some cases a tangeimay not be achievable in the power auctions.
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Figures 4 and 5 show the performance of the distributed bahtipg algorithm. Figure 4
shows the users’ bids starting from very small initial bia&l anonotonically converging to the
unique NE bids. Figure 5 shows the performance of the upglalgorithm as the system is
scaled. The target system usage efficiencis chosen to bé.90, 0.95 and0.98, respectively. We
can see that the number of iterations needed for convergeosEases with\/ and approaches
a constant whenV/ is large (i.e.,M > 20). This shows that the algorithm scales well with

the system size. The figure also shows that the number otidesaneeded for convergence
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increases withy*, implying that fast convergence and high system usageesiftgi are generally

conflicting objectives.

Users’ Bids
N

0 10 20 30 40 50 60 70 80
Number of Iterations

Fig. 4. Performance of the myopic bid updating algorithm with logarithmic utiliied co-located receivers: bids for each

user vs. iterations for a finite system witt?/no, B, M, 3) = (10%,10°,10,1) andn* = 0.95
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Fig. 5. Performance of the myopic bid updating algorithm with logarithmic utilitesl co-located receivers: number of
iterations required for a system wittP/no, B) = (104M, 102M) and different target)*

Next we show some numerical examples with non-collocatedivers. Figures 7 and 8 show
the convergence of users’ bids and transmit powers in an SibN&ion using the distributed

algorithm in Sec. V for the network shown in Fig. 6. The netiwdras three users, with
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transmitters and receivers located at grid points. The tjaklns between nodes are inversely
proportional to the square of the distance. All users hawe shme logarithmic utility with
0, = 10. Proposition 2 says that all users achieve the same SINR d&iEhe he final bids and
transmit powers depend on the distance between the usarsntitters and the measurement
point. Since user 3's transmitter is furthest from the measent point, useB can obtain a
relatively high transmit power with a small bid. It is easydee that if all users transmit with
the same power, user 2 receives the most interference, andlLu®ceives the least. Figure 8
shows that after compensating for the interference, user&mits with the highest power, and

user 1 transmits with the lowest power.

Fig. 6. A three-user network model

35

Bids

0 20 40 60 80 100 120 140 160
Iterations

Fig. 7. Convergence of bids in the three-user network
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Fig. 8. Convergence of transmit power in the three-user network

VIlI. CONCLUSIONS

We have considered spectrum sharing among a group of sppeatriem users with a con-
straint on the total interference temperature at a pagiameasurement point. We proposed two
auction mechanisms, SINR- and power-based, that allocaterpesing a simple proportional
bidding rule. When combined with logarithmic utilities, tis#NR auction leads to a weighted
max-min fair SINR allocation. The following results weretained for the special case in
which the receivers are co-located with the measurementt.pbiamely, the power auction
maximizes the total utility with large enough bandwidthsé\| subject to certain assumptions on
the utility functions, the power auction generates moremere than the SINR auction, although
the difference in revenue collected by the two auctionssras as the number of users increases.
Both auction mechanisms achieve social optimality (i.exim&e utility per user) in the large
system limit where bandwidth and power are increased in fpregortion. We also presented
an iterative, distributed bid updating algorithm, whichr foth auctions converges globally to
the NE.

In this work we have assumed that the users and channelsatie and that the interference
temperature is measured at a single location. Relaxing thesemptions leads to directions
for future research. A related topic is how to assign bantwa&hd power in the context of
the Commons spectrum usage model, where there is no spectamager to preside over the

resource allocation. In that situation, a primary goal igvoid the “tragedy of commons”.
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APPENDIX
A. Proof of Theorem 1
Casel (8 > 0): We first specify the best respon8e(b_;) for useri € {1, ..., M} with surplus
Si (bi3 b—i) = Ui (7 (bi; 0—4)) — 77 (bi;0—) - (18)
Define the normalized channel gﬁrﬁ = hj;/hjo for all j,i > 1 so that
b;hiy PB
noB (L)L b+ B) + P (5, bihii + Bhot )
Notice that for any fixed_;, v; (b;;b_;) < Pﬁii/no and equality is achieved whén — oc.

Vi (bi; b*i) = (19)

Differentiating (18) with respect tob; yields

9S; (bi;b_i) [ OU; (i (bis b_s)) ] 0 (bi; b_y)
o { oy (bisbs) o (20)
where
vy (o8 (S ) e (i)

ob; <TLOB (E]]\il b; + 5) + P <Zj7éi bjilji + ﬁh0i>>2

Since the term in brackets {R0) is strictly decreasing ih;, .S; (b;; b_;) is a strictly quasi-concave

function of b;, and there exists a unique best response for ys8r(b_;), that satisfies

B; (b—i) = oo, if < Uy (2)
OU; (i (Bi (b—i) ;0_4)) . Pivs
=, i U (5 s < U 22
i (B (b—) ;0-) ™, U ( no ) <7 <Ui(0) (22)
B; (b-i) =0, it U!(0) <7

If 7° > maxj<;<p U/ (ﬂ) , thenB; (b_;) < oo, and can be shown to satisfy

no
Bi(bi) = Z kijbj + ki, (23)

ji
wherek;; is defined in(6), ko is defined in(7) andg; (7°) is defined in(8) . Therefore, if the

auction has a unique NE', then it is the unique component-wise nonnegative soluton
(I—K)b=kof, (24)

where K = [kij], jcy .y With k; = 0 for all 4, and kg = (kuo, ..., karo).** Define i =
arg maxX;eq1,. my U] (Pil“') andr = Ul <%) (e, gi(m) = %) Whenz® > 7, K is a

""" no no no

we denote all vectors as row vectors. The need for transposition sheubtear from the context.



