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Auction-based Spectrum Sharing

Jianwei Huang∗ Randall A. Berry† Michael L. Honig‡

Abstract

We study auction mechanisms for sharing spectrum among a group of users, subject to a constraint

on the interference temperature at a measurement point. Theusers access the channel using spread

spectrum signaling and so interfere with each other. Each user receives a utility that is a function of

the received signal-to-interference plus noise ratio. We propose two auction mechanisms for allocating

the received power. The first is an auction in which users are charged for received SINR, which, when

combined with logarithmic utilities, leads to a weighted max-min fair SINR allocation. The second is

an auction in which users are charged for power, which maximizes the total utility when the bandwidth

is large enough and the receivers are co-located. Both auction mechanisms are shown to be socially

optimal for a limiting “large system” with co-located receivers, where bandwidth, power and the number

of users are increased in fixed proportion. We also formulatean iterative and distributed bid updating

algorithm, and specify conditions under which this algorithm converges globally to the Nash equilibrium

of the auction.
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I. I NTRODUCTION

There has been growing interest in making more efficient use of spectrum by shifting from the

conventional “command-and-control” spectrum usage modelto more flexible “Exclusive Use”

and “Commons” models (e.g. see [1]). In the Exclusive Use model, the licensee has exclusive

rights to the spectrum, but could allow other users to purchase access rights to the spectrum

when it is underutilized. In the Commons model, spectrum is unlicensed and an unlimited

number of users can share spectrum with usage rights governed by technical standards. In either

model, a basic question is how to share the available spectrum efficiently and fairly. A proposed

requirement (e.g. see [1]) is that theinterference temperaturein the spectrum band be kept under

some threshold, where interference temperature is defined to be the RF power measured at a

receiving antenna per unit bandwidth.

In this paper, we study a spectrum allocation problem under such an interference temperature

constraint. This model is motivated by the scenario in whichusers wish to purchase a local,

relatively short-term data service. The spectrum to be usedmay be licensed to an independent

entity (e.g., private company) or controlled by a government agency, either of which we refer to

as amanager. Users may transmit to receivers at different locations, orto co-located receivers at

a single access point. In both cases, the manager controls the amount of bandwidth and power

assigned to each user in order to keep the interference temperature at a given measurement point

below a certain threshold. We assume that all users adopt a spread spectrum signaling format, in

which the transmitted power is evenly spread across the entire available band controlled by the

manager. This allows efficient multiplexing of data streamsfrom different sources corresponding

to different applications, and reduces the combined power-bandwidth allocation problem to a

received power allocation problem. Each user has a utility,which is a function of the received

Signal-to-Interference plus Noise Ratio (SINR), reflecting his desired Quality of Service (QoS).

The interference a user receives depends on the other users’transmission powers and the cross-

channel gains, as well as the bandwidth.

In this setting, an interference temperature constraint isequivalent to a constraint on the

received power at the measurement point. This allows us to view the received power as a divisible

good; we study auction mechanisms for allocating this good.It is well known that a Vickrey-

Clarke-Groves (VCG) auction can be used to achieve a socially optimal allocation, i.e., maximize
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the total utility [2]. However, as discussed in Sect. II-B, this may not be suitable here due to

the required information from the users and the computational burden on the manager. Instead,

we propose two auctions mechanisms that allocate the received power as a function of bids

submitted by the users and the price announced by the manager. We model the resulting problem

as a non-cooperative game [2], and characterize the Nash equilibria and related properties of

the two auctions. We first analyze these auctions as a simultaneous move game, assuming all

information (i.e., utilities and link channel gains) is available to the users (but not to the manager).

We subsequently formulate an iterative and fully distributed algorithm, which only requires the

users to obtain limited local information in order to converge globally to the Nash equilibrium

(NE). This makes the auction mechanisms easily implementable and scalable with the population

size.

Our approach is similar to ashare auction(see [3]–[8] and the references therein), ordivisible

auction, where a perfectly divisible good is split among bidders whose payments depend solely

on the bids. A common form of bids in a share auction is for eachuser to submit his demand

curve (e.g., [3]–[5]), i.e., the amount of goods a user desires as a function of the price. The

auctioneer can then compute a market clearing price based onthe set of demand curves. However,

in our problem, a user’s demand curve for received power alsodepends on the demands of other

users due to interference. On the other hand, if the demand curves are viewed in terms of SINR

so that they are mutually independent, the market clearing price for SINR is not easy to find

since the constraint is on received power. To overcome thesedifficulties, we adopt a signaling

system similar to [6]–[8], where users submit one dimensional bids for the resource.

We assume a weighted proportional allocation rule in which auser’s power allocation is

proportional to his bid. This type of allocation rule has been studied in a wide range of

applications (e.g., see [9], [10]) including network resource allocation (e.g., [6]–[8]). Given this

allocation, the users participate in a game with the objective of maximizing their own benefit.

It is well known that the NE typically does not maximize the total system utility [11]. This has

been referred to as theprice of anarchy(e.g., [6]). In order to achieve a more desirable NE, we

allow the manager to announce a unit price (e.g., [12], [13])either for received SINR (a SINR

auction) or received power (a power auction). An SINR auction with logarithmic utilities leads

to a weighted max-min fair SINR allocation. A power auction maximizes the total utility for a

large enough bandwidth with co-located receivers. Both auctions maximize the total utility in a



4

large enough system with co-located receivers if the total power and bandwidth are increased in

fixed proportion to the number of users. Related work on uplinkpower control for CDMA has

appeared in [13]–[16]. A key difference here is that there isa constraint on the total received

power at all times1. Because of this, a user’s interference depends on his own power allocation,

which can make the problem non-convex.

We assume the user population is stationary, i.e., the usersand their corresponding utilities

stay fixed during the time period of interest. On a larger time-scale one can view time divided

into periods, during which the number of users and each user’s utility are fixed and the proposed

auction algorithm is used. When a new period begins, users mayjoin or leave the system.

Remaining users may update their utilities to reflect changesin their QoS requirements. For

example, a user with data that must be delivered by a deadlinemight increase his utility (as

a function of SINR) as the deadline approaches. Here we do not consider mechanisms and

associated dynamics over multiple periods.

The remainder of the paper is organized as follows. After introducing the auction mechanisms

in Sect. II, we analyze the performance for a finite system andfor a limiting “large system”

in Sect. III and IV, respectively. In Sect. V we give an iterative and distributed bid updating

algorithm, and show that it converges globally to the uniqueNE of the auction when one exists.

Numerical results are given in Sect. VI and conclusions in Sect. VII. Several of the main proofs

are given in the Appendix.