23

nonnegative matrix (i.e., all entries are nonnegative) &pds also nonnegative component-
wise. Let px be the spectral radius of matriK. If px < 1, thenlim, .. K" = 0, and
I-K) =32 K" exists and is nonnegative. In that case, there is a uniqueaoent-wise

nonnegative solution t¢24) given by

b = (i K”) ko3, (25)
n=0

which represents the unique NE of the auction. On the othed hfp, > 1, then) ° K" =
oo, and the auction has no NE.

To show the existence of},, as defined in the theorem, we will consider the following two
subcases: (I.1) Only usérhas a positive best response at pricd.e., g; () = 0 for all [ # i,
and (1.2) There is at least one other usef 7 who has a positive best response at price

Subcase 1.1 (g; (m) = 0 for all [ # 7): Here we must have;, = =. This is because for any
7w >m, B;(b_;) =0 for all [ # 7, and the unique NB* = (0, ...,0,0%,0, ...,0) where

b: = k3 > 0. (26)

For all 7* < 7, B; (b_;) = oo and there exists no NE.

Subcase 1.2 (31 # 7 such thatg, (x) > 0): To prove this subcase we first show the following
two statements(i) px is continuous and nonincreasing 4ri. (ii) There existsrj; > & such
that px (75;,) < 1. Sincepk (z) > 1, it then follows that there exists;, € [r, 73;) such that
pi (m°) > 1 foranyr < n* < xj,, andpk (7°) < 1 for any #* > =7,. Additionally, we show
that in this subcaser;, > =, i.e., there existsr; > « such thatpx (75) > 1.

To show (i), let x = (x4, ...,x),) be a nonnegative vector. From Corollag).3 of [25] and

the fact that a square matrix has the same eigenvalues aantpbse, we have

M
1
%) = 1 — k’z s iy 27
pr (%) o B T j (%)@ (27)
w7£0 :E]'750 i=1

where the dependence pf; and k;; on 7* are explicitly shown. Letc* (7°) be a vector that
achievespy (7°) in (27). Note thatz* (7°) must have more than one positive entry, otherwise
pi (m°) = 0. Assume thatr < n° < 7°. From (6), k;; (7°) iS nonnegative, continuous and
nonincreasing int® > m. Hence,

1 LM
T Z kij (%) 2 > — Z ki (7°) z; (28)

:L‘.
J i=1 J =1
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for any nonnegativer that has more than one positive entry and# 0. This implies that

max min — k; r; > max min — kii (70°) @, 29
> : i () @i 2 x>0 je{l,... M} T; 4 i () @i (29)
x#0 ;70 =1 x40 ;70 =1

i.e., px (m°) > px (7°). Since each eigenvalue of a square matrix depends contilyuopsn
its entries (see appendi® of [25]), px (7°) is continuous and nonincreasingfi for 7* > .

To show (ii) , we have from Theorem 8.1.22 of [25],

M
pi (7°) < jemax ) ki (7°). (30)
i#]
Thus it is sufficient to show that
kij () < ! (31)
ZJEI{I}?.).%M} i\ M—-1

Using (6), a sufficient condition for31) is

5>  max U/ PB mlnze{l ..... M} il'm >  max U, P}AZ” -
H ie{l,...,M} ’ MBnO + (M — 1) PmaXiJe{l 77777 M} h]z i€{l,....M} ‘ No o
(32)

To show there existg] > m such thatpx (75) > 1, from (27) it is sufficient to show that

there exists am > 0 andd > 0 such thatr; = = + ¢ and

ka s —>1vje{1 MY (33)

=1
From(8) and the assumptions in Subcase 1.2, biotty (7*) and1/g, (7*) are positive, continuous
and strictly increasing functions for® € [r, 7 + ¢') with ¢’ < min (U] (0),U; (0)) — @. Then

for any givend; > 0 and o, > 0, there exists @&’ > 0 such that for any < ¢,

1 1
0< — < (5{, 34
0@t #@ (34)
0< 1 — 1 S (Sl. (35)

g(m+0) g (x)

If we let §, = 1/g,(m) — no/ <Pim> > 0, & = n3/ <45;P2ﬁﬁﬁll> >0, z; = 1andz; =
<no/Pﬁﬁ) /6; for all j # 7, then
e (o i) ()

el L k@4 0) = ky (7)Y AT (36)
¢ * gi(m+d)  gi(m)
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where we have used the fact thatn) = Phs/ny by definition. Thusk;; (m}) a;/a; > 1 for

any j # 1. Also
7 46, 1/gi () —no/ <P}Alu) +0 1/gi(m+ 6x) —no/ (Pﬁ”> 1
L > \ > : ; ] _ _
s no/ (Ph”> no/ (Ph”> TLQ/ (Phll) + hil/ (Bh”> kli (WL)
(37)

i.e., ki (7)) x;/z; > 1. Combining(36) and (37) give (33), hencepk (75) = px (7 + 0,) < 1.
Case Il (5 = 0): First, we observe tha™ = 0 is an NE if and only if

Ph; Ph;

o
That is, if all other users bid zero, then us&r best response bid is also zero since a positive
bid gives the change in surplussS; (b;;b_;) = U; <i) _ s Phu _ U; (0) < 0. Furthermore, if

i1
no no

Vi (38)

N

there is a unique NE, thebi" = 0. This is because if there exists a nonzérowhich is a NE,

then for any scalav > 0, vb" gives the same surplus values, hence is also a NE. Thus there
are an infinite number of Nash Equilibria. Finally, there & NE when=* is too small (e.g.,

m < U] <ﬂ> for some uset).

no

B. Proof of Theorem 2

Given ane € (0,1), it is straightforward to write out the Kuhn-Tucker (KT) catidns for

the total utility maximization problem of the-system with co-located receivers:
M

maximize » U, (v; (pi°)) (39)
p’!'E ZO Z:l

o
no + (P —pj°) /B

M
Y pF<P(l-e).
=1

Since problem(39) is a strictly convex maximization problem under Assumptinthe KT

subject to v; (pi°) =

conditions are necessary and sufficient for the unigigecial optimal solution.

In the power auction, useéis surplus functions; (b;; b_;) = U; (7 (pf (bi; b—;)))—7Ppf (bi; b_;)
is a strictly quasi-concave function in. Hence there exists a unique valuebpthat maximizes
S; (bi; b_;) for fixed b_;. By settingzn? equal to the Lagrange multiplier in the KT conditions for
problem(39), the set of best responses for the users is the solution to Theokiditions. Thus

the power profile at the NE achievessocial optimality for any € (0,1).
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C. Proof of Proposition 4

With logarithmic utilities and co-located receivers, thesthorder conditions for surplus max-

imization for user: gives

i (0,7 (077)) i (0i7) P (B + P — p) (40)

Thus,
P =\ " g 0, = R* 41
R Zﬂ Znompp Z R, (41)

=1
where the last equality is shown in the proof of Propositiorif2d; < @ for eachi, then as

M — oo, pi* — 0 for each uset, and R?/R* — 1.

D. Proof of Proposition 5

We obtain(13) by taking the limit of the conditions in Proposition under the assumed
scaling. LetLim denotelimpB Moo With P/B,P/M, B/M fixed. Thus,

M

7r5—|—0/B ML Pre ~ P/Mr

E10]
(42)
with probability 1. The first equality follows from the definition df; in (9), the second follows
from the limit B — oo, and the third follows from the strong law of large numbersndition
(13) then follows directly. The weighted max-min fair SINR al&ion and payments stay fixed
during the limiting process. Since every user sees the sanse plus interference at the NE,
no + P/ B, we havep!* = ~f(no+ P/B) for all . This corresponds to a weighted max-min fair

power allocation.

E. Proof of Theorem 4 (Sketch)

In the limiting system, the maximum average utility per usethe solution to:

- " (6)
masimze 20 |0 (0.7 s )| )

subject to Ey[p" (0)] = % (1—¢)

The objective is the average utility per user, and the camgtcorresponds to the total received
power constraint in the-system. In both cases we have used the law of large numbexptess

these in terms of expectations owver
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The optimization is over all received power allocatiop’s; [Qﬂ — RT. We first prove the
following lemma:
Lemma 2:There exists a power allocatigri (¢) that solves (43), which is finite everywhere,

i.e.,

lim pr}@ =0,v0 € [9,0] . (44)

P—oo

This lemma implies that each user receives a negligibletinacof the total power as the
system scales. The lemma can be proved by contradictiomelflemma were not true, then
at least one user would be allocated infinite power as theesystales. Because the utility is
sublinear, this user would contribute a negligible amowonthe average utility. Thus we could
reallocate the user's power among the remaining users aictlystncrease the average utility.
This gives a contradiction, proving the lemma.

Lemma 2 ensures that at a solution to (43), each user recthieesame interference plus
noiseny + P/ B. This makes (43) a strictly concave maximization problem.uBing calculus of
variations [26], we can solve fgr(6) in closed form, as well as for the corresponding positive
Lagrange multiplier\ for the average power constraint. Letting = \ or 7° = (no + P/B) A

results in the same power allocation at the NE for the powdr@3NR auctions, respectively.
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