II. A UCTION MECHANISMS

A. System Model

Spectrum with bandwidthB is to be shared amongM spread spectrum users, where a

user refers to a transmitter and an intended receiver pair. User i′s valuation of the spectrum

is characterized by a utilityUi (γi), where γi is the received SINR at useri’s receiver. We

primarily consider the case where each user’s utility is given by Ui (γi) = U (θi, γi), where

θi is a user-dependent parameter. As a particular example, we consider thelogarithmic utility

Ui (γi) = θi ln (γi).2

1We assume that any transmission power constraint for each user is large enough so that it can be ignored.

2This approximates the weighted rate of useri in the high SINR regime.
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Fig. 1. System model forM transmitter-receiver pairs

Assumption 1:For each useri, Ui (γi) is increasing, strictly concave, and twice continuously

differentiable inγi.

Utilities that satisfy this assumption are commonly used tomodel “elastic” data applications

[17]. For eachi , the received SINR is given by

γi =
pihii

n0 + 1
B

(∑
j 6=i pjhji

) , (1)

where pi is user i’s transmission power,hij is the channel gain from useri’s transmitter to

userj’s receiver, andn0 is the background noise power that is assumed to be the same for all

users. To satisfy an interference temperature constraint,the total received power at a specified

measurement point must satisfy
M∑

i=1

pihi0 ≤ P, (2)

wherehi0 is the channel gain from useri’s transmitter to the measurement point. The system

model is shown in Fig. 1. A power allocation isPareto optimal if no user’s utility can be

increased without decreasing another user’s utility.

Lemma 1:A power allocation scheme is Pareto optimal if and only if thetotal received power

constraint is tight, i.e.,
∑M

i=1 pihi0 = P .

This follows because if the power constraint is not tight, then each user can increase their

power by a factor ofP/
∑M

i=1 pihi0, which increases the SINR for every user. Lemma1 does not

require Assumption 1; in particular,Ui (γi) does not have to be concave inγi, although it must
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be strictly increasing. Note that Pareto optimality does not indicate how to split resources among

users, only that the resource should be fully utilized. A stronger condition issocial optimality,

where the total utility
∑M

i=1 Ui (γi) is maximized. Social optimality implies Pareto optimality,

but the reverse is not true. Therefore, to achieve social optimality, the manager should always

ensure that the received power constraint is tight.

A special case, on which we will focus, is when the receivers are co-located with the

measurement point. This could model a situation where a service provider purchases the spectrum

usage rights from the manager and provides service from a single access point. In this case,

hij = hi0 for all i, j ∈ {1, ...,M}, and we denote useri’s received power aspr
i = pihi0. In a

Pareto optimal allocation for this co-located receiver case, we have for each useri,

γi ≡ γi (p
r
i ) =

pr
i

n0 + 1
B

(P − pr
i )

,

so that useri’s utility Ui (γi (p
r
i )) under a Pareto optimal allocation does not depend on how the

power is allocated among the interferers.

We assume that each user’s utility is private information, i.e., only known to the user himself.

The manager must then devise a mechanism for allocating power without having this knowledge

a priori. Also the manager may not havea priori knowledge of the channel gains,hij ’s. One

such mechanism is the generalized VCG auction.

B. VCG Auction for Spectrum Sharing

A VCG auction results in a socially optimal outcome, and it is a(weakly) dominant strategy

for users to bid truthfully (i.e., state their true utilities). In our context, a VCG auction can

be described as follows: First, users are asked to submit their utilities {Ui (γi)}. The manager

then computes the power allocationp∗ = (p∗1, · · · , p∗M) that maximizes the total utility, i.e.,

Umax =
∑M

j=1 Uj (γj (p∗)) , given the received power constraint, and allocates power tothe

users accordingly. Furthermore, the manager computes the maximum total utility if useri is

excluded from the auction, i.e.,Umax /i = max{pj}/pi

∑
j 6=i Uj (γj) for each i ∈ M. In total,

the manager must solveM + 1 optimization problems. The manager then charges userm the

amountUmax /i −
∑

j 6=i Uj (γj (p∗)), which is the decrement in sum utility over all other users

from including useri in the auction.
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The VCG auction may not be suitable in this context for severalreasons:(i) In order to

completely specify the users’ utilities, in particular, the SINR in(1), for each useri, the channel

gainshij for all i, j ∈ {1, ...,M} must be measured by the users and reported to the manager.

This might be a heavy burden for the users in a large network.(ii) The manager must solveM+1

optimization problems, which are typically non-convex dueto the interference. This becomes

computationally expensive for largeM , and may not be suitable for online allocations. For these

reasons, we examine mechanisms that require less information exchange and less computation

for the manager.

C. One-Dimensional Auctions with Pricing

We now describe two auctions (SINR- and power-based) in whichusers submit one-dimensional

bids representing their willingness to pay, and the managersimply allocates the received power

in proportion to the bids. The users then pay an amount proportional to their SINR (or power).

The manager announces a nonnegative reserve bidβ, and uses a corresponding reserve power

that interferes with the other users. In contrast with the situation where the manager submits a

reserve bid to extract more revenue from the other bidders [18], here the main purpose of the

reserve bid is to guarantee a unique desirable outcome of theauction. We will show that the

interference generated by the manager can be made arbitrarily small. Although the two auctions

are relatively simple, we show that under some mild conditions they give power allocations that

are arbitrarily close to the allocation from a VCG auction.

Regarding the information structure of the auction, we first assume that it is a complete

information game, i.e., all users’ utilities and all channel gains are known to all users. In Sect. V,

we present a distributed algorithm that can achieve the NE ofthe auction with limited information,

where each useri only needs to measure the background noise densityn0, the channel gain ratio

ĥii = hii/hi0 and the SINR at his own receiver.

Simultaneous Auction Algorithm:

1) The manager announces a reserve bidβ ≥ 0, and a priceπs > 0 (in an SINR auction) or

πp > 0 (in a power auction).

2) After observingβ, πs (or πp), useri ∈ {1, ...,M} submits a bidbi ≥ 0.

3) The manager keeps reserve powerp0, and allocates to each useri a transmission power
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pi so that the received power at the measurement point is proportional to the bids, i.e.,

pihi0 =
bi∑M

j=1 bi + β
P, andp0 =

β
∑M

j=1 bi + β
P. (3)

The resulting SINR for useri is

γi =
pihii

n0 + 1
B

(∑
j 6=i pjhji + p0h0i

) , (4)

whereh0i is the channel gain from the manager (measurement point) to useri’s receiver3.

If
∑M

i=1 bi + β = 0, thenpi = 0.

4) In an SINR (power) auction, useri paysCi = πsγi (Ci = πppihi0)

A bidding profileis the vector containing the users’ bidsb = (b1, ..., bM). Thebidding profile

of user i’s opponentsis defined asb−i = (b1, ..., bi−1, bi+1, ..., bM), so thatb = (bi; b−i). In the

preceding auctions, each useri submits a bidbi to maximize hissurplus function

Si (bi; b−i) = Ui (γi (bi; b−i)) − Ci.

Here we omit the dependence onβ andπ.

An NE of the auction is associated with a bidding profileb∗ such thatSi(b
∗
i ; b

∗
−i) ≥ Si(b

′
i; b

∗
−i)

for any b′i ∈ [0,∞) and any useri. Define useri’s best responsegiven b−i as the set

Bi (b−i) =

{
b̂i | b̂i = arg max

bi∈[0,∞)
Si (bi; b−i)

}
,

i.e., the set ofbi’s that maximizeSi(bi; b−i) given a fixedb−i.4 The NE bidding profileb∗ is a

fixed point, i.e., no user has the incentive to deviate unilaterally. The existence and uniqueness

of an NE are shown in the following to depend onβ andπs (or πp).

These auction mechanisms differ from some previously proposed auction-based network re-

source allocation schemes (e.g., [6], [7]) in that the bids here are not the same as the payments.

Instead, the bids are signals of willingness to pay. The manager can therefore influence the NE

by choosingβ andπs (or πp). This alleviates the typical inefficiency of the NE, and allows us

to reach Pareto optimal, and in some cases, socially optimalsolutions.

3If h0i = 0 for all i ∈ {1, ..., M}, then the manager does not interfere with the users and many of the results in the following

section still hold. However, in the co-located case, we haveh0i = 1 for all i.

4In general the best response set may contain more than one element.
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III. F INITE SYSTEM ANALYSIS

A. SINR Auction

In this case,Ci = πsγi = πs pihii

n0+ 1

B (
PM

j 6=i pjhji+p0h0i)
, so that each user’s payment depends on

both the transmission power and the interference.

Theorem 1:In an SINR auction:

(1) For β > 0, there exists a threshold priceπs
th > 0 such that a unique NE exists ifπs > πs

th,

and there is no NE ifπs ≤ πs
th.

(2) For β = 0, one of the following is true:(i) there is a unique NE withb∗i = 0 for all i,

(ii) there are an infinite number of Nash Equilibria, or(iii) there is no NE.

The proof is given in Appendix A; as shown there, whenβ > 0 and πs > πs
th, the best

response for each user is unique, and the vector of best responses across users is given by

B (b) = Kb + k0β, (5)

whereK = [kij (πs)]i,j∈{1,...M} is a nonnegative matrix withkii (π
s) = 0 for all i and

kij (πs) =
gi (π

s)
(
n0B + Pĥji

)

PBĥii − gi (πs) noB
≥ 0,∀j 6= i, (6)

vectork0 = (k10, ..., kM0) has nonnegative elements

ki0 (πs) =
gi (π

s) (n0B + Ph0i)

PBĥii − gi (πs) noB
≥ 0, (7)

andgi (π
s) is a nonnegative and continuously nonincreasing function defined as

gi (π
s) =





∞, 0 ≤ πs ≤ U ′
i (∞) ,

U ′−1
i (πs) , U ′

i (∞) < πs < U ′
i (0) ,

0, U ′
i (0) ≤ πs.

(8)

The spectral radius of matrixK, ρK , satisfies0 ≤ ρK < 1. The unique NE is

b∗ = (I − K)−1
k0β =

∞∑

n=0

K
nk0β.

whereI is the identity matrix.

Since we would like to avoid case(2) in Theorem1, we assumeβ > 0 in the rest of the paper.

Notice that the value ofβ does not affect the power allocation at the NE, since all equilibrium

bids are proportional toβ. Thus the manager only needs to announce an arbitraryβ > 0. In
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general,πs
th in Theorem 1 is difficult to find analytically. However, in theco-located receiver

case with logarithmic utilities, we have a closed-form relation betweenπs
th and the users’ utility

parameters. Fori ∈ {1, ...,M}, define

ki (π
s) =

gi (π
s) (P + Bn0)

PB − gi (πs) n0B
. (9)

Proposition 1: In an SINR auction with co-located receivers and logarithmic utilities,ki (π
s
th) ≥

0 for each useri and
∑M

i=1 ki (π
s
th) / (1 + ki (π

s
th)) = 1.

This follows from the proof of Theorem 1 by using the fact thatwith co-located receivers

kil (π
s) = ki (π

s) for all l ∈ {0, ...,M} , and explicitly solving for the NE. The bidding and

power profiles at the NE are:

b∗i =

ki(π
s)

1+ki(πs)

1 −
∑M

j=1
kj(πs)

1+kj(πs)

β and p∗i =
ki (π

s)

1 + ki (πs)
P for i ∈ {1, ...,M} . (10)

Given the existence of a unique NE, we next characterize the resulting resource allocation.

We say an allocation{xi}i∈{1,...,M} is weighted max-min fairwith weights{wi}i∈{1,...,M} if for

eachi ∈ {1, ...,M}, xi can not be increased without decreasing somexj, j ∈ {1, ...,M}, for

which xj/wj ≤ xi/wi.

Proposition 2: If a unique NE exists in an SINR auction with logarithmic utilities, the SINR

allocation{γ∗
i }i∈{1,...,M} are weighted max-min fair with the weights{θi}i∈{1,...,M} given a fixed

reserve powerp∗0, and the payments{C∗
i }i∈{1,...,M} are proportional with the same weights.

Proof: User i’s unique best response satisfies

∂Ui (γi (Bi (b−i) ; b−i))

∂γi (Bi (b−i) ; b−i)
=

θi

γi (Bi (b−i) ; b−i)
= πs,

i.e., γ∗
i /θi = 1/πs for all i. Clearly, no user’s SINR can be increased without decreasinganother

user’s SINR. Useri’s payment satisfiesC∗
i /θi = (πsγ∗

i ) /θi = 1.

In [19], Kelly et al. consider an algorithm for rate allocation in a wire-line network with

logarithmic utilitieswi log (xi) for all usersi ∈ {1, ...,M}. In that case, the socially optimal rate

allocation{xi}i∈{1,...,M} is weighted proportional fairwith weights{wi}i∈{1,...,M}, i.e., for any

other feasible rate allocation{x′
i}i∈{1,...,M},

∑M
i=1 wi (x

′
i − xi) /xi ≤ 0. Their utility maximization

problem is convex and separable since there is no externality (i.e., interference) among different

users. Here, due to the interference among users, the problem is generally not separable (except
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in the co-located receiver case) and is typically not convex; thus the allocation achieved by the

SINR auction with logarithmic utilities typically is not socially optimal or proportional fair.5

In a system with a unique NE, define thesystem usage efficiencyby

η =

∑M
i=1 p∗i hi0

P
=

∑M
i=1 b∗i∑M

i=1 b∗i + β
.

For Pareto optimalityη = 1, but the necessary condition for the uniqueness of a unique NE is

η < 1 due to the required positive reserve bidβ, i.e., Pareto optimality and a unique NE are

conflicting objectives6.

We define anε-systemas one with parameters(P ε, Bε,M ε, nε
0) = (P (1 − ε) , B,M, n0 + εP/B),

whereε ∈ (0, 1). An ε-Pareto optimalallocation is defined as a Pareto optimal solution for the

ε-system.

Proposition 3: In an SINR auction, there exists a priceπs for any ε ∈ (0, 1), such that the

system has a unique NE and achieves anε-Pareto optimal solution (i.e.,η = 1−ε in the original

system).

Proof: From the proof of Theorem 1, it can be seen that asπs increases fromπs
th to ∞,

ρK (πs) decreases from1 to 0, and is continuous and nonincreasing in the interval. Also,the

bidding profileb∗ = (
∑∞

n=0 K
n) k0β changes from∞ (for at least one user’s bid) to0 (for all

users’ bids), and is also continuous and nonincreasing in the interval. This implies the same for

the summation
∑M

i=1 b∗i , which meansη =
∑M

i=1 b∗i /
(∑M

i=1 b∗i + β
)

decreases from1 to 0, and

is continuous and nonincreasing in the interval. So there must exist a priceπs ∈ (πs
th,∞) that

achieves anyη = 1 − ε ∈ (0, 1).

In practice, the manager can achieve a targetη∗ by adjustingπs after observing the usage

efficiency at the current NE: if it is too low, the price shouldbe decreased. Note that if the price

is decreased too much, there may not be an unique NE.

B. Power Auction

In this caseCi = πppihi0. For the co-located receiver case with logarithmic utilities, Proposi-

tion 1 still holds, but with a different expression forki (π
s) than that given in(9). The bidding

5Moreover, in this setting the socially optimal allocation with logarithmic utilities is not proportional fair.

6Here we are not including power used by the manager in our definition of Pareto optimality.
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and power profiles at the NE are again given by(10), but it may be impossible to find a price

πpε that gives an arbitraryη = 1 − ε. This is becauseUi (γi (p
r
i )) is not always concave in the

received powerpr
i , and so thepr

i that maximizes useri’s surplus may not be continuous with

price πp, i.e., it may jump from one local optimum to the other. As a result, η =
∑M

i=1 pr
i /P

may be discontinuous at some values ofπp.

We say that a power allocation isε-socially optimal if it maximizes the total utility of the

ε-system. In the case of co-located receivers, the power auction can achieve anε-socially optimal

allocation for a more general class of utilities.

Assumption 2:For eachi ∈ {1, ...,M}, Ui (γi) satisfies Assumption 1 and

|U ′′
i (γi)|

U ′
i (γi)

(γi + B) > 2 (11)

for any γi ∈ [0, P/n0].

Inequality (11) follows from setting∂2Ui (γi (p
r
i )) /∂2pr

i < 0 for any pr
i ∈ [0, P/hi0], i.e., the

utility is strictly concave in the received power. For the case of logarithmic utilities, Assumption

2 is satisfied if P/ (Bn0) < 0 dB. For many utilities (e.g.,θi log (1 + γi), 1 − e−θiγi, and

θiγ
α
i (α ∈ (0, 1))), Assumption 2 is satisfied when the bandwidth is large enough, so that the

interference among users is relatively small.

Theorem 2:In a power auction with co-located receivers and Assumption2, for anyε ∈ (0, 1)

there exists a priceπpε such that the system has a unique NE, and the NE achievesε-social

optimality.

The proof is given in Appendix B. Theorem 2 implies that with large enough bandwidth, so

that the externality effects among users are relatively small, the power auction with co-located

receivers can achieve an allocation that is arbitrarily close to that produced by a VCG auction,

and so is preferable to the SINR auction in terms of social optimality. When Assumption 2 is

not satisfied, the power auction may not be able to achieve anη close to1 (e.g., with logarithmic

utilities); this can result in a lower total utility compared to the SINR auction, which can achieve

any η.
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C. Revenue Comparison between SINR and Power Auctions

From the manager’s point of view, revenue maximization might be another important objective.

Here we restrict our discussion to the two auctions previously described for co-located receivers.7

Let Rp andRs be the revenue derived from the power and SINR auctions, respectively. We first

consider the case where users are identical (i.e., have the same utilities) and the utilities are

concave in power.

Theorem 3:Given co-located receivers, identical utilities, and Assumption 2, suppose further

that both auctions achieve the same system usage efficiencyη. ThenRp > Rs, andRp/Rs → 1

asM → ∞.

Proof: With identical utilities and same efficiencyη, both auctions allocate the same

received powerpr∗ to all users. LetU (γ (pr)) = Ui (γi (p
r
i )) for 1 ≤ i ≤ M . From the first-order

conditions for surplus maximization,

πp = U ′ (γ (pr)) γ′ (pr) |pr=pr∗ andπs = U ′ (γ (pr)) |pr=pr∗ (12)

so that

Rp

Rs
=

Mπppr∗

Mπsγ (pr∗)
=

U ′ (γ (pr)) γ′ (pr) |pr=pr∗pr∗

U ′ (γ (pr)) |pr=pr∗γ (pr∗)
=

B(n0B+P )

(n0B+P−pr∗)2
pr∗

pr∗B
n0B+P−pr∗

=
n0B + P

n0B + P − pr∗
> 1.

As M → ∞, pr∗ → 0, and soRp/Rs → 1.

When Assumption 2 is not satisfied, the power auction may collect less revenue than the SINR

auction, since the former might not be able to achieveη close to1. However, for logarithmic

utilities the relation between the revenues remains the same.

Proposition 4: Given co-located receivers with logarithmic utilities, assume there exists āθ

such thatθi ≤ θ̄ for 1 ≤ i ≤ M . ThenRp > Rs andRp/Rs → 1 asM → ∞.

The proof is given in Appendix C. Notice that in Proposition 4 we do not require identical

utilities or the sameη in both auctions. Hence with logarithmic utilities the power auction always

generates more revenue.

IV. L ARGE SYSTEM ANALYSIS

In this section we consider the asymptotic behavior asP , B, M andβ go to infinity, while

keepingP/M , B/M and β/M fixed. We focus on co-located receivers and assume that each

7We note that other auction mechanisms may extract more revenue.
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useri’s utility parameterθi is independently chosen according to a continuous probability density

f (θ) over
[
θ, θ̄
]
, where0 ≤ θ < θ̄ < ∞. The expected value ofθ is denoted asE [θ] .

Proposition 5: In an SINR auction with logarithmic utilities and co-located receivers, a unique

NE exists in the large system limit if and only if

πs > πs
th = E [θ] (n0 + P/B)

M

P
. (13)

In this case, the power and SINR allocations at the NE are weighted max-min fair with weights

{θi}1≤i≤M , and useri paysθi. If condition (13) is not satisfied, no NE exists.

The proof is given in Appendix D. The system usage efficiency at the NE isη = E[θ](n0+P/B)
πsP/M

.

As η → 1, the priceπs converges toπs
th, which is proportional to the system loadM/P . This

coincides with thecongestion pricing schemeproposed in [16], where the equilibrium price

reflects the system congestion.

In the limiting system with co-located receivers, all usersreceive the same fixed noise plus

interference level(n0 + P/B) at the NE, because each user gets a negligible proportion of the

total power. This makes the SINR and power auctions equivalent if πs = (n0 + P/B) πp. The

socially optimal allocation maximizes the average utilityper user. (Note that the total utility is

infinite.)

Assumption 3:The utility U (θ, γ) is asymptotically sublinear with respect toγ, i.e.,

lim
γ→∞

1

γ
U (θ, γ) = 0, ∀θ.

Theorem 4:In the limiting system with co-located receivers, ifU (θ, γ) satisfies Assumptions

1 and 3, then both the SINR and power auctions can achieveε-social optimality for anyε ∈ (0, 1).

A sketch of the proof is given in Appendix E.8 Assumption 3 is valid for common utilities,

e.g., θ ln (γ), θ ln (1 + γ), and θγα for any α ∈ (0, 1), and any upper-bounded utility. Under

this assumption, even if a finite number of users are allocated non-negligible proportions of the

total power, their contributions to the average utility become negligible as the number of users

increases. Because of this, the socially optimal allocationgives each user finite power, and so

each user sees the same interference level(n0 + P/B). In that case, both auctions can achieve

results that are arbitrarily close to that of a VCG auction.

8Theorem 4 can be generalized to the case of a non-collocated measurement point. Here we consider only the co-located case

to simplify the proof.
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V. I TERATIVE AND DISTRIBUTED BID UPDATING ALGORITHM

In Sect. II, we assumed that the users’ utility functions andall the channel gains are public

information, so that the auction can be analyzed as a simultaneous-move game with complete

information. In practice, the users’ utilities are likely to be private information, and it is difficult

for useri to measure the channel gains associated with other users, i.e., hjk for j, k 6= i. In that

case, users cannot find the NE of the auction in one iteration.Next, we present an iterative and

fully distributed algorithm that converges to the NE of the SINR auctions9.

Suppose users update their bids according to the best response(5) simultaneously in iterations

t = 1, 2, · · · , i.e.,

b(t) = Kb(t−1) + k0β, (14)

whereb(0) is an arbitrarily chosen feasible initial bidding profile.

Proposition 6: If there exists a unique NE in the SINR auction, then the update algorithm

(14) globally converges to the NE from any positiveb(0).

Proof: For a unique NE we must haveK ≥ 0 (component-wise),k0 ≥ 0 and ρK < 1.

Under this conditions iterating(14) gives

lim
t→∞

b(t) = lim
t→∞

[
K

t
]
b(0) + lim

t→∞

[
t−1∑

n=0

K
n

]
(k0β) = (I − K)−1

k0β,

which is the unique NE.

Next, we show that(14) can be equivalently written in a distributed fashion, whereeach user

only needs to measure the channel gainĥii = hii/hi0, the background noise densityn0, and his

received SINRγ
(t)
i in each iterationt.

Proposition 7: In the SINR auction,(14) is equivalent to the following distributed updating

algorithm for each useri in iteration t = 1, 2, ...

b
(t)
i =





gi (π
s) Pĥii − gi (π

s) γ
(t−1)
i n0

γ
(t−1)
i Pĥii − gi (πs) γ

(t−1)
i n0

b
(t−1)
i , if γ

(t−1)
i > 0,

0, if γ
(t−1)
i = 0,

(15)

with an arbitrarypositive initial profile b(0).

9Note that here we are still referring to the NE of the simultaneous move gameas in Sect. II-C.
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Proof: From the proof of Theorem 1, we know that by following the bestresponse(14)

in iteration t, each useri submits a bidb(t)
i in an attempt to achieveγi

(
b
(t)
i ; b

(t−1)
−i

)
= gi (π

s),

which maximizes his surplus during iterationt assuming the other bids are fixed atb
(t−1)
−i . Using

(3) and (4), we have

b
(t)
i =

gi (π
s)
(
n0

(∑
j 6=i b

(t−1)
j + β

)
+ (P/B)

(∑
j 6=i b

(t−1)
j ĥji + βh0i

))

Pĥii − gi (πs) n0

. (16)

Again using(3) and (4) for the SINR at iterationt − 1, we have

n0

(
M∑

j 6=i

b
(t−1)
j + β

)
+ (P/B)

(
M∑

j 6=i

b
(t−1)
j ĥji + βh0i

)
= b

(t−1)
i

(
Pĥii − γ

(t−1)
i n0

)
/γ

(t−1)
i (17)

if γ
(t−1)
i > 0. By substituting this into(16) and noticing the fact thatγ(t−1)

i = 0 if and only if

b
(t−1)
i = 0, we get the desired result.

The update(15) requires only that useri measurêhii. There is no need to know the other

users’ bids. This makes the algorithm distributed and scalable.

The update(14) is similar to the Parallel Update Algorithm in [20] where users update their

bids via a myopic strategy. Unlike Fig. 2 in [20], here the sequence of bids does not oscillate

if each useri chooses an initial bidb(0)
i that is very small (close to zero). This is due to the

nonnegativity of the matrixK. Intuitively, this is because the users’ best responses have “strategic

complementarity” [21] – roughly, this means when one user submits a higher bid, the others want

to do the same. In that case, gradient-based or random updates do not improve convergence.

The update(14) is mathematically similar to the power control algorithm proposed in [22]

(see also [23], [24]) for a cellular network, where users adjust their powers (without any power

constraints) to meet some preset target SINRs. In those papers, the matrixK depends only on

the channel gains and the target SINRs, and so may not satisfyρK < 1 (in which case there

would not be a feasible allocation). There are several key differences between(14) and the

algorithm in [22]: (1) We consider elastic data traffic without a preset target SINR; (2) We have

a total received power constraint; (3) We use the algorithm to adjust bids instead of the power

itself; and (4) We can adjust the price so that a unique NE always exists. The mathematical

similarity arises from the fact that by designing appropriate auction mechanisms, we convert

the constrained power allocation problem into an unconstrained non-cooperative game, in which

each user updates his bid in an attempt to reach the desired equilibrium SINR level.



17

In practice, we would like to guarantee a unique NE, which requiresπs > πs
th, and to achieve

high efficiencyη, which requires thatπs be close toπs
th, without knowing the exact value of

πs
th. The manager must adaptively search for a suitable price. Inour simulations, we use the

following search method:

1) Initialization: Set(π, π) = (0,∞) ; choose an arbitrary initial priceπ(0) > 0, and a

maximum number of iterationsT . Setn = 0.

2) Start the auction at priceπ(n), setn = n + 1.

a) If the auction does not converge withinT iterations, then stop. Letπ = π(n−1). If

π = ∞, setπ(n) = 2π(n−1); otherwise, setπ(n) = (π + π) /2. Go to 2.

b) If the auction converges withinT iterations withη < η∗, then setπ = π(n−1) and

π(n) = (π + π) /2. Go to 2.

c) If the auction converges withinT iterations withη ≥ η∗, then stop.

Although we only discuss SINR auctions with logarithmic utilities, the bid updating algorithm

also works for a power auction with co-located receivers andlogarithmic utilities, as well as

some other utilities such asUi (γi) = θi log (1 + γi). 10

VI. N UMERICAL RESULTS

We first present some numerical results with logarithmic utilities and co-located receivers. In

these simulations,{θi}i∈{1,...,M} are independently and uniformly distributed in[1, 100]. Each

graph represents an average over100 independent realizations.

Figures 2 and 3 show average utility per user for the two auctions along with the socially

optimal allocation. In both auctions, we set the prices so that η is close to1. From Theorem 2, the

power auction achieves social optimality forP/ (Bn0) < 0 dB. Figure 2 shows that the difference

in utilities achieved by the two auctions is negligible in this regime. ForP/ (Bn0) > 0 dB, the

utility is not concave with power, and the SINR auction achieves a higher utility higher than the

power auction. In Fig. 3, we scale the system as in Sect. IV, and chooseP/ (Bn0) = 20 dB so

that the utility is not concave in power. WhenM ≤ 14, the auctions do not achieve the socially

optimal solution. For largeM , the utilities for both auctions and the socially optimal solution

converge to a constant. For this example, the asymptotic behavior is accurate forM ≥ 14.

10Again, we note that in some cases a targetη∗ may not be achievable in the power auctions.
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Fig. 3. Utility comparisons in the large system limit of users with logarithmic utilities and co-located receivers:(P/n0, B) =�
104M, 102M

�
Figures 4 and 5 show the performance of the distributed bid updating algorithm. Figure 4

shows the users’ bids starting from very small initial bids and monotonically converging to the

unique NE bids. Figure 5 shows the performance of the updating algorithm as the system is

scaled. The target system usage efficiencyη∗ is chosen to be0.90, 0.95 and0.98, respectively. We

can see that the number of iterations needed for convergenceincreases withM and approaches

a constant whenM is large (i.e.,M > 20). This shows that the algorithm scales well with

the system size. The figure also shows that the number of iterations needed for convergence
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increases withη∗, implying that fast convergence and high system usage efficiency are generally

conflicting objectives.
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Fig. 4. Performance of the myopic bid updating algorithm with logarithmic utilitiesand co-located receivers: bids for each

user vs. iterations for a finite system with(P/n0, B, M, β) =
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Fig. 5. Performance of the myopic bid updating algorithm with logarithmic utilitiesand co-located receivers: number of

iterations required for a system with(P/n0, B) =
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and different targetη∗

Next we show some numerical examples with non-collocated receivers. Figures 7 and 8 show

the convergence of users’ bids and transmit powers in an SINRauction using the distributed

algorithm in Sec. V for the network shown in Fig. 6. The network has three users, with
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transmitters and receivers located at grid points. The linkgains between nodes are inversely

proportional to the square of the distance. All users have the same logarithmic utility with

θi = 10. Proposition 2 says that all users achieve the same SINR at theNE. The final bids and

transmit powers depend on the distance between the users’ transmitters and the measurement

point. Since user 3’s transmitter is furthest from the measurement point, user3 can obtain a

relatively high transmit power with a small bid. It is easy tosee that if all users transmit with

the same power, user 2 receives the most interference, and user 1 receives the least. Figure 8

shows that after compensating for the interference, user 2 transmits with the highest power, and

user 1 transmits with the lowest power.

���
���
���

���
���
���

R1

R2 R3

T3T

M

1

T2

Fig. 6. A three-user network model
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VII. C ONCLUSIONS

We have considered spectrum sharing among a group of spread spectrum users with a con-

straint on the total interference temperature at a particular measurement point. We proposed two

auction mechanisms, SINR- and power-based, that allocate power using a simple proportional

bidding rule. When combined with logarithmic utilities, theSINR auction leads to a weighted

max-min fair SINR allocation. The following results were obtained for the special case in

which the receivers are co-located with the measurement point. Namely, the power auction

maximizes the total utility with large enough bandwidth. Also, subject to certain assumptions on

the utility functions, the power auction generates more revenue than the SINR auction, although

the difference in revenue collected by the two auctions vanishes as the number of users increases.

Both auction mechanisms achieve social optimality (i.e., maximize utility per user) in the large

system limit where bandwidth and power are increased in fixedproportion. We also presented

an iterative, distributed bid updating algorithm, which for both auctions converges globally to

the NE.

In this work we have assumed that the users and channels are static, and that the interference

temperature is measured at a single location. Relaxing theseassumptions leads to directions

for future research. A related topic is how to assign bandwidth and power in the context of

the Commons spectrum usage model, where there is no spectrum manager to preside over the

resource allocation. In that situation, a primary goal is toavoid the “tragedy of commons”.
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APPENDIX

A. Proof of Theorem 1

Case I (β > 0): We first specify the best responseBi (b−i) for useri ∈ {1, ...,M} with surplus

Si (bi; b−i) = Ui (γi (bi; b−i)) − πsγi (bi; b−i) . (18)

Define the normalized channel gainĥji = hji/hj0 for all j, i ≥ 1 so that

γi (bi; b−i) =
biĥiiPB

n0B
(∑M

j=1 bi + β
)

+ P
(∑

j 6=i bjĥji + βh0i

) . (19)

Notice that for any fixedb−i, γi (bi; b−i) ≤ Pĥii/n0 and equality is achieved whenbi → ∞.

Differentiating (18) with respect tobi yields

∂Si (bi; b−i)

∂bi

=

[
∂Ui (γi (bi; b−i))

∂γi (bi; b−i)
− πs

]
∂γi (bi; b−i)

∂bi

, (20)

where

∂γi (bi; b−i)

∂bi

=

(
n0B

(∑
j 6=i bi + β

)
+ P

(∑
j 6=i bjĥji + βh0i

))
ĥiiPB

(
n0B

(∑M
j=1 bi + β

)
+ P

(∑
j 6=i bjĥji + βh0i

))2 > 0. (21)

Since the term in brackets in(20) is strictly decreasing inbi, Si (bi; b−i) is a strictly quasi-concave

function of bi, and there exists a unique best response for useri, Bi (b−i), that satisfies

Bi (b−i) = ∞, if πs ≤ U ′
i

(
P ĥii

n0

)

∂Ui (γi (Bi (b−i) ; b−i))

∂γi (Bi (b−i) ; b−i)
= πs, if U ′

i

(
P ĥii

n0

)
< πs < U ′

i (0)

Bi (b−i) = 0, if U ′
i (0) ≤ πs

(22)

If πs > max1≤i≤M U ′
i

(
P ĥii

n0

)
, thenBi (b−i) < ∞, and can be shown to satisfy

Bi (b−i) =
∑

j 6=i

kijbj + ki0β, (23)

wherekij is defined in(6), ki0 is defined in(7) andgi (π
s) is defined in(8) . Therefore, if the

auction has a unique NEb∗, then it is the unique component-wise nonnegative solutionto

(I − K) b = k0β, (24)

where K = [kij]i,j∈{1,...M} with kii = 0 for all i, and k0 = (k10, ..., kM0).11 Define ı̃ =

arg maxi∈{1,...,M} U ′
i

(
P ĥii

n0

)
and π = U ′

ı̃

(
P ĥı̃ı̃

n0

)
(i.e., gı̃ (π) = P ĥı̃ı̃

n0

). When πs > π, K is a

11We denote all vectors as row vectors. The need for transposition shouldbe clear from the context.



23

nonnegative matrix (i.e., all entries are nonnegative) andk0 is also nonnegative component-

wise. Let ρK be the spectral radius of matrixK. If ρK < 1, then limn→∞ K
n = 0, and

(I − K)−1 =
∑∞

n=0 K
n exists and is nonnegative. In that case, there is a unique component-wise

nonnegative solution to(24) given by

b∗ =

(
∞∑

n=0

K
n

)
k0β, (25)

which represents the unique NE of the auction. On the other hand, if ρK ≥ 1, then
∑∞

n=0 K
n =

∞, and the auction has no NE.

To show the existence ofπs
th, as defined in the theorem, we will consider the following two

subcases: (I.1) Only userı̃ has a positive best response at priceπ, i.e., gl (π) = 0 for all l 6= ı̃,

and (I.2) There is at least one other userl 6= ı̃ who has a positive best response at priceπ.

Subcase I.1 (gl (π) = 0 for all l 6= ı̃): Here we must haveπs
th = π. This is because for any

πs > π, Bl (b−l) = 0 for all l 6= ı̃, and the unique NEb∗ = (0, ..., 0, b∗ı̃ , 0, ..., 0) where

b∗ı̃ = kı̃0β ≥ 0. (26)

For all πs ≤ π, Bı̃ (b−ı̃) = ∞ and there exists no NE.

Subcase I.2 (∃l 6= ı̃ such thatgl (π) > 0): To prove this subcase we first show the following

two statements:(i) ρK is continuous and nonincreasing inπs. (ii) There existsπs
H > π such

that ρK (πs
H) < 1. SinceρK (π) ≥ 1, it then follows that there existsπs

th ∈ [π, πs
H) such that

ρK (πs) ≥ 1 for any π ≤ πs ≤ πs
th, andρK (πs) < 1 for any πs > πs

th. Additionally, we show

that in this subcase,πs
th > π, i.e., there existsπs

L > π such thatρK (πs
L) > 1.

To show(i) , let x = (x1, ..., xM ) be a nonnegative vector. From Corollary8.3.3 of [25] and

the fact that a square matrix has the same eigenvalues as its transpose, we have

ρK (πs) = max
x≥0
x6=0

min
j∈{1,...,M}

xj 6=0

1

xj

M∑

i=1

kij (πs) xi, (27)

where the dependence ofρK and kij on πs are explicitly shown. Letx∗ (πs) be a vector that

achievesρK (πs) in (27). Note thatx∗ (πs) must have more than one positive entry, otherwise

ρK (πs) = 0. Assume thatπ < πs < π̃s. From (6), kij (πs) is nonnegative, continuous and

nonincreasing inπs > π. Hence,

1

xj

M∑

i=1

kij (πs) xi ≥
1

xj

M∑

i=1

kij (π̃s) xi (28)
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for any nonnegativex that has more than one positive entry andxj 6= 0. This implies that

max
x≥0
x6=0

min
j∈{1,...,M}

xj 6=0

1

xj

M∑

i=1

kij (πs) xi ≥ max
x≥0
x6=0

min
j∈{1,...,M}

xj 6=0

1

xj

M∑

i=1

kij (π̃s) xi, (29)

i.e., ρK (πs) ≥ ρK (π̃s) . Since each eigenvalue of a square matrix depends continuously upon

its entries (see appendixD of [25]), ρK (πs) is continuous and nonincreasing inπs for πs > π.

To show(ii) , we have from Theorem 8.1.22 of [25],

ρK (πs) ≤ max
j∈{1,...,M}

M∑

i6=j

kij (πs) . (30)

Thus it is sufficient to show that

max
i,j∈{1,...,M}

kij (πs
H) <

1

M − 1
. (31)

Using (6), a sufficient condition for(31) is

πs
H > max

i∈{1,...,M}
U ′

i

(
PB mini∈{1,...,M} ĥii

MBn0 + (M − 1) P maxi,j∈{1,...,M} ĥji

)
> max

i∈{1,...,M}
U ′

i

(
Pĥii

n0

)
= π.

(32)

To show there existsπs
L > π such thatρK (πs

L) > 1, from (27) it is sufficient to show that

there exists anx > 0 andδ > 0 such thatπs
L = π + δ and

M∑

i=1

kij (πs
L)

xi

xj

> 1,∀j ∈ {1, ..,M} . (33)

From(8) and the assumptions in Subcase I.2, both1/gı̃ (π
s) and1/gl (π

s) are positive, continuous

and strictly increasing functions forπs ∈ [π, π + δ′) with δ′ < min (U ′
l (0) , U ′

ı̃ (0))− π. Then

for any givenδı̃ > 0 andδl > 0, there exists aδ′ > 0 such that for anyδ < δ′,

0 <
1

gı̃ (π + δ)
−

1

gı̃ (π)
≤ δı̃, (34)

0 <
1

gl (π + δ)
−

1

gl (π)
≤ δl. (35)

If we let δl = 1/gl (π) − n0/
(
Pĥll

)
> 0, δı̃ = n2

0/
(
4δlP

2ĥı̃̃ıĥll

)
> 0, xı̃ = 1 and xj =(

no/P ĥı̃̃ı

)
/δı̃ for all j 6= ı̃, then

xj

xı̃

=
no/P ĥı̃̃ı

δı̃

<

(
n0 + P

B
ĥjı̃

)
/
(
Pĥı̃̃ı

)

1
gı̃(π+δ)

− 1
gı̃(π)

= kı̃j (π + δ) = kı̃j (πs
L) ,∀j 6= ı̃, (36)
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where we have used the fact thatgı̃ (π) = Pĥı̃̃ı/n0 by definition. Thuskı̃j (πs
L) xı̃/xj > 1 for

any j 6= ı̃. Also

xl

xı̃

=
4δl

n0/
(
Pĥll

) >
1/gl (π) − n0/

(
Pĥll

)
+ δl

n0/
(
Pĥll

) >
1/gl (π + δπ) − n0/

(
Pĥll

)

n0/
(
Pĥll

)
+ ĥı̃l/

(
Bĥll

) =
1

kl̃ı (πs
L)

,

(37)

i.e., kl̃ı (π
s
L) xl/xı̃ > 1. Combining(36) and (37) give (33) , henceρK (πs

L) = ρK (π + δπ) < 1.

Case II (β = 0): First, we observe thatb∗ = 0 is an NE if and only if

Ui (0) ≥ Ui

(
Pĥii

n0

)
− πs Pĥii

n0

,∀i. (38)

That is, if all other users bid zero, then useri’s best response bid is also zero since a positive

bid gives the change in surplus∆Si (bi; b−i) = Ui

(
P ĥii

n0

)
− πs P ĥii

n0

−Ui (0) ≤ 0. Furthermore, if

there is a unique NE, thenb∗ = 0. This is because if there exists a nonzerob̃
∗
, which is a NE,

then for any scalarυ > 0, υb̃
∗

gives the same surplus values, hence is also a NE. Thus there

are an infinite number of Nash Equilibria. Finally, there is no NE whenπs is too small (e.g.,

πs ≤ U ′
i

(
P ĥii

n0

)
for some useri).

B. Proof of Theorem 2

Given anε ∈ (0, 1) , it is straightforward to write out the Kuhn-Tucker (KT) conditions for

the total utility maximization problem of theε-system with co-located receivers:

maximize
prε≥0

M∑

i=1

Ui (γi (p
rε
i )) (39)

subject to γi (p
rε
i ) =

prε
i

n0 + (P − prε
i ) /B

M∑

i=1

prε
i ≤ P (1 − ε) .

Since problem(39) is a strictly convex maximization problem under Assumption2, the KT

conditions are necessary and sufficient for the uniqueε-social optimal solution.

In the power auction, useri’s surplus functionSi (bi; b−i) = Ui (γi (p
r
i (bi; b−i)))−πppr

i (bi; b−i)

is a strictly quasi-concave function inbi. Hence there exists a unique value ofbi that maximizes

Si (bi; b−i) for fixed b−i. By settingπp equal to the Lagrange multiplier in the KT conditions for

problem(39) , the set of best responses for the users is the solution to the KT conditions. Thus

the power profile at the NE achievesε-social optimality for anyε ∈ (0, 1) .
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C. Proof of Proposition 4

With logarithmic utilities and co-located receivers, the first-order conditions for surplus max-

imization for useri gives

πp = U ′
i (θi, γi (p

r∗
i )) γ′

i (p
r∗
i ) =

θi (n0B + P )

pr∗
i (n0B + P − pr∗

i )
. (40)

Thus,

Rp =
M∑

i=1

πppr∗
i =

M∑

i=1

θi (n0B + P )

(n0B + P − pr∗
i )

>
M∑

i=1

θi = Rs, (41)

where the last equality is shown in the proof of Proposition 2. If θi ≤ θ̄ for eachi, then as

M → ∞, pr∗
i → 0 for each useri, andRp/Rs → 1.

D. Proof of Proposition 5

We obtain(13) by taking the limit of the conditions in Proposition1, under the assumed

scaling. LetLim denotelimP,B,M→∞ with P/B, P/M, β/M fixed. Thus,

Lim
M∑

i=1

ki

1 + ki

= Lim
M∑

i=1

θi (P/B + n0)

P (πs + θi/B)
=

1

M
Lim

M∑

i=1

Mθi (P/B + n0)

Pπs
=

P/B + n0

P/Mπs
E [θ]

(42)

with probability 1. The first equality follows from the definition ofki in (9), the second follows

from the limit B → ∞, and the third follows from the strong law of large numbers. Condition

(13) then follows directly. The weighted max-min fair SINR allocation and payments stay fixed

during the limiting process. Since every user sees the same noise plus interference at the NE,

n0 + P/B, we havepr∗
i = γ∗

i (n0 + P/B) for all i. This corresponds to a weighted max-min fair

power allocation.

E. Proof of Theorem 4 (Sketch)

In the limiting system, the maximum average utility per useris the solution to:

maximize
pr(θ)≥0

Eθ

[
U

(
θ,

pr (θ)

n0 + (P − pr (θ)) /B

)]
(43)

subject to Eθ [pr (θ)] =
P

M
(1 − ε)

The objective is the average utility per user, and the constraint corresponds to the total received

power constraint in theε-system. In both cases we have used the law of large numbers toexpress

these in terms of expectations overθ.
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The optimization is over all received power allocations,pr :
[
θ, θ
]
→ R+. We first prove the

following lemma:

Lemma 2:There exists a power allocationpr (θ) that solves (43), which is finite everywhere,

i.e.,

lim
P→∞

pr (θ)

P
= 0,∀θ ∈

[
θ, θ
]
. (44)

This lemma implies that each user receives a negligible fraction of the total power as the

system scales. The lemma can be proved by contradiction. If the lemma were not true, then

at least one user would be allocated infinite power as the system scales. Because the utility is

sublinear, this user would contribute a negligible amount to the average utility. Thus we could

reallocate the user’s power among the remaining users and strictly increase the average utility.

This gives a contradiction, proving the lemma.

Lemma 2 ensures that at a solution to (43), each user receivesthe same interference plus

noisen0 +P/B. This makes (43) a strictly concave maximization problem. Byusing calculus of

variations [26], we can solve forp (θ) in closed form, as well as for the corresponding positive

Lagrange multiplierλ for the average power constraint. Lettingπp = λ or πs = (n0 + P/B) λ

results in the same power allocation at the NE for the power and SINR auctions, respectively.
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